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Prologue

The study of the behavior of the sequence of iterates of a germ of holomorphic diffeo-
morphism f in C has been object of study since the time of Schröder and Fatou and Julia
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and it is still today a very flourishing sector of mathematics. Much of this theory has been
used and improved by people interested in the dynamics of holomorphic foliations, relating
local dynamics of germs with that of foliations by means of holonomy and Poincaré’s time
one map.

To understand dynamics of a germ, one tries first to simplify it by means of suitable
changes of coordinates. In particular, the best situation one can hope to have is lineariza-
tion of the germ. This means that suitably changing coordinates the map becomes a linear
transformation. If the change of coordinates used to linearize the germ is holomorphic then
the linear transformation obtained is the differential of the germ at the fixed point. How-
ever if the change of coordinates involved is only continuous then the linear transformation
might not be the differential. Holomorphic linearization is the dream of people that study
local holomorphic dynamics, for one can really think of the map as a linear transformation.
Even topological linearization is useful (for instance it provides trajectories and behavior
of orbits), quasiconformal conjugation (which might change the differential as well) and
sometimes it may be useful also to have just formal linearization. Anyhow, the first deriv-
ative is the map which first approximates the dynamics of the map, and thus it is natural to
classify and study dynamics according to it.

As we will see, a generic germ of holomorphic diffeomorphism is holomorphically
linearizable. Unfortunately, the non-generic situation comes out often in celestial mechan-
ics and physical problems. Thus one is forced to understand non-linearizable dynamical
systems. These are not completely understood, even if from the pioneering work of Fatou,
Dulac and Poincaré much has been done.

In these notes we provide a survey with detailed proofs about local dynamics of germs
of holomorphic diffeomorphisms. The first part is related to formal classification, and
we relate germs of diffeomorphisms with formal vector fields via the exponential map.
Then we discuss holomorphic dynamics. The core part here is to provide a detailed proof
of Yoccoz’s wonderful qualitative result about holomorphic linearization for almost every
elliptic germ. We also study the hyperbolic case and the parabolic case. Then we end
up with few notes on the topological classification, especially Camacho’s theorem for the
parabolic case.

The survey is based on a PhD course I gave at Università di Roma “Tor Vergata” in
2007/08. The bibliography is not exhaustive at all, although I tried to give appropriated
credits when possible. Proofs however are provided quite in details, trying to use a point
of view suitable for further generalizations, especially in higher dimensions.

I wish to thank Prof. Manuel D. Contreras and Prof. Santiago Diaz-Madrigal for
the opportunity of publishing such notes in this collection and to the referee for useful
comments which improved the manuscript.

Many thanks also to Alessandro Rosa for drawing the nice pictures enclosed in the
text.

1. Formal Normal Forms

1.1. Germs of formal diffeomorphisms. Let denote with D̂iff(C, O) the set of for-
mal power series of type

f̂(z) :=
∑
j∈N

ajz
j , a0 = 0, a1 �= 0.

Namely, the constant coefficient of f̂ is zero and the coefficient of the linear term is not
zero. If f̂ ∈ D̂iff(C, O) and the series is uniformly convergent on some open disc of
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positive radius, we write f̂ ∈ Diff(C, O). An element of D̂iff(C, O) is called a formal germ
of diffeomorphism, while an element of Diff(C, O) is called a germ of diffeomorphism.

PROPOSITION 1.1. The set D̂iff(C, O) is a non-commutative group with respect to
composition and Diff(C, O) is a subgroup.

PROOF. Let f̂(z) :=
∑

ajz
j and ĝ(z) :=

∑
bjz

j be in D̂iff(C, O). Define the
composition

(f̂ ◦ ĝ)(z) :=
∑
j≥1

aj

⎛⎝∑
k≥1

bkz
k

⎞⎠j

= a1b1z + (a1b2 + a2b
2
1)z

2 + (a1b3 + 2a2b1b2 + a3b
3
1)z

3 + . . .

Therefore, since a1b1 �= 0 then f̂ ◦ ĝ ∈ D̂iff(C, O) and the group sum is well defined.
Clearly the germ defined by id(z) := z is the neutral element. Also the associative prop-
erty is easy to be verified. It remains to prove that each f̂ ∈ D̂iff(C, O) is invertible. Let
f̂(z) :=

∑
ajz

j ∈ D̂iff(C, O) be given. We are looking for a germ ĝ(z) :=
∑

bjz
j such

that f̂ ◦ ĝ = ĝ ◦ f̂ = id. From the very definition of composition we obtain the condition
b0 = 0, b1 = 1/a1. Then a1b2 + a2b

2
1 = 0 which implies b2 = −a2b

2
1/a1, and a1b3 +

2a2b1b2+a3b
3
1 = 0 which implies b3 = −(2a2b1b2+a3b

3
1)/a1. More generally, since the

coefficient of f̂ ◦ ĝ of position k is of the form a1bk+[terms containing b1, . . . , bk−1] it fol-
lows that the equation a1bk+[terms containing b1, . . . , bk−1] = 0 has a unique solutions in
terms of a1, . . . , ak, b1, . . . , bk−1. Therefore ĝ is uniquely determined and f̂ is invertible.
It is finally clear that Diff(C, O) is a subgroup of D̂iff(C, O) because the composition of
two holomorphic functions is holomorphic. �

DEFINITION 1.2. We say that f̂ , ĝ ∈ D̂iff(C, O) are formally conjugated if there
exists ĥ ∈ D̂iff(C, O) such that ĥ ◦ f̂ = ĝ ◦ ĥ. In case f̂ , ĝ, ĥ ∈ Diff(C, O) we say that f̂
and ĝ are holomorphically conjugated.

A germ of (formal) diffeomorphism f̂ is (formally) linearizable if it is (formally) con-
jugated to a linear germ of the form ĝ(z) := λz.

PROPOSITION 1.3. Let f̂ ∈ D̂iff(C, O) be given by f̂(z) =
∑

j≥1 ajz
j . Suppose that

f̂ is formally conjugated to a formal germ ĝ(z) =
∑

j≥1 bjz
j . Then b1 = a1.

PROOF. Assume that ĥ(z) =
∑

j≥1 cjz
j conjugates f̂ to ĝ, namely ĥ ◦ f̂(z) = ĝ ◦

ĥ(z). Expanding we find

ĥ ◦ f̂(z) = c1a1z +O(z2), ĝ ◦ ĥ(z) = b1c1z +O(z2),

and since c1 �= 0, it follows that a1 = b1. �

REMARK 1.4. If f̂ ∈ D̂iff(C, O) is formally conjugated to the linear germ ĝ(z) = λz

then one can find a germ ĥ ∈ D̂iff(C, O) with ĥ(z) = z +
∑

j≥2 bjz
j which conjugates f̂

to ĝ. Indeed, if H(z) =
∑

j≥1 cjz
j solves H ◦ f̂(z) = λH(z) then ĥ(z) = H(z)/c1 does

the job.

From Proposition 1.3 it follows that the term a1 is invariant under conjugation. Since
dynamical properties of a germ are invariant under conjugation, the following definition is
coherent:
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DEFINITION 1.5. Let f̂ ∈ D̂iff(C, O) be given by f̂(z) =
∑

j≥1 ajz
j . Let λ := a1.

We say that f̂ is

(1) hyperbolic if |λ| �= 1,
(2) parabolic if λq = 1 for some q ∈ N \ {0}
(3) elliptic if |λ| = 1 and λq �= 1 for all q ∈ N \ {0}.

In the next subsections we examine formal linearization according to the previous
classification.

1.2. Homological equation, resonances and the non-parabolic case. Let f̂ be in
D̂iff(C, O). In order to find a simpler conjugated form for f̂ , or even to linearize f̂ , one can
try to dispose of one monomial after another, starting from the one of smallest degree. This
operation is not always working due to resonances. This phenomenon is easily controlled
in dimension one but plays an important role in higher dimension.

To enter into details, let

f̂(z) = λz + ajz
j +O(zj+1),

where aj for j ≥ 2 denotes the first non-zero coefficient in the series of f̂ . Let us try to
use a (holomorphic) diffeomorphism of the form ϕ(z) = z+αzk to dispose of the term of
degree j, that is aj , without introducing terms of degree less than j. Namely, we look for
ϕ(z) which solves the following functional equation:

ϕ ◦ f̂(z) = λϕ(z) +O(zj+1).

Expanding we obtain

f̂(z) + α[f̂(z)]k = λz + λαzk +O(zj+1),

that is

λz + ajz
j + αλkzk +O(zj+1, zk+1) = λz + λαzk +O(zj+1).

From this it follows that we have to choose k = j and we come up with the following
equation known as the homological equation:

(1.1) aj + αλ(λk−1 − 1) = 0.

Clearly, such an equation has a unique solution α = −aj/λ(λ
k−1 − 1) in case λk−1 �= 1.

This simple argument has a series of interesting consequences that we list.

THEOREM 1.6. Let f̂ ∈ D̂iff(C, O) be a non-parabolic germ. Then f̂ is formally
linearizable.

PROOF. Let f̂(z) = λz+
∑

j≥2 ajz
j . Let T2(z) = z+α2z

2 with α2 = −a2/λ(λ−1).
Since λq �= 1 for every q ∈ N then α2 is well defined. Notice that T2 = id if a2 = 0.
Then let f̂2 := T2 ◦ f̂ ◦ T−1

2 . Since T−1
2 (z) = z − α2z

2 + O(z3) it follows that f̂2(z) =
λz +

∑
j≥3 ãjz

j .
More generally, we can define by induction Tk for k ≥ 2 to be the (holomorphic)

diffeomorphism of the form Tk(z) = z + αkz
k which solves the homological equation

(1.1) for the coefficient of degree k of (Tk−1 ◦ . . . ◦ T2) ◦ f̂ ◦ (Tk−1 ◦ . . . ◦ T2)
−1. Then

we let

T (z) = lim
k→∞

(Tk ◦ . . . ◦ T2)(z).
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In other words, T (z) = z +
∑

j≥2 bjz
j is the formal diffeomorphism whose coefficient bj

is the coefficient of degree j in Tj ◦ . . . ◦ T2. Notice that for k > j

Tk ◦ (Tj ◦ . . . ◦ T2)(z) = (Tj ◦ . . . ◦ T2)(z) +O(zk),

and therefore the coefficient bj stabilizes in the limit limk→∞(Tk ◦ . . . ◦ T2)(z) and hence
it is well-defined.

By construction T ◦ f̂(z) = λT (z) and f̂ is linearizable. �

It is worth to explicitly notice that, even if f̂ is a holomorphic non-parabolic germ,
that is f̂ ∈ Diff(C, O), the formal diffeomorphism T in the proof of Theorem 1.6, given as
infinite composition of holomorphic diffeomorphisms, may not be holomorphic. Namely,
a germ f ∈ Diff(C, O) may be formally linearizable but not holomorphically linearizable.
Examples of such germs exist and we will see them later. The problem of convergence of
the infinite composition is strongly related to how λk − 1 stays bounded away from zero.
This problem is known as small divisors problem. We shall come back to this later.

For the moment, we notice that if one stops the process of linearization in the proof of
Theorem 1.6 at degree k, then the germ Tk ◦ . . . ◦ T2 is holomorphic and conjugates f̂ to a
germ of the form λz +O(zk+1). In particular if f̂ is holomorphic we have

COROLLARY 1.7. Let f ∈ Diff(C, O) be a non-parabolic germ. For any k ∈ N there
exists g ∈ Diff(C, O) such that g (holomorphically) conjugates f to a (holomorphic) germ
of the type

λz +O(zk+1).

Before moving to the parabolic case, we prove that the diffeomorphism which lin-
earizes a non-parabolic germ is essentially unique:

PROPOSITION 1.8. Let f̂(z) = λz + O(z2) ∈ D̂iff(C, O) be a non-parabolic germ.
Let ĝ0, ĝ1 ∈ D̂iff(C, O) be such that ĝj ◦ f̂ = λĝj , j = 0, 1. Then there exists a ∈ C \ {0}
such that ĝ1 = aĝ0.

PROOF. By hypothesis,

ĝ−1
0 (λĝ0(z)) = f̂(z) = ĝ−1

1 (λĝ1(z)),

which implies ĝ1(ĝ
−1
0 (λz)) = λĝ1(ĝ

−1
0 (z)). Let ĥ(z) := ĝ1 ◦ ĝ−1

0 (z). Then

ĥ(λz) = λĥ(z).

If ĥ(z) =
∑

j≥1 ajz
j , expanding the previous expression we find∑

j≥1

λjajz
j =

∑
j≥1

λajz
j .

Equating terms of the same degree we obtain

λ(λj−1 − 1)aj = 0.

Since f̂ is not parabolic, and then λj−1 �= 1 for all j > 1, it follows that aj = 0 for j > 1.
Therefore ĥ(z) = a1z and ĝ1 ◦ ĝ−1

0 (z) = a1z which implies ĝ1 = a1ĝ0 as claimed. �

The previous proposition allows to write quite explicitly the coefficients of the diffeo-
morphism which linearizes a non-parabolic germ:
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PROPOSITION 1.9. Let f(z) = λz +
∑

j≥2 ajz
j ∈ D̂iff(C, O) be a non-parabolic

germ of formal diffeomorphism. Let g(z) = z +
∑∞

j=2 bjz
j ∈ D̂iff(C, O) be such that

g−1 ◦ f = λg−1. Then

(1.2) bn =
1

λn − λ

n∑
j=2

(aj
∑

k1+...+kj=n

bk1
· · · bkj

).

PROOF. The functional equation g−1 ◦ f = λg−1 is equivalent to f(g(z)) = g(λz).
We compute

f(g(z)) = λ(z +

∞∑
j=2

bjz
j) +

∑
k≥2

ak

⎛⎝z +

∞∑
j=2

bjz
j

⎞⎠k

= λz + (λb2 + a2)z
2 + (λb3 + a2(b1b2 + b2b1) + a3)z

3 + . . .

+

⎡⎣λbn + a2(
∑

j1+j2=n

bj1bj2) + . . .

+an−1(
∑

j1+...+jn−1=n

bj1 · · · bjn−1
) + an

⎤⎦ zn + . . .

Also
g(λz) = λz + λ2b2z

2 + . . .+ λnbnz
n + . . .

Therefore equating the two expressions, we obtain

λnbn = λbn + a2(
∑

j1+j2=n

bj1bj2) + . . .+ an−1(
∑

j1+...+jn−1=n

bj1 · · · bjn−1
) + an,

from which (1.2) follows. Finally, Proposition 1.8 assures that this is the only possible
expression for g. �

The intertwining map, if convergent, is univalent in the elliptic case:

LEMMA 1.10. Let f(z) = λz +
∑

j≥2 ajz
j ∈ Diff(C, O) with λ = e2πiθ and θ ∈

R \ Q. Let h ∈ D̂iff(C, O) with h(0) = 0, h′(0) = 1 be such that f(h(z)) = h(λz). Let
r > 0 and assume that h is holomorphic on the disc Dr. Then h is univalent on Dr.

PROOF. Assume z1, z2 ∈ Dr, z1 �= z2 and h(z1) = h(z2). Since f(h(z1)) =
f(h(z2)) then by the functional equation f(h(z)) = h(λz) it follows h(λnz1) = h(λnz2)
for all n = 0, 1, . . .. But {λn} is dense in ∂D, hence h(eηiz1) = h(eηiz2) for all η ∈ R.
Now A : ζ �→ h(ζz1) − h(ζz2) is a holomorphic function on a neighborhood of D such
that A|∂D ≡ 0. Thus H ≡ 0 on D. Therefore h(ζz1) = h(ζz2) for all ζ ∈ D. In particular
h is not injective in any neighborhood of 0, against our assumption that h′(0) = 1. �

1.3. Formal normal forms in the parabolic case. In this subsection we examine the
parabolic case. In this case the homological equation (1.1) has no solution if λk−1 = 1.
If this happens, we say that λ has a resonance in degree k. However, it might be possible
that the coefficients which generate a resonance are already zero and then the linearization
process works. This case is simply characterized:

PROPOSITION 1.11. Let f̂ ∈ D̂iff(C, O) be a germ of parabolic type. Then f̂ is
formally linearizable if and only if there exists m ∈ N such that f◦m = id.
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PROOF. Assume first that f̂(z) = λz + O(z2) is formally linearizable. Since f̂ is
parabolic, there exists m ∈ N such that λm = 1. Thus there exists ĝ ∈ D̂iff(C, O) such
that λz = ĝ ◦ f̂ ◦ ĝ−1(z). Hence

z = λmz = (ĝ ◦ f̂ ◦ ĝ−1)◦m(z) = ĝ ◦ f̂◦m ◦ ĝ−1(z).

This implies that id = ĝ ◦ f̂◦m ◦ ĝ−1. Composing on the left with ĝ−1 and on the right
with ĝ this yields f̂◦m = id.

Conversely, assume that there exists m ∈ N such that f̂◦m = id. If f̂(z) = λz+O(z2)

then f̂◦m(z) = λmz +O(z2) and by hypothesis it follows that λm = 1. Now define

ĝ(z) :=
1

m

m−1∑
j=0

f̂◦j(z)

λj
.

Then, taking into account that f̂◦m = id and λm = 1, we have

ĝ ◦ f̂(z) = 1

m

m−1∑
j=0

f◦(j+1)(z)

λj
=

1

m

m∑
j=1

λ
f◦j(z)

λj
=

1

m

m−1∑
j=0

λ
f◦j(z)

λj
= λĝ(z),

hence f̂ is linearizable. �

REMARK 1.12. Proposition 1.11 holds also in the holomorphic context, i.e., f ∈
Diff(C, O) parabolic is holomorphic linearizable if and only if there exists m ∈ N such
that f◦m = id. This follows from the same proof.

In the non-linearizable case it is however possible to obtain a simpler normal form.

THEOREM 1.13. Let f̂(z) := λz + O(z2) ∈ D̂iff(C, O) be a parabolic germ with
λm = 1 and λj �= 1 for j = 1, . . . ,m− 1. If f◦m �= id then there exist n ∈ N and a ∈ C

such that f̂ is formally conjugated to

λz + zmn+1 + az2mn+1.

Moreover, n and a are uniquely determined by the class of formal conjugation of f̂ in
D̂iff(C, O).

Moreover,

a =
1

2πi

∫
γ

dz

λz − f(z)
,

where γ is a positively oriented small loop around the origin.

PROOF. Let f̂(z) = λz + ajz
j + O(zj+1) with aj �= 0 being the first non-zero

coefficient. If λ has no resonance in degree j then the homological equation (1.1) can be
solved and f̂ can be conjugated to a map of the type λz + O(zk) for some k > j. Since
by hypothesis f◦m �= id and thus by Proposition 1.11 it is not linearizable, after a finite
number of steps we have to encounter a resonant term. Notice that, being m the order of λ
then such a resonant term must be of degree nm+ 1 for some n ≥ 1. We can thus assume
that

f̂(z) = λz + amn+1z
mn+1 +O(zmn+2)

with anm+1 �= 0.
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First of all, let conjugate f̂ with D(z) = αz for some α ∈ C \ {0} to be chosen later.
Then

D−1 ◦ f ◦D(z) =
1

α
(λαz + amn+1α

mn+1zmn+1 +O(zmn+2)

= λz + amn+1α
mn+1zmn+1 +O(zmn+2).

Choosing α such that amn+1α
mn+1 = 1, we have that f̂ is conjugated to

f̂1(z) = λz + zmn+1 + ajz
j +O(zj+1),

for some j > mn+ 1 and aj �= 0. In order to dispose of the term of degree j we look for
a germ of the form T (z) = z + αzh which solves the functional equation

(1.3) T ◦ f̂1(z) = λT (z) + T (z)mn+1 +O(zj+1).

Expanding we obtain

λz + zmn+1 + ajz
j + α(λz + zmn+1 + ajz

j)h +O(zj+1)

= λz + λαzh + (z + αzh)mn+1 +O(zj+1)

that is,

λz + zmn+1 + ajz
j + α

h∑
k=0

(
h

k

)
λkz(mn+1)h−kmn +O(zj+1)

= λz + λαzh +

mn+1∑
k=0

(
mn+ 1

k

)
αmn+1−kz(mn+1)h−k(h−1) +O(zj+1)

namely,

λz + zmn+1 + ajz
j + αλhzh + αhλh−1zh+mn +O(zj+1, zh+2mn)

= λz + λzh + zmn+1 + (mn+ 1)αzmn+h +O(zj+1, zmn+2h−1).

Canceling and collecting terms we get

ajz
j+α(λh − λ)zh + α[λh−1h− (mn+ 1)]zmn+h

= 0 +O(zj+1, zh+2mn, zmn+2h−1).

From this we see if j �= qmn+1 for any q ∈ N then choosing h = j we get the homological
equation aj + α(λh − λ) = 0 which has a unique solution α, and therefore we can solve
(1.3).

In case j = qmn + 1 for some q ∈ N, the choice h = qmn + 1 does not allow to
solve the corresponding homological equation. However, if we let h = pmn+ 1 for some
p ∈ N to be chosen later, we obtain

aqmn+1z
qmn+1 + α(p− 1)mnz(p+1)mn+1 = 0 + O(zqmn+2).

In order to solve such an equation we need to set p + 1 = q. This leads us to solve the
linear equation in α

aqmn+1 + α(p− 1)mn = 0,

which has a unique solution if and only if p �= 1, namely q �= 2.
Summing up, we proved that if j is not a resonance degree for λ than we can dispose of

aj . Also, if j = qmn+1 with q > 2 then we can dispose of aqmn+1. But, if j = 2mn+1
then we cannot dispose of a2mn+1 which is thus an invariant, let denote it with a ∈ C.
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Therefore, we can conjugate f̂ to a germ of the form

f̂2(z) = λz + zmn+1 + az2mn+1 + ajz
j +O(zj+1)

with aj �= 0, j > 2mn+1. Now, arguing as before, in case j �= qmn+1 for any q ∈ N we
can use a germ of the form z+αzj to dispose of aj . If j = qmn+1 for some q > 2 we can
use a germ of the form z + αz(q−1)mn+1 to dispose of aj . Continue this way, composing
the (infinite) conjugations, we are done.

Now we need to show that n and a depend only on the class of formal conjugation
of f̂ . Indeed, by construction, the normal form of f̂ is unique and since conjugation is
transitive, it depends only on the class of conjugation of f̂ .

Finally, given f̂(z) = λz + zr+1 + az2r+1, for some r ≥ 1, we have

1

λz − f(z)
= − 1

zr+1

1

1 + az2r+1
= − 1

zr+1
(1− az2r+1 + o(|z|2r+1)

=
−1

zr+1
+

a

z
+ h(z),

where h(z) is holomorphic in a neighborhood of the origin. From this it follows that

1

2πi

∫
γ

dz

λz − f(z)
=

1

2πi

∫
γ

[
−1

zr+1
+

a

z
+ h(z)] = a,

as claimed. �
REMARK 1.14. From the proof of Theorem 1.13 it follows that if f(z) := λz +

O(z2) ∈ Diff(C, O) is a parabolic germ with λm = 1 and λj �= 1 for j = 1, . . . ,m − 1
with f◦m �= id, then for every fixed t >> 1, f is holomorphically conjugated to

λz + zmn+1 + az2mn+1 +O(|z|t).
DEFINITION 1.15. Let f(z) := λz + O(z2) ∈ Diff(C, O) be a parabolic germ. The

number

ι(f, 0) :=
1

2πi

∫
γ

dz

λz − f(z)
,

is called the parabolic index of f at 0.

As follows from Theorem 1.13, the parabolic index of a parabolic germ is a formal
invariant hence it is a holomorphic invariant, namely, if f, g are two parabolic germs which
are holomorphically (hence formally) conjugated, then the parabolic index is the same.
This fact can be showed directly (see [19] or [1]).

REMARK 1.16. As the reader familiar with complex dynamics could recognize, our
definition of parabolic index coincides with the usual notion of holomorphic index (see,
e.g., [19]) of a germ of holomorphic map only in case λ = 1. Indeed, the holomorphic
index of f ∈ Diff(C, O) is defined as

o(f, 0) :=
1

2πi

∫
γ

dz

z − f(z)
.

This number is equal to 1/(1 − λ) provided λ �= 1 while it equals ι(f, 0) in case λ = 1.
See [19] for details. For what we are concerned about, we just need the parabolic index
introduced above.

The parabolic index is useful in the study of rational (and transcendental) dynamics
to estimate the number of non-repelling periodic cycles in terms of the number of critical
points (see [16], [4], [8]).
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DEFINITION 1.17. A parabolic germ f̂ ∈ D̂iff(C, O) is tangent to the identity if
f̂(z) = z +O(z2).

REMARK 1.18. If f(z) = z + ak+1z
k+1 + O(zk+2) ∈ Diff(C, O) with ak+1 �= 0,

then k + 1 is the first non-resonant term and, arguing as in the proof of Theorem 1.13, we
can find a holomorphic conjugation to a holomorphic germ of the form z �→ z − zk+1 +
az2k+1 +O(zh) with h as big as we like.

For k ∈ N and a ∈ C, let us denote

(1.4) fk,a(z) := z + zk+1 + az2k+1.

Also, for λ ∈ R we denote

(1.5) Rλ(z) := e2πiλz

By Theorem 1.13 every germ of diffeomorphism tangent to the identity is formally conju-
gated at one (and only one) fk,a for some k ∈ N and a ∈ C.

REMARK 1.19. Let f̂(z) = z + zk+1 + az2k+1 +O(z2k+2) ∈ D̂iff(C, O). From the
proof of Theorem 1.13 it follows that f̂ is formally conjugated to fk,a, since the conjuga-
tion exploited to dispose of the tail O(z2k+2) does not effect the previous terms.

Also, Proposition 1.11 and Theorem 1.13 can be rephrased as follows:

COROLLARY 1.20. Let f̂ ∈ D̂iff(C, O) be a parabolic germ of diffeomorphism, with
f̂(z) = e2πip/qz +O(z2) for some p/q ∈ Q. Then

(1) either f̂ is formally conjugated to Rp/q , and this is the case if and only if f̂q = id,

(2) or f̂ is formally conjugated to Rp/q ◦ fmq,α = fmq,α ◦ Rp/q for some m ∈ N

and α ∈ C.

PROOF. Case (1) follows from Proposition 1.11. Suppose we are in Case (2). By
Theorem 1.13, f̂ is formally conjugated to e2πip/qz + zmq+1 + az2mq+1. Conjugating
such a normal form with D(z) = Az and Amq = exp(2πip/q), we obtain a new normal
form given by e2πip/q(z+ zmq+1 +ae2πip/qz2mq+1). Setting α = ae2πip/q we obtain the
assertion. �

The decomposition, up to formal conjugation, of f̂ as Rp/q◦fmq,α can be thought of as
a Jordan-type normalization. The two germs Rp/q and fmq,α commute under composition,
one is nilpotent (Rq

p/q = id) and the other is tangent to the identity.

1.4. Germs of vector fields and flows: the formal classification revised. Let X be
a germ at O of a holomorphic vector field in C. Namely,

X(z) = H(z)
d

dz
with H being a germ of holomorphic function at O (not necessarily invertible). We will
use the following result known as (holomorphic) flow box theorem

THEOREM 1.21. Let Ω be a open set in Cn and F : Ω → Cn be a holomorphic map.
For any compact subset K ⊂ Ω there exist δ > 0, a open neighborhood U of K and a
unique real analytic map Φ : (−δ, δ)× U → Ω, such that z �→ Φ(t, z) is holomorphic for
all t fixed and

(1.6)

{
∂
∂tΦ(z, t) = F (Φ(z, t))

Φ(z, 0) = z
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By Theorem 1.21, given a germ of holomorphic vector field X there exist two open
neighborhoods Ω, U of O and a map Φ : (−δ, δ) × U → Ω which satisfies Φ(z, 0) = z
and ∂

∂tΦ(z, t) = X(Φ(z, t)) for all t ∈ (−δ, δ) and z ∈ U .
For a fixed t ∈ (−δ, δ) the map Φt : z �→ Φ(z, t) is called the time t flow of X .

Multiplying the vector field X by δ/2, the associated flow is given by re-scaling the time,
namely, Ψ(z, t) := Φ(z, tδ/2) solves Ψ(z, 0) = z and ∂

∂tΨ(z, t) = (δ/2)X(Ψ(z, t)).
Notice that now the map Ψ is defined in an interval (−2, 2). In particular it is well defined
the time 1 flow Ψ1.

Therefore, up to positive constant multiple, we will always assume that the time one
flow is defined. It is also important to observe that the time one flow is essentially defined
as a germ of holomorphic function at O.

If X is a vector field, its time t flow is sometimes denoted by exp(tX).

PROPOSITION 1.22. Let X be a germ at O of a holomorphic vector field in C. Then
exp(tX) fixes O for all t if and only if X is singular at O, i.e., X(O) = 0.

PROOF. Since exp(tX) is the solution of (1.6), it follows at once from the uniqueness
of solutions for ordinary differential equations. �

There is a formula which allows to express the time t flow of a holomorphic vector
field with an isolated singularity at O with respect to the vector field itself:

THEOREM 1.23. Let X = H(z) d
dz be a germ at O of a holomorphic vector field in

C. Suppose O is an isolated singularity for X , i.e., X(O) = 0. Then

(1.7) exp(tX)(z) = z +
∞∑

n=1

tn

n!
Xn.z,

where Xn.z is defined by induction as X.(Xn−1.z), with X.z := H(z).

PROOF. By Theorem 1.21, we know that the flow of the vector field X , G(t, z) :=
exp(tX)(z), is well defined and holomorphic in z (near O) and real analytic in t (for t
small). Moreover, it is the unique such a function that has the property that G(0, z) = z and
∂
∂tG(t, z) = X.(G(t, z)). Expanding in Taylor series the previous equality and equation
the coefficient with the same degree in z, we come up with infinitely many differential
equation which can be solved by recurrence. This shows that actually G(t, z) is unique
also in the category of formal power series with coefficient (convergent and smooth) in t.

The (a priori) formal series F (t, z) := z+
∑∞

n=1
tn

n!X
n.z has convergent coefficients

in t. It follows that F (0, z) = z and

∂

∂t
F (t, z) =

∞∑
n=1

∂

∂t

tn

n!
Xn.z =

∞∑
n=1

n
tn−1

n!
Xn.z

=

∞∑
n=0

tn

n!
X.(Xn.z) = X.(F (t, z)),

therefore exp(tX)(z) = F (t, z), as claimed. �

Theorem 1.23 can be used to find the coefficients of the time one flow of a vector field
starting with its expansion at O.

Let X(z) = (Az +O(z2)) d
dz . Then

X2.z = (Az +O(z2))
d

dz
(Az +O(z2)) = A2z +O(z2),
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and a simple induction shows that Xn.z = Anz +O(z2). Formula (1.7) implies that

exp(X)(z) = z +
∞∑
j=1

An

n!
z +O(z2),

namely, exp(X)′(0) = exp(A).
If X(z) = Az +Bz2 +O(z3), then arguing by induction, we find

Xn.z = Anz + anA
n−1Bz2 +O(z3),

with an = 2an−1 + 1 and a1 = 1. Therefore (1.7) implies

(1.8) exp(X)(z) = exp(A)z +

(
1 +

∞∑
n=2

anA
n−1

n!

)
Bz2 +O(z3)

Notice that if A = 0 then exp(X)(z) = z+Bz2+O(z3). In fact, if X(z) = O(z2) d
dz

then the expansion of its time one flow can be obtained by polynomial equations in the
coefficients of X , more precisely

PROPOSITION 1.24. Let X(z) = H(z) d
dz be a germ of holomorphic vector field such

that H(0) = H ′(0) = 0. Let H(z) =
∑∞

j=K Ajz
j , with K ≥ 2 and AK �= 0. Let

f(z) = exp(X)(z). Assume that f(z) =
∑∞

j=0 ajz
j . Then

(1.9)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a0 = 0,

a1 = 1,

aj = 0, j = 2, . . . ,K − 1

aK = AK ,

aj = Aj + Pj(AK , . . . , Aj−1), j ≥ K + 1

where Pj(xK , . . . , xj−1) is a polynomial in xK , . . . , xj−1.

PROOF. According to (1.7) we have

∞∑
j=0

ajz
j = z +

∞∑
n=1

1

n!
Xn.z.

Now, writing H(z) = AKzK + O(zK), since K ≥ 2, we see that X.(Xn−1.z) =
O(zK+1) for n ≥ 2. Therefore

z +
∞∑

n=1

1

n!
Xn.z = z +X.z +O(zK+1) = z +AKzK +O(zK+1).

Let r, s, t ∈ N with for K − 1 ≤ r < s and r ≤ t ≤ s. We will denote by Ls
r(t)

any polynomial in z of degree greater than or equal to r and less than or equal to s with
coefficients given by polynomials in AK , . . . , At. With this notation, in order to prove
(1.9) it is enough to prove that, for all j ≥ K + 1 we can write

(1.10) Xn.z = Lj
K(j − 1) +O(zj+1), n ≥ 2.
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First, for n = 2 we compute

X2.z = X.(X.z) = (AKzK + . . .+Ajz
j

+O(zj+1))
d

dz
(AKzK + . . .+Ajz

j +O(zj+1))

= (AKzK + . . .+Ajz
j +O(zj+1))(KAKzK−1 + . . .+ jAjz

j−1 +O(zj))

= L2j−3
2K−1(j − 1) + (j +K)AKAjz

K+j−1 +O(zj+1).

Since K ≥ 2, it follows that zK+j−1 = O(zj+1) and therefore X2.z = Lj
K(j − 1) +

O(zj+1) as claimed. Now, in order to prove (1.10) by induction, we assume that it holds for
n and we prove it is true for n+1. We have X.z := H(z) = Lj−1

K (j−1)+Ajz
j+O(zj+1).

Therefore

Xn+1.z =X.(Xn.z) = (Lj−1
K (j − 1) +Ajz

j

+ O(zj+1))
d

dz
[Lj

K(j − 1) +O(zj+1)]

= (Lj−1
K (j − 1) +Ajz

j +O(zj+1)) · (Lj−1
K−1(j − 1) +O(zj))

= L2j−2
2K−1(j − 1) +Ajz

jLj−1
K−1(j − 1) +O(zj+1)

= Lj
K(j − 1) +AjL

2j−1
K+j−1(j − 1) +O(zj+1) = Lj

K(j − 1) +O(zj+1),

which proves (1.10), and we are done. �

DEFINITION 1.25. A formal vector field X(z) is given by X(z) =
∑∞

j=0 Ajz
j d
dz

where
∑∞

j=1 Ajz
j is a formal power series. The formal vector field X is one flat if A0 =

A1 = 0.

The time one flow of a one-flat formal vector field is defined as

(1.11) exp(X)(z) := z +

∞∑
n=1

1

n!
Xn.z,

where Xn.z := X.(Xn−1.z) and, if f̂ is a formal diffeomorphism, X.f̂ is the formal
derivation terms by terms of f̂ by X .

PROPOSITION 1.26. The flow of a one-flat formal vector field is well defined. More-
over, there is a one-to-one correspondence between one-flat formal vector fields and formal
diffeomorphisms tangent to the identity.

PROOF. The proof of Proposition 1.24 applies also to the formal case, and then (1.9)
holds. From this it follows that exp(X) is well defined and that the application X �→
exp(X) can be inverted. �

REMARK 1.27. It is worth noticing that, even if f ∈ Diff(C, O)—namely if f is
holomorphic and not just formal, then the only vector field X such that f = exp(X), may
not be holomorphic.

THEOREM 1.28. Let f̂ ∈ D̂iff(C, O) be a germ of diffeomorphism tangent to the
identity. Then there exist k ∈ N and a ∈ C such that f̂ is formally conjugated to the time
one flow of the vector field

Xk,a(z) :=
zk+1

1− azk
d

dz
.
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Moreover, k and a are univocally determined by f̂ and depend only on its class of conju-
gation in D̂iff(C, O).

PROOF. By Theorem 1.13 there exist k, α such that f̂ is formally conjugated to a
diffeomorphism fk,α of the form (1.4). Let a = α− (k+ 1)/2. Expanding Xk,a in series,
we obtain

Xk,a(z) :=zk+1(1 + azk + a2z2k +O(z2k+1))
d

dz

= (zk+1 + az2k+1 + O(z2k+2))
d

dz
.

Therefore,

X2
k,a.z = Xk,a.(Xk,a.z) = (zk+1 + az2k+1 +O(z2k+2))((k + 1)zk +O(z2k))

= (k + 1)z2k+1 +O(z3k+1),

and

X3
k,a.z = Xk,a.(X

2
k,a.z) = (zk+1 + az2k+1 +O(z2k+2))O(z2k) = O(z3k+1).

From this, using induction, it is easy to show that

(1.12) Xn
k,a.z = O(znk+1), n ≥ 3.

By the very definition (1.11) and from (1.12) it follows that

exp(Xk,a)(z) = z +Xk,a.z +
1

2
X2

k,a.z +O(z3k + 1)

= z + zk+1 + az2k+1 +
1

2
(k + 1)z2k+1 +O(z2k+2)

= z + zk+1 + (a+
k + 1

2
)z2k+1 +O(z2k+2).

By Theorem 1.13 and Remark 1.19 the flow exp(Xk,a) is formally conjugated to z +

zk+1 + (a+ k+1
2 )z2k+1 = z + zk+1 + αz2k+1. Therefore, by the uniqueness in Theorem

1.13, f̂ is formally conjugated to exp(Xk,a).
Finally, the univocally dependence of k, a on the class of conjugation of f̂ is clear

from the previous construction. �

From Theorem 1.6, Corollary 1.20 and Theorem 1.28 we can rephrase the formal
classification in the following way:

THEOREM 1.29. Let f̂(z) = λz +O(z2) ∈ D̂iff(C, O). Then

(1) either f̂ is formally conjugated to the time one flow of the linear vector field
Xλ(z) := λz d

dz ,

(2) or R−1
λ ◦ f̂ is formally conjugated to the time one flow of the holomorphic vector

field Xk,a(z) :=
zk+1

1−azk
d
dz .

2. Holomorphic Dynamics

2.1. The hyperbolic case.

THEOREM 2.1. Let f(z) = λz + O(z2) ∈ Diff(C, O). Suppose 0 < |λ| < 1. Then
there exists a unique σ ∈ Diff(C, O) with σ′(0) = 1 such that

(2.1) σ ◦ f = λσ
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PROOF. Let us define

σn(z) :=
f◦n(z)

λn
.

Then {σn} is a sequence of germs of holomorphic diffeomorphisms. We claim that {σn}
converges uniformly on compacta to a holomorphic function σ. Assuming the claim, since
σn(0) = 0 and

σ′
n(0) =

(f◦n)′(0)

λn
=

λn

λn
= 1,

it follows that σ(0) = 0 and σ′(0) = 1. Moreover, by the very definition,

σn ◦ f(z) = λ
f◦n(f(z))

λn+1
= λ

f◦n+1(z)

λn+1
= λσn+1(z).

Hence, taking the limit, σ ◦ f = λσ as needed.
It remains to prove the claim, that is, {σn} converges uniformly on compacta to

σ (which must be necessarily holomorphic). This is equivalent to show that the series∑∞
j=0[σj+1(z)− σj(z)] converges uniformly on compacta. To this aim, since

|f(z)− λz| = O(|z|2),

there exists δ > 0 and C > 0 such that

(2.2) |f(z)− λz| ≤ C|z|2, ∀z : |z| ≤ δ.

Hence, for all z such that |z| ≤ δ it holds

(2.3) |f(z)| ≤ |λ||z|+ C|z|2 ≤ (|λ|+ Cδ)|z|.

Since |λ| < 1, it is possible to choose δ so small that

(2.4)

{
|λ|+ Cδ < 1,

(|λ|+ Cδ)2 < |λ|

In particular, from (2.3) it follows that if |z| ≤ δ then |f(z)| < δ. Thus we can apply (2.3)
recursively to obtain, for |z| ≤ δ

(2.5) |f◦n(z)| ≤ (|λ|+ Cδ)|f◦n−1(z)| ≤ . . . ≤ (|λ|+ Cδ)n|z|.

Therefore, for |z| ≤ δ,

|σn+1(z)− σn(z)| =
1

|λ|n+1
|f(f◦n(z))− λf◦n(z)|

(2.2)
≤ C

|λ|n+1
|f◦n(z)|2

(2.5)
≤ 1

|λ|n+1
C(|λ|+ Cδ)2n|z|2 =

[
(|λ|+ Cδ)2

|λ|

]n
C

|λ| |z|
2

(2.6)

Let ε := (|λ|+ Cδ)2/|λ|. By (2.4), ε < 1. Therefore, by (2.6),
∞∑
j=0

|σj+1(z)− σj(z)| ≤
∞∑
j=0

Cεj

|λ| |z|
2 =

C

(1− ε)|λ| |z|
2,

and the series is uniformly convergent on compacta in |z| ≤ δ, as claimed.
Finally, the uniqueness of σ follows from Proposition 1.8 in Section 1. �

The functional equation (2.1) is known as Schröder’s equation. The map σ is known
as the Königs intertwining map.
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REMARK 2.2. From the proof of Theorem 2.1, it follows that if ft(z) = λtz+O(z2) ∈
Diff(C, O) is a family depending on an analytic parameter t, with 0 < δ0 < |λt| < δ1 < 1
for all t and for some δ0, δ1 > 0, then the Königs intertwining map σt which solves
σt ◦ ft = λtσt depends analytically on t as well. Indeed, from (2.6) it follows that the
series which converges to σt is uniformly convergent in t as well.

Theorem 2.1 has a straightforward corollary:

COROLLARY 2.3. Let f(z) = λz + O(z2) ∈ Diff(C, O). Suppose |λ| > 1. Then
there exists a unique ψ ∈ Diff(C, O) with ψ′(0) = 1 such that

(2.7) ψ ◦ f = λψ.

PROOF. The inverse of f is f−1(z) = 1
λz + O(z2). By Theorem 2.1 there exists

a unique σ ∈ Diff(C, O) with σ′(0) = 1 such that σ ◦ f−1 = λ−1σ. Therefore λσ =
σ ◦ f . �

2.2. The elliptic case: Cremer, Siegel diffeomorphisms and small divisors. In the
previous subsection we already proved that elliptic diffeomorphisms are always formally
linearizable. As we will see, the holomorphic linearization is not always possible. Propo-
sition 1.9 gives a first hint on the underlying reason: the coefficients of the expansion of
the intertwining map are multiples of |λn − λ|−1. Therefore, in order to make the series
converging, the factor |λn−λ|−1 should not tend to zero “too fast”. This problem is known
as the small divisors problem.

Let fθ(z) = e2πiθz + O(z2), with θ ∈ [0, 1). We will see that for almost all (with
respect to the Lebesgue measure) θ, the germ fθ is holomorphically linearizable. On the
other hand, for a generic1 choice of θ, one can find a germ fθ which is not holomorphically
linearizable.

DEFINITION 2.4. Let f ∈ Diff(C, O) be a germ of an elliptic diffeomorphism. We
say that f is a Siegel diffeomorphism at O if f is holomorphically linearizable. On the
other hand, we say that f is a Cremer diffeomorphism at O if f is not holomorphically
linearizable.

We start proving existence of Cremer’s germs, using a geometric criterion. Before
that, we need some terminology.

DEFINITION 2.5. Let f ∈ Diff(C, O) be elliptic. A small cycle of f is a finite set of
points {z0, . . . , zm} such that zj �= zk for j �= k and f(zj) = zj+1 for j ∈ {0, . . . ,m−1}
and f(zm) = z0. The number m is called the length of the small cycle.

REMARK 2.6. Assume that f(z) = λz + O(z2) is a Siegel diffeomorphism. Then
there exists σ ∈ Diff(C, O), such that σ ◦ f = λσ. Since the map C � ζ �→ λζ has no
small cycles because λn �= 1 for all n ∈ N since f is elliptic, it follows that there exists a
neighborhood of the origin which contains no small cycles of f .

THEOREM 2.7. There exists a countable intersection L of dense subsets of irrational
numbers in [0, 1) such that for every θ ∈ L there exists a Cremer diffeomorphism fθ(z) =
e2πiθz + O(z2) with the property that for any open neighborhood U of the origin, there
exist infinitely many small cycles of fθ contained in U .

1namely, for θ chosen in a countable intersection of dense subsets of irrational numbers in [0, 1)
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PROOF. Let g(z) = e2πip/qz + zk, with p and q relatively prime, k ≥ 2. Then O is a
fixed point of g◦q with multiplicity k because g◦q(z)− z = O(zk). Let r > 0 and D(O, r)
be the disc of center O and radius r. Let ε = ε(r) > 0 be a number, to be suitably chosen
later and t �→ μt := e2πi(p+t)/q for t ∈ [−ε, ε]. Finally, set

gt(z) := μtz + zk.

For t ≈ 0 it follows that |gt − g| << 1. Therefore, if ε is chosen small enough, then
|g◦qt (z) − g◦q(z)| < |g◦q(z) − z| for all t ∈ [0, ε] and |z| = r. Thus by Rouché theorem,
g◦q and g◦qt have the same number of fixed points (counting multiplicity) in D(0, r). For t
irrational, g◦qt (z) − z has multiplicity 1 at O, thus there exist k − 1 small cycles of gt of
length (at most) q in D(0, r).

Let Lr be the set of irrational numbers θ in [0, 1) such that e2πiθz+zk has a small cycle
in D(0, r). By the previous argument, for each p, q relatively prime, there exists a open
neighborhood Up/q such that for all irrational numbers t ∈ Up/q the germ e2πitz + zk has
small cycles in D(O, r). Therefore, Lr is open and dense in the set of irrational numbers in
[0, 1). The set L := ∩r>0,r∈QLr is dense by Baire’s theorem and every germ of the form
e2πiθz + zk with θ ∈ L has the property stated in the theorem. �

The proof of the previous theorem shows that every irrational number t which is “well
approximated” by rational numbers has the property that e2πitz+z2 has small cycles which
accumulate to the origin (and in particular it is a Cremer diffeomorphism). The arithmetic
properties of the number t play a fundamental role in the distinction between Cremer and
Siegel diffeomorphisms. Before seeing some instance of Siegel’s diffeomorphisms, we
give another criterion for Cremer’s diffeomorphisms.

As a matter of notation, if x ∈ R and [x] denotes the integer part of x then we will
denote with

{x} := x− [x].

THEOREM 2.8. Let a ∈ [0, 1] \Q be such that

(2.8) lim sup
n→∞

({na})−1/n = ∞.

Then there exists f(z) = e2πiaz+O(z2) ∈ Diff(C, O) which is a Cremer diffeomorphism.

PROOF. Let λ := e2πia. Then

|λn − 1|2 = | cos(2πan) + i sin(2πan)− 1|2 = 4 sin2(πan),

hence,

|λn − 1| = 2| sin(πan)| = 2| sin(π[an] + π{an})|
= 2| sin(π{an})| = 2{an}+ o({an}).

Therefore (2.8) is equivalent to

(2.9) lim sup
n→∞

|λn − 1|−1/n = ∞.

Let us now define f(z) = λz +
∑

j≥2 ajz
j , with aj := e2πiθj . We let θ2 := 0, θ3 :=

arg(a2) and more generally, we let

θn := arg

⎡⎣n−1∑
j=2

(aj
∑

k1+...+kj=n

bk1
· · · bkj

)

⎤⎦ ,
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where bn is defined by (1.2) in Section 1 (so that b1 = 1, b2 = (λ2 − λ)−1a2, b3 =
(2a2b2 + a3)/(λ

3 − λ) and so on).
Let g(z) = z +

∑∞
j=2 bjz

j ∈ D̂iff(C, O). By the very definition and by Proposition
1.1.9, it follows that g−1 ◦ f = λg−1. We claim that

(2.10) |bn| ≥
1

|λn−1 − 1| .

Indeed, by we have

(λn − λ)bn =
n−1∑
j=2

(aj
∑

k1+...+kj=n

bk1
· · · bkj

) + an =: An + an,

and, by construction, argAn = arg an. Namely, an and An belongs to the same half line
from the origin. Therefore

|An + an| ≥ |an| = 1.

From this we obtain

|bn| =
|An + an|
|λn − λ| ≥ |an|

|λ||λn−1 − 1| =
1

|λn−1 − 1| ,

and (2.10) holds.
Inequality (2.10), together with (2.9), implies that

lim sup
n→∞

|bn|1/n = +∞,

which means that the radius of convergence of the series
∑∞

j=2 bnz
n is 0; that is g ∈

D̂iff(C, O) \ Diff(C, O).
On the other hand, it is clear that f ∈ Diff(C, O). By Proposition 1.1.8 it follows that

any diffeomorphism h which linearizes f must be of the type h(z) = ag(z) for some a ∈
C \ {0} and therefore h cannot be holomorphic, hence f is a Cremer diffeomorphism. �

At this moment, we have two criterions, one geometrical and the other analytical,
to say whether an elliptic germ is a Cremer diffeomorphism, but no instance of Siegel
diffeomorphisms. The well renowned theorem of Yoccoz states that for almost all θ ∈ R\Q
the diffeomorphism f(z) = e2πiθz + O(z2) is (holomorphic) linearizable. We will give a
qualitative proof of Yoccoz’s theorem. In order to provide as many details as possible we
need first to study the parabolic case.

2.3. The parabolic case: the Leau-Fatou flowers theorem.

DEFINITION 2.9. Let f ∈ Diff(C, O) be such that f(z) = z + ak+1z
k+1 +O(zk+2)

with ak+1 �= 0. We say that v ∈ ∂D is an attracting direction if ak+1

|ak+1|v
k = −1.

We say that v ∈ ∂D is a repelling direction if ak+1

|ak+1|v
k = 1.

Clearly there exist exactly k attracting and k repelling directions.

REMARK 2.10. The attracting directions of f are the repelling directions of f−1 and
conversely the repelling directions of f are the attracting directions of f−1.

DEFINITION 2.11. Let f ∈ Diff(C, O) be such that f(z) = z+ak+1z
k+1+O(zk+2)

with ak+1 �= 0. An attracting petal centered at an attracting direction v is a simply con-
nected open set Pv such that

(1) O ∈ ∂Pv ,
(2) f(Pv) ⊆ Pv,
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(3) limn→∞ f◦n(z) = O and limn→∞
f◦n(z)
|f◦n(z)| = v for all z ∈ Pv.

A repelling petal centered at a repelling direction v is an attracting petal for f−1 centered
at the attracting direction v (for f−1).

As a matter of notation, let f ∈ Diff(C, O) be such that f(z) = z + ak+1z
k+1 +

O(zk+2) with ak+1 �= 0. We write v+1 , . . . , v
+
k for the attracting directions of f and

v−1 , . . . , v−k for the repelling directions of f , ordered so that starting from 1 and moving
counterclockwise on ∂D the first point we meet is v+1 , then v−1 , then v+2 and so on.

THEOREM 2.12 (Leau-Fatou). Let f ∈ Diff(C, O) be such that f(z) = z+ak+1z
k+1+

O(zk+2) with ak+1 �= 0. Let {v+1 , . . . , v+k , v
−
1 , . . . , v−k } be the ordered attracting and re-

pelling directions of f . Then

(1) For any v±j there exists an attracting/repelling petal Pv±
j

centered at v±j .

(2) The union ∪k
j=1Pv+

j
∪k
j=1 Pv−

j
∪ {O} is an open neighborhood of O.

(3) Pv+
j
∩ Pv+

l
= ∅ and Pv−

j
∩ Pv−

l
= ∅ for j �= l.

(4) P−
vj intersects only P+

vj and P+
vj+1

, j = 1, . . . , k (with the convention that v±k+1 =

v±1 ).
(5) For any attracting petal Pv+

j
the function f |P

v
+
j

is holomorphically conjugated

to ζ �→ ζ + 1 defined on {ζ ∈ C : Re ζ > C} for some C > 0.

FIGURE 1. Five petals for z → z + z6.

PROOF. According to Remark 1.18 up to conjugation we can assume that f(z) =
z − zk+1 + az2k+1 + O(zh) with h >> k, so that the k attracting directions are exactly
the k-th roots of 1.

Let δ > 0, δ << 1 and consider the set {z ∈ C : |zk − δ| < δ}. This set is made of
k connected components (that we call P1, . . . , Pk), each one centered at a different root of
1. We are going to show that these are the attracting petals of f .

Let ψ(z) := 1
kzk . Fix j and let Hδ := ψ(Pj). We claim that

Hδ = {w ∈ C : Rew >
1

2kδ
}.
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Indeed, let w = 1
kzk , then Rew = 1

kRe
zk

|z|2k = 1
k|z|2kRe z

k. If z ∈ Pj then |zk−δ|2 < δ2,

namely |z|2k − 2δRe zk < 0, that is Re zk > |z|2k
2δ , thus Rew = 1

k|z|2kRe z
k > 1

2kδ .

Conversely, if Rew > 1
2kδ , let z = (kw)−1/k (where the k-th root is chosen so that for

R > 0 the root R−1/k is in the attracting direction v+j ). Then ψ(z) = w and we need to
show that z ∈ Pj . But

Rew >
1

2δk
⇔ 1

k
− 2δRew < 0 ⇔ 1

k2|w|2 − 2δ

k
Re

w

|w|2 < 0

⇔
∣∣∣∣ 1

kw
− δ

∣∣∣∣2 < δ2 ⇔
∣∣∣((kw)−1/k)k − δ

∣∣∣2 < δ2,

proving the claim.
Note that ψ : Pj → Hδ is invertible, and ψ−1(z) = (kz)−1/k where the k-th root is

chosen so that for R > 0 the root R−1/k is in the semi-straight line from the origin and
containing v+j . Now we compute ϕ := ψ ◦ f |Pj

◦ ψ−1 : Hδ → C. Then

f |Pj
◦ ψ−1(z) = (kz)−1/k − ((kz)−1/k)k + a((kz)−1/k)2k+1 +O((kz)−1/k)h)

and

ψ ◦ f |Pj
◦ ψ−1(z)

=
1

k[(kz)−1/k − ((kz)−1/k)k+1 + a((kz)−1/k)2k+1 +O((kz)−1/k)h)]k

=
1

k[(kz)−1/k(1− (kz)−1 + a(kz)−2 +O(|z|(1−h)/k)]k

=
z

[1− (kz)−1 + a(kz)−2 +O(|z|(1−h)/k)]k

(2.11)

Now, for |z| >> 1 we have | − (kz)−1 + a(kz)−2 + O(|z|(1−h)/k)| < 1 and therefore
(recalling that (1 + x)k = 1 + kx+O(x2) for |x| < 1) we have

[1− (kz)−1 + a(kz)−2 +O(|z|(1−h)/k)]k

= 1 + k(−(kz)−1 + a(kz)−2 +O(|z|(1−h)/k)) +O(
1

z2
)

= 1− 1

z
+O(

1

z2
).

Substituting in (2.11) we obtain

ϕ(z) =
z

1− 1
z +O( 1

z2 )
= z(1 +

1

z
+O(

1

z2
)) = z + 1 +

b

z
+ . . .

We claim that ϕ(Hδ) ⊆ Hδ . To see this we have to show that if Re z > 1
2kδ then

(2.12) Reϕ(z) >
1

2kδ
.

Since |z| > Re z > 1
2kδ , if δ << 1 we have

(2.13)
1

2
< 1 + Re [

b

z
+O(

1

z2
)] < 2.

Therefore

Reϕ(z) = Re z + 1 + Re [
b

z
+O(

1

z2
)] > Re z >

1

2kδ
,

from which (2.12) follows. Therefore ϕ(Hδ) ⊆ Hδ which implies that f(Pj) ⊂ Pj .
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Moreover, we note that ϕ◦n(z) = z + n+O(1/n), thus for z ∈ Hδ

f◦n ◦ ψ−1(z) = ψ−1(z + n+O(1/n)) = (k(z + n+O(1/n)))−1/k

which, for n → ∞, tends to O tangentially to the direction v−j .
Next we show that ϕ is holomorphically conjugated to z �→ z + 1 on Hδ .
First we estimate the orbits of ϕ. For all n ≥ 1 and z ∈ Hδ we have

(2.14)
n

2
≤ |ϕ◦n(z)| ≤ |z|+ 2n.

The upper estimate follows by induction. Indeed, by (2.13),

|ϕ(z)| ≤ |z|+ |1 +O(
1

z
)| ≤ |z|+ 2.

Assume the upper estimate in (2.14) holds for n, we prove it holds for n + 1 concluding
the induction:

|ϕ◦(n+1)(z)| = |ϕ◦(n)(ϕ(z))| ≤ |ϕ(z)|+ 2n ≤ |z|+ 2 + 2n = |z|+ 2(n+ 1).

As for the lower estimate in (2.14), we claim that for all n ≥ 1 and z ∈ Hδ

(2.15) Reϕ◦n(z) > Re z +
n

2
.

Assuming (2.15) we have

|ϕ◦n(z)| > Reϕ◦n(z) > Re z +
n

2
>

n

2
,

and (2.14) holds. In order to prove (2.15) we argue again by induction. For n = 1 by
(2.13) we have

Reϕ(z) = Re z + 1 + Re (
b

z
+O(

1

z2
)) > Re z +

1

2
.

Assuming (2.15) holds for n, we prove it for n+ 1 concluding the induction:

Reϕ◦(n+1)(z) > Reϕ(z) +
n

2
> Re z +

n+ 1

2
.

Fix a compact set K ⊂⊂ Hδ . By (2.14) we have that for all z ∈ K

(2.16) |ϕ◦n(z)| ∼ n for n → ∞.

Hence

ϕ◦(k+1)(z) = ϕ◦k(z) + 1 +
b

ϕ◦k(z)
+ O

(
1

|ϕ◦k(z)|2

)
= ϕ◦k(z) + 1 +

b

ϕ◦k(z)
+ O(

1

k2
).

(2.17)

Now we define for z ∈ Hδ

σn(z) := ϕ◦n(z)− n− b log n.
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Note that if σn(z) = σn(z0) then ϕ◦n(z) = ϕ◦n(z0), but, being ϕ univalent it follows
z = z0. Hence σn’s are univalent. We see that

σk+1(z)− σk(z) = ϕ◦(k+1)(z)− (k + 1)

− b log(k + 1)− ϕ◦k(z) + k + b log k

= ϕ◦k(z) + 1 +
b

ϕ◦k(z)
+O(

1

k2
)

− 1− b log(k + 1)− ϕ◦k(z) + b log k

=
b

ϕ◦k(z)
+ b log

k

k + 1
+O(

1

k2
)

(2.16)
= O(

1

k
).

Hence

|σn(z)| ≤ |z|+ |σ1(z)− z|+
n−1∑
k=1

|σk+1(z)− σk(z)| = O(logn).

Summing up, we proved that for all n ≥ 1 and z ∈ K ⊂⊂ Hδ ,

(2.18) |ϕ◦n(z)| = O(n), |σn(z)| ≤ O(logn).

Now we prove that {σn} is uniformly convergent on compacta. Indeed

σn+1(z)− σn(z) = ϕ◦(n+1)(z)− b log(n+ 1)− ϕ◦n(z) + b log n− 1

= b

[
1

ϕ◦n(z)
− log

n+ 1

n

]
+O(

1

n2
)

= b

[
1

σn(z) + n+ b log n
− log(1 +

1

n
)

]
+O(

1

n2
)

= b

[
1

σn(z) + n+ b log n
− (

1

n
+O(

1

n2
))

]
+ O(

1

n2
)

= b

[
−σn(z)− b log n

n2(σn(z)
n + 1 + b logn

n )

]
+O(

1

n2
)

(2.18)
=

b

n2
O(|σn(z) + b log n|) (2.18)

= O

(
log n

n2

)
.

Therefore the telescopic series
∑

(σn+1(z)−σn(z)) is uniformly convergent on compacta,
thus σn → σ ∈ Hol(Hδ,C). Note that

σn ◦ ϕ(z) = ϕ◦(n+1)(z)− n− b log n

= ϕ◦(n+1)(z)− (n+ 1)− b log(n+ 1) + 1 + b log
n+ 1

n

= σn+1(z) + 1 +O(
1

n
),

hence taking the limit for n → ∞ we obtain

σ ◦ ϕ(z) = σ(z) + 1,

hence σ is not constant and, being the limit of univalent functions, it is univalent.
Similar arguments hold for f−1.
The petals constructed so far are not exactly the ones whose existence is stated in the

theorem. In fact they do not form a full neighborhood around O. In order to do this, one
needs to “enlarge” a little bit the petals described before. We leave details to the reader. �
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In the last part of the proof we actually proved the following result:

PROPOSITION 2.13. Let R ≥ 0 and let HR = {w ∈ C : Rew > R}. Let ϕ : HR →
HR be a holomorphic map such that ϕ(w) = w + 1 + b

w + O( 1
w2 ) for |w| >> 1. Then

there exists σ : HR → C holomorphic such that σ ◦ ϕ = σ + 1.

FIGURE 2. 12 petals for z → e2πi3/4z + z4.

Now the general case follows at once:

COROLLARY 2.14. Let f(z) = λz + O(z2) ∈ Diff(C, O) with λr = 1, λt �= 1 for
t = 1, . . . , r − 1. If f◦r �= id there exist m attracting petals P1, . . . , Pm for f◦r such that
m = kr for some k ∈ N and f permutes P1, . . . , Pm in cycle of length r.

PROOF. The map f◦r is tangent to the identity of the form z + αzm+1 + . . . with
α �= 0. Apply Theorem 2.12 to f◦r. Then there exist m attracting petals for f◦r. Let
P1 be one of such petals centered at the attracting direction v. Then clearly P2 := f(P1)
is another attracting petal for f◦r with attracting direction f ′(0)v. Hence P2 ∩ P1 = ∅.
Define P3 := f(P2). Then P2 is centered at the attracting direction [f ′(0)]2v, and so on.
After r steps, Pr+1 = P1. Therefore f acts as a permutation of length r on the attracting
cycles. Hence m = kr for some k ∈ N. �

2.4. Écalle-Voronin holomorphic classification of germs tangent to the identity.
First of all we show that classifying germs tangent to the identity is enough to get the
classification of parabolic germs. It is obvious that the multiplier of a holomorphic germ is
a holomorphic invariant, and we have

PROPOSITION 2.15. Let f, g ∈ Diff(C, O) be parabolic with f ′(0) = g′(0) =
exp(2πip/q) for some p, q ∈ N. Then f and g are holomorphically conjugated if and
only if f◦q and g◦q are holomorphically conjugated.

PROOF. If f, g are holomorphically conjugated, so clearly are f◦q and g◦q. Con-
versely, if f◦q and g◦q are holomorphically conjugated by the holomorphic map ϕ, it fol-
lows that

g◦q = ϕ ◦ f◦q ◦ ϕ−1 = (ϕ ◦ f ◦ ϕ−1)◦q.
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Hence, since f is holomorphically conjugated to ϕ◦f◦ϕ−1, up to replace f with ϕ◦f◦ϕ−1,
we can assume that f◦q = g◦q . Then it is easy to see that the germ h(z) :=

∑q−1
j=0 g

◦(q−j)◦
f◦j is a biholomorphism conjugating f to g. �

Therefore, we concentrate on the holomorphic classification of germs tangent to the
identity. We briefly and roughly sketch the construction of the holomorphic invariants,
referring the reader to the original papers by Écalle [13, 14] and Voronin [23] (see also [1],
[17]). What follows is taken essentially by [10].

By Remark 1.14 on page 9, we can, and we will, assume that f is normalized as

f(z) = z + zr+1 + az2r+1 +O(|z|2r+2).

The Leau-Fatou Theorem 2.12 guarantees the existence of r attracting petals P+
1 , . . . , P+

r

centered at the r-th roots of −1 and r repelling petals P−
1 , . . . , P−

r (attracting for f−1)
centered at the r-th roots of 1 (numbered counterclockwise). On each such petal P±

j there
exists a biholomorphic map ϕ±

j (called Fatou coordinates) which conjugates f |P±
j

to a

translation z �→ z + 1 (on a right half-plane on attracting petals and on a left half-plane on
repelling petals).

If r = 1, we let U+
1 be the connected component of P+

1 ∩ P−
1 contained in the upper

half-plane and let U−
1 be the connected component of P+

1 ∩ P−
1 contained in the lower

half-plane. In case r > 1 we let U+
j = P+

j+1 ∩ P−
j and U−

j = P+
j ∩ P−

j , for j = 1, . . . , r

where as customary, P±
r+1 = P±

1 . We define

S±
j := ∪m∈Zf

◦m(U±
j ).

The sets S±
j are totally f -invariants by construction and they are disjoint each other.

It is possible to extend the Fatou coordinates ϕ+
j to P+

j ∪ S−
j ∪ S+

j−1 by

ϕ+
j (z) := ϕ+

j (f
◦m(z))−m,

where m ∈ N is such that f◦m(z) ∈ P+
j (and it can be easily checked that the definition

does not depend on the m chosen).
In a similar way, one can extend the repelling Fatou coordinates ϕ−

j to all P−
j ∪ S−

j ∪
S+
j via

ϕ−
j (z) := ϕ−

j (f
◦−m(z)) +m,

where m ∈ N is such that f◦−m(z) ∈ P−
j .

Let V −
j := ϕ−

j (S
−
j ), V +

j := ϕ−
j (S

+
j ), W−

j := ϕ+
j (S

−
j ), W+

j := ϕ+
j+1(S

+
j ). Then

one can define two holomorphic maps, called the lifted horn maps, as follows:

H−
j := ϕ+

j ◦ (ϕ−
j )

−1|V −
j

: V −
j −→ W−

j

and

H+
j := ϕ+

j+1 ◦ (ϕ−
j )

−1|V +
j

: V +
j −→ W+

j .

The lifted horn maps are uniquely defined up to pre and post composing with a trans-
lation because the Fatou coordinates are so. Also, the open sets V ±

j and W±
j are invariant

by z �→ z + 1 and V +
j ,W+

j contains a upper half-plane while V −
j ,W−

j contains a lower
half-plane. Hence, using the projection z �→ exp(2πiz) the image of V +

j and W+
j are

transformed into punctured neighborhoods of the origin, say A+
j , B

+
j while V −

j and W−
j

are transformed into punctured neighborhoods of ∞, say A−
j , B

−
j .
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Since H±
j (z + 1) = H±

j (z) + 1 (because the Fatou coordinates do), the lifted horn
maps project via z �→ exp(2πiz) to holomorphic maps, called horn maps

h±
j : A±

j → B±
j .

Since the lifted horn maps are uniquely defined up to pre and post composing with a trans-
lation, the horns maps are unique up to pre and post multiplication by a constant.

We have the following result:

PROPOSITION 2.16. Let f, g ∈ Diff(C, O) be two germs tangent to the identity. Let
{h±

j } be horn maps for f and let {k±j } be horn maps for f . If f and g are holomorphically
conjugated then then they have the same multiplicity, the same parabolic index and there
exist αj , βj ∈ C∗ such that, up to a cyclic permutation of the horn maps it follows

(2.19) k−j (z) = αjh
−
j (βjz), k+j (z) = αj+1h

+
j (βjz).

PROOF. Let ϕ±
j be the Fatou coordinates for f . Then if f = ψ ◦ g ◦ ψ−1, it follows

that ϕ±
j ◦ ψ are Fatou coordinates for g. The uniqueness up to additive constants of the

Fatou coordinates allows then quite easily to prove the statement. �
The converse of the previous result is also true and it is the content of the Écalle-

Voronin theorem. In order to describe it we need to define a relation on the space of horn
maps.

Looking at the way the Fatou coordinates have been defined, one can show that

H+
j (z) = z +O(1),

from which it follows that h+
j has a removable singularity at 0 and can be extended holo-

morphically by defining h+
j (0) = 0. Similarly, defining h−

j (∞) = ∞ the horn map h−
j is

a holomorphic germ at ∞. Let λ±
j be the multiplier of h±

j at 0 (or ∞). It can be proved
that

(2.20)
r∏

j=1

λ+
j λ

−
j = exp

[
4π2

(
r + 1

2
− ι(f, 0)

)]
,

where ι(f, 0) = a is the parabolic index of f .

DEFINITION 2.17. Let Mr denote the set whose elements are h := {h±
1 , . . . , h

±
r },

where the h+
j ’s are germs of holomorphic maps in a neighborhood of 0, the h−

j ’s are germs
of holomorphic maps in a neighborhood of ∞ and such that their multipliers λ±

j satisfy
(2.20).

We set an equivalence relation on Mr saying that two elements h,k ∈ Mr are equiva-
lent if, up to a cyclic permutation of the indices, they satisfy (2.19) for suitable αj , βj ∈ C∗.

The set of equivalence classes is denoted by Mr.

As we described before, to any germ tangent to the identity f it is possible to associate
a set of horn maps which, since every map is clearly conjugated to itself, by Proposition
2.16 defines uniquely an element μf ∈ Mr called the sectorial invariant of f .

THEOREM 2.18 (Écalle-Voronin). Let f, g ∈ Diff(C, O) be two germs tangent to the
identity. Then f and g are holomorphically conjugated if and only if they have the same
multiplicity, the same parabolic index and the same sectorial invariant.

Moreover, for any r ≥ 1, a ∈ C and μ ∈ Mr there exists a germ f ∈ Diff(C, O)
tangent to the identity such that f has multiplicity r + 1, parabolic index a and sectorial
invariant μ.
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2.5. Stability versus Linearizability. Stability is a topological property of orbits.
Roughly speaking the orbits of a germ f ∈ Diff(C, O) are stable if they stay bounded near
O. Such a condition implies (and is rather trivially implied by) linearizability. Here is one
of the possible formal definition:

DEFINITION 2.19. Let f ∈ Diff(C, O). The point O is stable for f if there exists an
open neighborhood U of O, such that for all z ∈ U and n ∈ N the map z �→ f◦n(z) is
well defined and |f◦n(z)| < 1.

THEOREM 2.20. Let f ∈ Diff(C, O) with |f ′(0)| ≤ 1. Then the point O is stable for
f if and only if f is (holomorphically) linearizable.

PROOF. Let first assume |f ′(0)| < 1. Then we already saw in Theorem 2.1 that f is
both linearizable and O is stable for f (indeed |f(z)| ≤ |λ|(|z|+ C|z|2)).

Assume now that |f ′(0)| = 1. Suppose that f is linearizable. Then there exists
h ∈ Diff(C, O) such that h ◦ f ◦ h−1(z) = λz. Let W be a neighborhood of O such that
both f and h are defined and univalent on W . Let r > 0 be such that Dr ⊂ h(W ) and h−1

is defined on Dr. Let U := h−1(Dr) ⊂ D. Then

f◦n(U) = h−1 ◦ λnh(U) = h−1(λnDr) = h−1(Dr) = U,

therefore O is stable for f .
Conversely, assume that O is stable for f and define

K := ∩n∈Nf
◦{−n}(D).

Such a set is contained in D (being f◦0(D) = D). Let U be the connected component
of K which contains O. Since O is stable for f , U �= ∅. Moreover, by construction,
f(U) = U . We claim that U is simply connected. Indeed, let D be any compact set with
Jordan boundary whose boundary ∂D is contained in U . Since |f(z)| < 1 for all z ∈ ∂D,
by the maximum principle for holomorphic function, |f(z)| < 1 for all z ∈ D, hence
D ⊂ U , proving that U is simply connected.

By the Riemann mapping theorem there exists a univalent map g : U → D and we can
assume that g(O) = O. Thus g ◦ f ◦ g−1 : D → D is a holomorphic self-map of D which
fixes O and such g(f(g−1))′(O) = λ, hence by the Schwarz lemma, g ◦ f ◦ g−1(z) = λz
proving that f is linearizable. �

2.6. Diffeomorphisms of the circle. In this subsection we introduce an invariant,
called the rotation number for orientation preserving homeomorphisms of the circle and
we show that it is invariant under conjugation in the same class. Let S1 := ∂D = {ζ ∈ C :
|ζ| = 1}. Recall that the map exp(2πi·) : R → S1 is the covering map from the universal
covering R of S1 to S1. Therefore, if f : S1 → S1 is a homeomorphism of the circle there
exists a continuous map g : S1 → R such that

exp(2πig(θ)) = f(θ).

The map g is unique once fixed the value at one point, say 1. All the others liftings of f
are of the form g + N with N ∈ Z. Fixing such a lifting g, we have a continuous map
F : R → R defined by

F (t) := g(exp(2πit)),
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which makes the following diagram commute:

R
F−−−−→ R

exp(2πit)

⏐⏐� ⏐⏐�exp(2πit)

S1
f−−−−→ S1

By construction, it follows that F (t + 1) = F (t) + N for some fixed N ∈ Z, which we
may assume to be 1. We call such a map F a lifting associated to f .

DEFINITION 2.21. An orientation preserving homeomorphism of S1 is a homeomor-
phism f : S1 → S1 such that the associated map F is increasing in t.

Clearly the previous definition implies that f is a orientation preserving homeomor-
phism if it preserves the counterclockwise orientation of S1.

PROPOSITION 2.22. Let f be an orientation preserving homeomorphism of S1 and let
F be the associated lifting. Then

α(F ) := lim
n→∞

F ◦n(0)

n

exists. Moreover the number

ρ(f) := α(F ) mod 1

is independent of the associated lifting F chosen to define it.

PROOF. If F (0) = 0 then α(F ) is well defined. Assume that F (0) > 0. Let 0 ≤ t ≤
1. Then F (0) ≤ F (t) ≤ F (1) = F (0) + 1. Fix s > 0 and let j = [s] (integer part of s).
Then

s+ F (0)− 1
s−1≤j

≤ j + F (0) = F (j)
F↗
≤ F (s)

≤ F (j + 1) = F (0) + j + 1 ≤ s+ F (0) + 1

By induction we obtain

(2.21) s+ h(F (0)− 1) ≤ F ◦h(s) ≤ s+ h(F (0) + 1) s > 0, h ≥ 1.

Let now p ≥ 1 and let m denote the least integer such thatF ◦m(0) > p. Then F ◦(m−1)(0) ≤
p ≤ F ◦m(0) and, again by induction

(2.22) F ◦k(m−1)(0) ≤ kp ≤ F ◦km(0), k ≥ 1.

Let now 0 ≤ q < m and write n = km+ q. From (2.21) with s = kp, h = q we obtain

kp+ q(F (0)− 1) ≤ F ◦q(kp)
(2.22)
≤ F ◦q(F ◦km(0)) = F ◦(km+q)(0) = F ◦n(0)

= F ◦(q+k)(F ◦(k(m−1))(0))
(2.22)
≤ F ◦(q+k)(kp)

(2.21)
≤ kp+ (q + k)(1 + F (0)).

From this
kp

n
+

q(F (0)− 1)

n
≤ F ◦n(0)

n
≤ kp

n
+

q + k

n
(1 + F (0)).

For n → ∞ since k
n = 1

m − q
n , it follows k

n → 1
m . Hence for all p

p

m
≤ lim inf

n→∞

F ◦n(0)

n
≤ lim sup

n→∞

F ◦n(0)

n
≤ p

m
+

1 + F (0)

m
,
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Letting p → ∞ (then m → ∞) we obtain

lim inf
n→∞

F ◦n(0)

n
= lim sup

n→∞

F ◦n(0)

n
,

proving the first claim. Now, we already saw that the liftings F associated to f differ by
integer numbers, thus α(F ) mod 1 does not depend on F . �

DEFINITION 2.23. Let f S1 → S1 be an orientation preserving homeomorphism of
the circle. The number ρ(f) is called the rotation number of f .

THEOREM 2.24 (Poincaré). Let f S1 → S1 be an orientation preserving homeo-
morphism of the circle. The rotation number ρ(f) is invariant under conjugation with
orientation preserving homeomorphisms of the circle.

PROOF. Let F be a lifting associated to f . First of all we note that for all t ∈ R we
have

(2.23) α(F ) = lim
n→∞

F ◦n(t)

n
.

Indeed, for 0 ≤ t ≤ 1 we have

F ◦n(0)

n
≤ F ◦n(t)

n
≤ F ◦n(0)

n
+

1

n
,

and letting n → ∞ we have (2.23). If t > 1, writing t = [t] + t′ with 0 ≤ t′ ≤ 1, then
F (t) = F (t′ + [t]) = F (t′) + [t] and F ◦2(t) = F (F (t′ + [t])) = F (F (t′) + [t]) =
F ◦2(t′) + [t] and more generally

F ◦n(t) = F ◦n(t′) + [t].

From this it follows that limn→∞ F ◦n(t)/n = limn→∞ F ◦n(t′)/n and (2.23) holds.
Now let g be an orientation preserving homeomorphism of S1 and let G : R → R be

the associated lifting so that G(t+1) = G(t) + 1. Then G ◦F ◦G−1 lifts g ◦ f ◦ g−1 and
we only need to show that α(G ◦ F ◦G−1) = α(F ). But

α(G ◦ F ◦G−1)
(2.23)
= lim

n→∞

(G ◦ F ◦G−1)◦n(G(0))

n
= lim

n→∞

G(F ◦n(0))

n

= lim
n→∞

{
G(F ◦n(0)− [F ◦n(0)])

n
+

[F ◦n(0)]

n

}
= lim

n→∞

F ◦n(0)

n

because |G(F ◦n(0)−[F ◦n(0)])| ≤ maxt∈[0,1] |G(t)| ≤ C < ∞ and |F ◦n(0)−[F ◦n(0)]| ≤
1. �

2.7. Pérez-Marco’s construction. In this subsection we roughly examine Pérez--
Marco’s construction which gives rise to the so called hedgehogs and will be useful to
(sketchy) prove the Naishul theorem in next subsection. More details are in [20]. First of
all we recall Koebe’s 1/4-theorem. As a matter of notation, D := {ζ ∈ C : |ζ| < 1} and
Dr := {ζ ∈ C : |ζ| < r} for r > 0.

THEOREM 2.25 (Koebe 1/4-theorem). Let f : D → C be univalent and such that
f(0) = 0 and f ′(0) = 1. Then D1/4 ⊂ f(D).

As a consequence which will be useful later we have
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COROLLARY 2.26. Let r > 0 and let Dr := {ζ ∈ C : |ζ| < r}. Let f : Dr → C be
univalent and such that f(0) = 0 and f ′(0) = 1. Then Dr/4 ⊂ f(Dr).

PROOF. Let use define g(z) := f(rz)
r . Then g satisfies the hypothesis of Theorem

2.25. Hence

D1/4 ⊂ 1

r
(rD) =

1

r
Dr,

from which the result follows. �

By Koebe’s 1/4 Theorem 2.25, if f : D → C is univalent and f(0) = 0, |f ′(0)| = 1 it
follows that f−1 is defined at least on D1/4.

FIGURE 3. Invariant petals forming the Siegel compacta inside attracting petals.

THEOREM 2.27 (Pérez-Marco). Let f(z) = λz + O(z2) ∈ Diff(C, O) with |λ| = 1.
Suppose that f, f−1 are defined and univalent on a neighborhood of the closed disc Dr.
Then there exists a set K ⊂ Dr with the following properties:

(1) K is compact, connected and full (namely C \K is connected)
(2) O ∈ K ⊂ Dr

(3) K ∩ ∂Dr �= ∅
(4) f(K) = K, f−1(K) = K.

Moreover, if f◦m �= id for all m ∈ N then f is linearizable if and only if O ∈
o

K.

SKETCH OF THE PROOF. The last sentence follows at once from Theorem 2.20. The
proof of the theorem goes as follows:

1. Let Fr be the set of holomorphic function g : Dr → C which satisfy the hypotheses
of the theorem. Let endow Fr with the topology τuc of uniform convergence on compacta.
The space (Fr, τuc) is closed.

2. Using Leau-Fatou’s flowers theorem 2.12 one can show that parabolic germs
f(z) = e2πip/qz+O(z2) with p, q ∈ N satisfy the hypotheses of the theorem and therefore
they belong to the family Fr. The set K in such a case is the union of petals contained
inside the attracting petals (see Figure 3), more precisely such petals are the intersection
between attracting and repelling petals. The family of parabolic germs is dense in Fr and
since this set is closed the result follows. �
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FIGURE 4. Bounded basin of attraction around a Siegel compacta, with a non-
empty linearization domain (grey disc), under the iterates of a linearizable germ
of the form z �→ e2πiθz + z2.

FIGURE 5. The map hK in Pérez-Marco’s construction.

The set K defined in Theorem 2.27 is called a Siegel compacta and it is called a
hedgehog in case the germ f is not linearizable.

Let f(z) = λz + O(z2) with λ = e2πiθ, θ ∈ R. Up to rescaling, we can assume that
f is univalent on an open neighborhood of the disc D. By Koebe’s 1/4 theorem 2.25 f−1 is
defined and univalent on a neighborhood of the closed disc D1/4 of radius 1/4. Let K be
the Siegel compacta for D1/4 defined in Theorem 2.27. By construction CP1 \K is simply
connected and therefore there exists a univalent map hK : CP1 \D → CP1 \K, such that
hK(∞) = ∞.

Let gK := h−1
K ◦ f ◦ hK . Such a map is defined and holomorphic in an annulus

A := {ζ ∈ C : 1 < |ζ| < r} for some r > 1. Moreover, since f(K) = f−1(K) = K it
follows f(D1/4 \K) ⊂ C \K, hence the image gK(A) is contained in C \ D. Moreover,
if {zn} ⊂ A and A � zn → z0 ∈ ∂D it follows that gK(zn) → ∂D. By Schwarz
reflection principle the map gK extends to a univalent map (which we still denote by gK )
on {ζ ∈ C : 1/r < |ζ| < r}. In particular gK : S1 = ∂D → S1 is an orientation
preserving diffeomorphism of S1.

We call gK the orientation preserving diffeomorphism of the circle associated to (f,K).
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LEMMA 2.28. Let f = e2πiθz+O(z2) with θ ∈ R. Let K be a Siegel compacta for f
and let gK be the orientation preserving diffeomorphism of the circle associated to (f,K).
Then the rotation number ρ(gK) = θ.

The proof of such a lemma is omitted. We only note here that the basic remark un-
derlying such a lemma is that the diffeomorphism gK is nothing but the action of f on the
space of prime ends of CP1 \K. With this in mind the result is firstly proved for parabolic
germs, then extended by density to the space of all non-hyperbolic germs.

2.8. Naishul’s theorem. In this subsection we sketch Pérez-Marco’s proof for the
topological invariance of the multiplier for non hyperbolic germs:

THEOREM 2.29 (Naishul). Let f1(z) = e2πiθ1z + O(z2) and f1(z) = e2πiθ2z +
O(z2) with θ1, θ2 ∈ R. Assume that there exists a germ of an orientation preserving
homeomorphism ϕ : C → C, ϕ(O) = O such that ϕ ◦ f1 ◦ ϕ−1 = f2. Then θ1 = θ2.

PROOF. Let K be a Siegel compacta for f1 defined by Theorem 2.27. We may choose
K so that it is contained in the domain of definition of ϕ. Let g1 be the orientation preserv-
ing diffeomorphism of the circle associated to (f1,K). The set ϕ(K) is a Siegel invariant
for f2, and we let g2 be the orientation preserving diffeomorphism of the circle associated
to (f2, ϕ(K)). We also denote by h1 the Riemann mapping from CP1 \D → CP1 \K and
by h2 the Riemann mapping from CP1 \ D → CP1 \ ϕ(K). Recall from Pérez-Marco’s
construction that gj = h−1

j ◦ fj ◦ hj , j = 1, 2. Let us define ψ := h−1
2 ◦ ϕ ◦ h1. On ∂D

we have

ψ ◦ g1 = (h−1
2 ◦ ϕ ◦ h1) ◦ (h−1

1 ◦ f1 ◦ h1)

= h−1
2 ◦ ϕ ◦ f1 ◦ h1 = h−1

2 ◦ f2 ◦ ϕ ◦ h1

= (h−1
2 ◦ f2 ◦ h2) ◦ (h−1

2 ◦ ϕ ◦ h1) = g2 ◦ ψ.
The map ϕ is uniformly continuous on a neighborhood of K. This implies that ϕ defines
a homeomorphism from the space of prime ends of CP1 \ K to the space of prime ends
of CP1 \ϕ(K). Hence ψ is an orientation preserving homeomorphism of the circle which
conjugates g1 and g2. By Lemma 2.28 and Theorem 2.24 it follows

θ1 = ρ(g1) = ρ(g2) = θ2,

and we are done. �

2.9. Douady-Hubbard’s Straightening Theorem. In this subsection we give a sketch
of the proof of Douady Hubbard’s Straightening Theorem. More details can be found in
[11] (see also [2, p.131]).

THEOREM 2.30 (Douady-Hubbard Straightening Theorem). Let F (z) = λz + z2 +
ψ(z) with |λ| = 1, ψ(0) = ψ′(0) = 0 be defined on the disc DR with R > 5 and assume
|ψ(z)| << 1. Then there exist r > 0 and a homeomorphism h : Dr → C such that
h−1 ◦ F ◦ h(z) = λz + z2.

As a consequence, F (z) is topologically conjugated to λz + z2. In order to prove
Douady-Hubbard’s theorem we need a few auxiliary results.

LEMMA 2.31. Let |λ| > 0 and a ∈ C \ {0}. The polynomials λz + z2 and λz + az2

are holomorphically conjugated.

PROOF. Simply conjugate with z �→ az. �
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Let

(2.24) ds2CP1 :=

(
2|dz|

1 + |z|2

)2

,

be the standard metric on CP1.

THEOREM 2.32 (Measurable Riemann Mapping Theorem). Let dσ2 = ρ(z)|dz +
μ(z)dz|2 be a metric on CP1 such that ρ, μ are L∞ functions with ρ(z) > 0 (almost
everywhere) and ‖μ‖∞ < 1. Then there exists a quasiconformal mapping h : CP1 → CP1

(in particular h is a homeomorphism and it is differentiable almost everywhere) such that
h(0) = 0, h(∞) = ∞ and h∗(ds2

CP1) = θ(z)dσ2 (almost everywhere) for some positive
L∞ function θ.

For a proof see [2, Thm. 3 Ch. V]. Also, for definitions and properties of quasiconfor-
mal mappings see [2].

LEMMA 2.33 (Shishikura’s surgery principle). Let K ≥ 1. Let g : CP1 → CP1

be a non-constant continuous map which is locally the composition of a holomorphic and
a K-quasiconformal mapping (such a map is called quasiregular). Let X ⊂ CP1 be a
measurable set with the properties that

(1) there exists a positive L∞ function ρ such that g∗(ds2
CP1) = ρ(z)ds2

CP1 almost
everywhere on CP1 \X ,

(2) for all z ∈ X it holds g◦n(z) �∈ X for all n = 1, 2, . . ..

Then there exists a quasiconformal map h : CP1 → CP1 (in particular h is a homeomor-
phism) such that h(0) = 0, h(∞) = ∞ and h ◦ g ◦ h−1 is a rational map of CP1.

PROOF. Note that g is open (since it is locally open, being locally the composition
of open mappings by hypothesis). Hence, g(CP1) is a connected compact open subset of
CP1, therefore g(CP1) = CP1. Let Y := {z ∈ CP1 : g◦n(z) �∈ X,n = 0, 1, 2, . . .}. By
hypothesis g(X) ⊂ Y . Moreover,

(2.25) CP1 = ∪n≥0g
◦(−n)(Y ).

Define

dσ2
z := (g◦n)∗(ds2CP1,g◦n(z))

for g◦n(z) ∈ Y . It is easy to see that it does not depend on n. By (2.25), dσ2 is a metric
(defined almost everywhere) on CP1. By hypothesis and definition of dσ2 it follows that
g∗(dσ2) = ρ(z)dσ2 for some positive L∞ function ρ. Write dσ2

z = ν(z)|dz + μ(z)dz|2.
Since g is locally the composition of a K-quasiconformal mapping and a holomorphic
mapping, by the very definition of dσ2 it can be proved that both ν and μ are L∞ and
moreover ‖μ‖∞ < 1. Thus we can apply the Measurable Riemann Mapping Theorem
2.32 to come up with a quasiconformal mapping h : CP1 → CP1 such that h(0) = 0,
h(∞) = ∞ and h∗(ds2

CP1) = θ(z)dσ2 (almost everywhere) for some positive θ. Letting
f := h ◦ g ◦ h−1 we have (almost everywhere)

f∗(ds2CP1) = (h−1)∗ ◦ g∗ ◦ h∗(ds2CP1) = (h−1)∗(ρθdσ2) = ρθds2CP1 .

Therefore f is a continuous function which is locally conformal. By Riemann’s removable
singularities theorem f is then a holomorphic map from CP1 into itself (hence a rational
map). �
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PROOF OF THEOREM 2.30. 1. Since |ψ(z)| << 1, the map F is a polynomial-like
mapping on D4. Namely, D4 ⊂ F (D4) and F : D4 → F (D4) is a 2 : 1 (branched)
covering map. Indeed, for every w ∈ D4 we have for z ∈ ∂D4

|F (z)− w − (λz + z2 − w)| = |ψ(z)| < |λz + z2 − w|.

Hence by Rouché theorem, F (z)− w and λz + z2 − w have the same number of zeros in
D4, thus D4 ⊂ F (D4), and F is a 2 : 1 branched covering map from D4 onto its image.

2. Straightening of polynomial-like mappings. Up to change 4 with 4 − ε, we can
assume that F is regular on ∂D4. Hence F (∂D4) is an analytic regular curve which bounds
an unbounded region U in C. Let V = C \ U . Let T > 1 be such that V ⊂ {ζ ∈ C :
|ζ| < T}. The region U is simply connected in CP1, and we let Φ : C \ V → {ζ ∈ C :
|ζ| < T 2} be a univalent mapping such that Φ(∞) = ∞. Since F (∂D4) is real analytic,
Φ : ∂V → {|ζ| = T 2} is real analytic. Now F : ∂D4 → ∂V is 2 : 1 and z �→ z2

is 2 : 1 from {|ζ| = T} onto {|ζ| = T 2}. Therefore there exists a homeomorphism
κ : ∂D4 → {|ζ| = T} such that the following diagram commutes:

∂D4
F−−−−→ ∂V

κ

⏐⏐� ⏐⏐�Φ

{|ζ| = T} z �→z2

−−−−→ {|ζ| = T 2}

Hence κ2 = Φ ◦ F . Let us define Φ(z) := κ(z) for z ∈ ∂D4. It is then possible to extend
Φ to a quasiconformal map (bearing the same name) Φ : V \ D4 → {T < |ζ| < T 2}. In
particular Φ is a homeomorphism. Let then define

g(z) :=

{
F (z) z ∈ D4

Φ−1((Φ(z))2) z ∈ CP1 \ D4

Since F (z) = Φ−1((Φ(z))2) on ∂D4, the map g extends continuously as a map g : CP1 →
CP1.

On CP1 \ (V \ D4)

g∗(ds2CP1) =

(
|g′(z)| 1 + |z|2

1 + |g(z)|2

)2

ds2CP1

Therefore g∗(ds2
CP1) and ds2

CP1 are in the same class of conformality2 outside the compact
set V \ D4.

Moreover, if z ∈ V \ D4 then g(z) = Φ(z) ∈ {T < |ζ| < T 2}. By construction
V ⊂ {|ζ| < T}, hence g◦n(z) �∈ V \ D4 for all n = 1, 2, . . ..

We can thus apply Shishikura’s surgery principle (Lemma 2.33) and we find a quasi-
conformal map h : CP1 → CP1 (in particular h is a homeomorphism) such that h(0) = 0,
h(∞) = ∞ and G(z) := h−1 ◦ g ◦ h is a rational map of CP1. But such a map G fixes ∞
since h, g do. Thus G is a polynomial. On z �∈ D4 the map g(z) = Φ−1((Φ(z))2) with Φ
univalent. Hence g has “degree two” at infinity, therefore G(z) is a polynomial of degree
two. By Naishul’s theorem 2.29 it follows that G(z) = λz + z2. �

2Two metrics ω1, ω2 on CP1 are in the same class of conformality if there exists a positive function p(z)
such that ω1 = pω2.
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2.10. Yoccoz’s proof of the qualitative version of the Siegel-Bruno-Yoccoz theo-
rem. In this subsection we prove the following theorem:

THEOREM 2.34. Let f(z) = e2πiθz + O(z2) ∈ Diff(C, O). Then for almost all
θ ∈ R \Q (with respect to the Lebesgue measure), f is holomorphically linearizable.

Such a theorem in this form goes back to Siegel [22] who gave conditions on θ
(roughly speaking saying that θ is badly approximated by rational numbers) which hold
almost everywhere. Then Bruno [6], [7] gave some refined conditions on θ which later on
Yoccoz [24] proved to be sharp. In this subsection we are going to give a qualitative proof
of Theorem 2.34 due a very ingenious construction of J.-C. Yoccoz [24] (see also [18]).

In what follows we will need one of the Koebe distortion formula (see, e.g. [9, p.3]),
which we recall here for the reader convenience: if h : D → C is univalent then for all
z ∈ D

(2.26) |h′(0)| |z|
(1 + |z|)2 ≤ |h(z)− h(0)| ≤ |h′(0)| |z|

(1− |z|)2 .

Let us denote by
Pλ(z) := λz + z2.

THEOREM 2.35. Let θ ∈ R \ Q and let λ := e2πiθ. If Pλ is linearizable then every
germ f ∈ Diff(C, O) with f ′(0) = λ is linearizable.

PROOF. Let f(z) = λz+ a0z
2 +ψ(z) with λ = e2πiθ and ψ(0) = ψ′(0) = ψ′′(0) =

0. Let fa(z) = λz + az2 + ψ(z). For a �= 0, let h(z) := z/a. Then h−1 ◦ fa ◦ h(z) =
λz+ z2 + aψ(z/a). Since ψ(z) = O(z3) it follows that for |a| >> 1 the function ψ(z/a)
is defined on a neighborhood of the closed disc of radius 10 and |aψ(z/a)| << 1. By
the Douady-Hubbard straightening theorem 2.30 the map h−1 ◦ fa ◦ h for |a| >> 1 is
topologically conjugated to Pλ. But Pλ is linearizable by hypothesis and then Theorem
2.20 implies that O is stable for Pλ. Hence O is stable for h−1 ◦ fa ◦ h and then again
by Theorem 2.20 the map h−1 ◦ fa ◦ h is holomorphically linearizable for |a| >> 1, say
|a| ≥ R for some R >> 1. Hence fa is holomorphically linearizable for |a| ≥ R. If
|a0| ≥ R then we are done, so we can assume |a0| < R.

By Theorem1.6 in Section 1, for all a ∈ C the germ fa is formally linearizable, with
intertwining map ga(z) = z +

∑∞
j=2 ba,jz

j whose coefficients ba,j are given by (1.2) in
Section 1. Therefore, as a simple induction proves, the coefficient ba,j is a polynomial in
a of degree j. Hence the map (a, z) �→ ga(z) is both a power series in z with coefficients
depending on a and a power series in a with coefficients depending on z. For |a| = R the
map z �→ ga(z) is holomorphic. Hadamard’s formula (root’s criterion) for the radius of
convergence of power series implies that the radius of convergence of ga depends linearly
on 1/|a|. In particular, for all |a| = R the domains of definition of ga contain a fixed disc,
say |z| ≤ r for some r > 0. By Lemma 1.10 in Section 1 the maps ga are univalent on Dr.

Therefore by Koebe’s distortion formula (2.26) there exists a constant K > 0 such
that |ga(z)| < K for all |a| = R and |z| < r. Hence, |ba,j | ≤ K/rj , by the maximum
principle this holds for all |a| < R, hence ga(z) is convergent for all a. �

By Theorem 2.35 it is enough to study linearization of the quadratic polynomials Pλ.
If λ = e2πiθ with θ �∈ Q (possibly θ ∈ C, namely |λ| �= 1), by Theorem 1.6 in Section 1 the
polynomial Pλ is formally linearizable, namely, there exists gλ ∈ D̂iff(C, O), g′λ(0) = 1
such that

(2.27) Pλ(gλ(z)) = gλ(λz).
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Let us denote by r(λ) ∈ [0,+∞] the radius of convergence of gλ.

PROPOSITION 2.36. Let 0 < |λ| < 1. Then

(1) 0 < r(λ) ≤ 2.
(2) The map gλ extends continuously on ∂Dr(λ). Moreover gλ : Dr(λ) → C is

injective and satisfies Pλ ◦ gλ(z) = gλ(λz).
(3) The map gλ has a unique singular point on ∂Dr(λ) which is denoted u(λ).
(4) gλ(u(λ)) = −λ/2 and (gλ(z) + λ/2)2 is holomorphic at z = u(λ).

PROOF. By Theorem 2.1, r(λ) > 0. The map gλ is univalent in Dr(λ). Indeed, if
gλ(z1) = gλ(z2) for some z1, z2 ∈ Dr(λ), for all n ∈ N it follows by (2.27) that

(2.28) P ◦n
λ (gλ(z)) = gλ(λ

nz)

hence gλ(λ
nz1) = gλ(λ

nz2). But gλ is univalent in a neighborhood of O, therefore, since
|λ| < 1, for some n >> 1 it holds λnz1 = λnz2, hence z1 = z2 and gλ is univalent. In
particular gλ has no critical points in Dr(λ).

Now, note that Pλ has a unique critical point at cλ = −λ/2 with critical value vλ =
−λ2/4. We claim that cλ �∈ gλ(Dr(λ)). Indeed, if it were gλ(z0) = cλ for some z0 ∈
Dr(λ), differentiating (2.27) and evaluating at z0 we would obtain

0 = P ′
λ(cλ) = P ′

λ(cλ)g
′
λ(z0) = P ′

λ(gλ(z0))g
′
λ(z0) = λg′λ(λz0),

hence g′λ(λz0) = 0. Thus gλ would have a critical point in its domain of definition,
contradiction. Let r := min{100, r(λ)}. Then gλ : Dr → C satisfies the hypothesis of
Corollary 2.26. Thus Dr/4 ⊂ gλ(Dr). But cλ �∈ gλ(Dr), hence cλ �∈ Dr/4. Thus

1

2
≥ |λ|

2
= |cλ| ≥

r

4
,

which implies that r(λ) ≤ r ≤ 2. This proves (1).
Next, we note that if gλ(z) �= cλ then Pλ is invertible at gλ(z), hence from (2.27)

(2.29) gλ(z) = P−1
λ (gλ(λz)).

This implies in particular that gλ can be analytically continued until its image reaches cλ.
Hence cλ ∈ ∂(gλ(Dr(λ))) and there exists a sequence {zj} ⊂ Dr(λ) such that gλ(zj) →
cλ. Up to extracting subsequences we can assume that zj → u(λ) with |u(λ)| = r(λ) (for
otherwise if |u(λ)| < r(λ) then gλ(u(λ)) = cλ against cλ �∈ g(Dr(λ))). By (2.27)

gλ(λu(λ)) = lim
j→∞

gλ(λzj) = lim
j→∞

Pλ(gλ(zj)) = Pλ(cλ) = vλ.

Therefore, by the injectivity of gλ, such a u(λ) is uniquely defined, namely, if {zj} ⊂
Dr(λ) is such that gλ(zj) → cλ then {zj} have to converge to u(λ). Hence, if we define{

gλ(w) := P−1
λ (gλ(λw)) w ∈ ∂Dr(λ) \ u(λ)

gλ(u(λ)) := cλ

such a function is continuous and injective on ∂Dr(λ) and by construction it satisfies the
functional equation. This proves (2) and (3).

Finally, since P−1
λ (z) = −λ

2 + 1
2

√
λ2 + 4z, for z ∈ Dr(λ) \ {u(λ)}, by (2.29) we

have

(gλ(z) + λ/2)2 = (P−1
λ (gλ(λz)) + λ/2)2 =

λ2 + 4gλ(λz)

4
,

which defines a holomorphic function on a neighborhood of u(λ), proving (4). �
DEFINITION 2.37. The map D∗ � λ �→ u(λ) is called the Yoccoz function.
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We are going to see that, quite surprisingly, the Yoccoz function is holomorphic (and
extends holomorphically to 0).

THEOREM 2.38. The Yoccoz function u : D∗ → C has a holomorphic extension, still
denoted u : D → D2.

PROOF. For λ ∈ D∗, let un(λ) :=
P ◦n

λ (−λ/2)
λn . The sequence {un} is composed

of holomorphic functions on D∗. We are going to show that {un} converges uniformly
on compacta of D∗ to u, which will prove that u : D∗ → C is holomorphic. Then, by
Proposition 2.36 we have that |u(λ)| = r(λ) ≤ 2, hence u : D∗ → C is bounded and by
the Riemann removable singularity’s theorem u extends holomorphically to 0.

Let us then show that {un} converges uniformly on compacta. Let h(z) := gλ(zu(λ))
u(λ) .

The function h : D → C is univalent, and by Koebe’s distortion formula (2.26), recalling
that gλ(0) = 0 and g′λ(0) = 1,

(2.30)

∣∣∣∣gλ(zu(λ))u(λ)

∣∣∣∣ = |h(z)− h(0)| ≤ |h′(0)| |z|
(1− |z|)2 =

|z|
(1− |z|)2 .

By (2.28) with z = u(λ) and since gλ(u(λ)) = −λ/2, we have

(2.31) P ◦n
λ (−λ/2) = gλ(λ

nu(λ)).

Thus by (2.30) with z = λn,

|P ◦n
λ (−λ/2)| = |u(λ)|

∣∣∣∣gλ(λnu(λ))

u(λ)

∣∣∣∣ ≤ r(λ)
|λn|

(1− |λn|)2 ≤ 2
|λn|

(1− |λ|)2 .

This implies that

|un(λ)| =
∣∣∣∣P ◦n

λ (−λ/2)

λn

∣∣∣∣ ≤ 2

(1− |λ|)2
and therefore {un} is uniformly bounded on compacta of D∗, hence it is a normal family.
Let {unk

} be a converging subsequence. Now

lim
k→∞

unk
(λ) = lim

k→∞

P ◦nk

λ (−λ/2)

λnk

(2.31)
= lim

k→∞

gλ(λ
nku(λ))

λnk
=

d

dz
(gλ(u(λ)z))|z=0 = u(λ).

This proves both that the sequence {un} is converging and the limit is u. �

Now we relate the Yoccoz function to the radius of convergence of the formal inter-
twining map for an elliptic germ:

PROPOSITION 2.39. Let θ ∈ R \Q and let λ := e2πiθ. Then

r(λ) ≥ lim sup
z→λ

|u(z)|.

PROOF. Let r := lim supz→λ |u(z)|. Assume r > 0. Let {ηn} ⊂ D be such that
ηn → λ and |u(ηn)| → r. The family {gηn

} is a family of univalent functions each of
which is defined on a disc Dr(ηn) with r(ηn) = |u(ηn)|. Hence, for all m ∈ N, the disc
Dr−1/m ⊂ Dr(ηn) for n >> 1. The family {gηn

|Dr−1/m
} is thus a normal family by

Koebe’s distortion formula (2.30). Therefore, up to extracting subsequences, the sequence
{gηn

} is converging uniformly on compacta to a function g : Dr → C which, by Hurwitz
theorem, is either constant or univalent. Since gηn

(0) = 0 and g′ηn
(0) = 1 then g(0) = 0

and g′(0) = 1, proving that g is univalent on Dr. Also, since clearly Pηn
→ Pλ and
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Pηn
(gηn

(z)) = gηn
(ηnz) for all n, then Pλ(g(z)) = g(λz). By the uniqueness of the

intertwining map it follows that gλ|Dr
= g, proving that r(λ) ≥ r. �

Now we are able to prove Theorem 2.34:

PROOF OF THEOREM 2.34. The Yoccoz function u : D → C is holomorphic and
bounded, thus Fatou’s lemma (see, e.g., [21]) implies that u has radial limit almost every-
where at ∂D. Since u �≡ 0, such radial limits must be �= 0 for almost all points. Hence for
almost all λ ∈ ∂D

lim sup
z→λ

|u(z)| ≥ lim
r→1

|u(rλ)| > 0,

and by Proposition 2.39 it follows r(λ) > 0 proving thatPλ is holomorphically linearizable
for almost all λ ∈ ∂D. �

2.11. Arithmetic forms of Siegel-Bruno-Yoccoz’s theorem. In this subsection we
will discuss (without proof) the arithmetic form of the Siegel-Bruno-Yoccoz’s theorem
2.34. For details and proofs see, e.g., [19]. First, we start introducing Siegel’s theorem
[22] (see also [9]).

Let λ = e2πiθ with θ ∈ R \Q.

DEFINITION 2.40. The number θ ∈ R \ Q is Diophantine (or satisfies the Siegel
condition) if there exist K > 0 and 0 < t < ∞ such that for all m,n ∈ N and n �= 0 it
follows ∣∣∣θ − m

n

∣∣∣ ≥ K

nt
.

The set of Diophantine numbers is dense in R.

THEOREM 2.41 (Siegel, 1942). Let f(z) = λz+O(z2) ∈ Diff(C, O) with λ = e2πiθ

and θ ∈ R \Q. If θ is Diophantine then f is holomorphically linearizable.

Next we recall briefly how continued fractions are defined, in order to introduce
Bruno’s numbers.

The Gauss map is defined by

A(x) :=

{
1

x

}
for x ∈ R. We let x0 = x− [x], a0 = [x]. Then we define by induction for n ≥ 0

xn+1 = A(xn) =

{
1

xn

}
, an+1 =

[
1

xn

]
≥ 1.

Then 1
xn

= an+1 + xn+1. Therefore we have

x = a0 + x0 = a0 +
1

a1 + x1
= a0 +

1

a1 +
1

a2+x2

= . . .

As customary, we write x = [a0, a1, . . .] to denote the continued fraction expansion of x.
We also let

pn
qn

:= [a0, . . . , an] = a0 +
1

a1 +
1

a2+
. . .+ 1

an

.

The sequence {pn

qn
} is the best approximation sequence of rational numbers for x.
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DEFINITION 2.42. We say that x ∈ R \Q is a Bruno number if
∞∑

n=0

log qn+1

qn
< +∞,

where {pn

qn
} is the best approximation sequence of rational numbers for x.

One can prove that every Diophantine number is a Bruno number but the converse is
not true. Bruno [6], [7] (see also [18, section 5.1]) proved the following result:

THEOREM 2.43 (Bruno, 1965). Let f(z) = λz+O(z2) ∈ Diff(C, O) with λ = e2πiθ

and θ ∈ R \Q. If θ is a Bruno number then f is holomorphically linearizable.

Finally, in 1985 J.-C. Yoccoz [24] proved that Bruno’s condition is sharp, namely:

THEOREM 2.44. Let θ ∈ R \ Q be a non-Bruno number. Then the quadratic polyno-
mial e2πiθz + z2 is not holomorphically linearizable.

3. Topological normal forms

We say that two germs of diffeomorphisms f, g are topologically conjugated if there
exists a homeomorphism ϕ such that ϕ ◦ f ◦ ϕ−1 = g.

3.1. The hyperbolic case.

THEOREM 3.1. Let f(z) = λz +O(|z|2) ∈ Diff(C, O) with |λ| �= 1. Then

(1) If |λ| < 1 then f is topologically conjugated to z �→ 1
2z.

(2) If |λ| > 1 then f is topologically conjugated to z �→ 2z.

PROOF. 1. According to Theorem 2.1 the map f is holomorphically conjugated to
z �→ λz, so it is enough to show that λz and 1

2z are topologically conjugated. Fix ε > 0.
For 0 < r < R we denote by A(r, R) = {z ∈ C : r < |z| < R}. Let ϕ : A( ε2 , ε) →
A(|λ|ε, ε) be a homeomorphism such that ϕ( 12z) = λϕ(z) for |z| = ε

2 and ϕ(z) = z for
|z| = ε. Extend by induction for k ∈ N the map ϕ : A( ε

2k+1 ,
ε
2k
) → A(|λ|k+1ε, |λ|kε),

defining inductively

ϕ(
1

2
z) := λϕ(z), z ∈ A(

ε

2k+1
,
ε

2k
).

Then set ϕ(0) = 0. The map ϕ is the searched homeomorphism. The proof of 2. is
similar. �

3.2. The parabolic case: Camacho’s theorem.

THEOREM 3.2 (Camacho). Let f(z) = λz + O(z2) ∈ Diff(C, O), λn = 1 for some
n ∈ N and, if n > 1 assume λm �= 1 for 1 ≤ m < n. Then

(i) either fn(z) = z for all z,
(ii) or there exists k ∈ N such that f is topological conjugate to z �→ λz(1 + znk).

REMARK 3.3. From the proof it will follow that if f(z) = z + ak+1z
k+1 +O(zk+2)

with ak+1 �= 0 then f is topological conjugate to z �→ z + zk+1.

The idea of the proof is to look at f as a diffeomorphism of a suitable Riemann surface
in such a way that f behaves like an automorphism of such a surface and it is actually
topologically conjugated to it. To see how this idea comes out, we make some digressions.

Dynamics. The map Tλ,kn : z �→ λz(1 + znk) preserves the union of kn lines given
by {z : zkn ∈ R}. These lines divide C into 2nk sectors {Vj}, which we can enumerate
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counterclockwise. Thus, e.g., V1 = {z : 0 < arg z < π/nk} and more generally Vj = {z :
(j−1)π/nk < arg z < jπ/nk}, j = 1, . . . , 2nk. If λ = 1 then each V δ

j := Vj∩{|z| < δ},
0 < δ << 1 is mapped into Vj by T1,k. If λn = 1 then Tλ,kn acts as a permutation on
the V δ

j (in the sense that maps V δ
j in some other Vh). More precisely, if λ = e2πiq/n

with (q, n) = 1, 0 < q < n, then z �→ λz is a rotation which maps Vj into Vj+2kq,
modulo 2nk. Therefore Tλ,nk permutes the Vj’s in cycles with length n, and there are
exactly 2k cycles. Let Sj = V2j−1 ∪ V2j ∪ L+

j , where L+
j = ∂V2j−1 ∩ ∂V2j \ {0}, for

j = 1, . . . , 2nk. Note that each Sj contains exactly one Leau-Fatou petal for Tλ,kn. It is
clear that if f − Tλ,nk(z) = O(znk+1) then f moves the sectors Sj essentially as Tλ,nk

does.
The idea is now to consider each sector Sδ

j = Sj ∩ {|z| < δ} as a chart of a Riemann
surface in such a way that on each chart f is conjugated to some automorphism and such
conjugations glue together in a good way on the Riemann surface.

Riemann surfaces of multivalued functions. Let us consider the holomorphic function
z �→ z−kn. This function has the property that each sector Sj is mapped to C \ [0,∞]
(except for kn = 1 where the image is C∗ = C \ {0}). For nk = 1 we define S1 = C∗.
Now we assume nk > 1 and we are going to define a Riemann surface Snk which will
be a nk-th covering of C∗. Let U1, . . . , Unk be nk-th copies of C \ [0,∞]. Glue U1

along the upper boundary of the cut [0,∞] with U2 along the lower boundary of the cut
[0,∞]. Proceed this way gluing Uj along the upper boundary with Uj+1 along the lower
boundary, j = 1, . . . , nk− 1 and finally glue Unk along the upper boundary with U1 along
the lower boundary. Call Snk such a (topological) surface. Now we define a one-to-one
map πnk : Snk → C∗ as follows. On C \ [0,∞] one can define nk-th branches of the
inverse function of z �→ z−kn. Let us denote by z �→ Bj(z) these branches, according to
Bj(C \ [0,∞]) = Sj , j = 1, . . . , nk. Then let πnk|Uj

:= Bj . By definition πnk extends
continuously to all Snk and is clearly an homeomorphism on C∗. Declaring πnk to be a
biholomorphism we give Snk the structure of a Riemann surface. It is naturally a nk-th
covering of C∗ by the map P : Snk → C∗ defined on each Uj by Uj � x �→ x ∈ C∗,
extended obviously on all of Snk. The map P is holomorphic for one can check that the
following diagram commutes:

Snk Snk

πnk

⏐⏐� ⏐⏐�P

C∗ z �→z−nk

−−−−−→ C∗

Indeed we can check this using (Uj , πnk|Uj
) as a chart, and then in local coordinates

(Sj , ζ) it follows that P (ζ) = P (π−1
nk (ζ)) = ζ−nk. To be precise, {(Uj , πnk|Uj

)} is not an
atlas for Snk for it misses some half-lines. However one can define an atlas by constructing
Snk starting from open sets of the form U ′

j = C \ i[0,∞] (and then, instead of sectors of
the form Sj one must use sectors of the form S′

j = V2j ∪ V2j+1, j = 1, . . . , nk − 1,
S′
nk = V1 ∪ V2nk. Then {Uj , πnk|Uj

} ∪ {U ′
j , πnk|U ′

j
} is the wanted atlas: we leave the

details to the reader. Alternatively one can first endow Snk with the (unique) structure of
Riemann surface which makes the covering map P holomorphic, and then show that πnk is
a biholomorphism. From this point of view it is much more natural to consider the atlas of
Snk given by {Uj , ϕj}∪{U ′

j , ϕ
′
j}, where ϕj(ζ) = ζ, ϕ′

j(ζ) = ζ. In such local coordinates
one sees that for ζ ∈ Uj , πkn ◦ ϕ−1

j (ζ) = Bj(ζ) = ζ−1/kn where the branch is chosen so

that i−1/kn ∈ Sj .
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PROOF OF THEOREM 3.2. By Remark 1.14 of Section 1 we can assume that

(3.1) f(z) = λz(1 + znk +O(znk+1))

Let C∗
r = {z ∈ C∗ : |z| < r} for a small r > 0. Let Sr

nk = π−1
nk (C

∗
r). Then we can well

define a holomorphic injective map F : Sr
nk → Snk as

F = π−1
nk ◦ f ◦ πnk.

Assume that x ∈ Uj and F (x) ∈ Ul. In the local coordinates (Uj , πnk|Uj
) and (Ul, πnk|Ul

)
one can see that F = f . However if we use the local coordinates (Uj , ϕj) and (Ul, ϕl) to
write down a local expression of F we obtain that, for ζ ∈ C \ [0,∞],

Fjl(ζ) = ϕl ◦ F ◦ ϕ−1
j (ζ) = ϕl ◦ f(ζ−1/kn)

= [f(ζ−1/kn)]−kn = ζ − kn+ cζ−1/kn + . . . ,

where the branch of ζ−1/kn is chosen so that i−1/kn ∈ Sj . Note that, for what we said
about dynamics, if r is sufficiently small then Fn maps each Uj ∩ Sr

nk essentially into Uj

(with this we mean that the image is almost all in Uj , and the rest is in U ′
j−1 ∪U ′

j , counted
modulo kn).

We define an injective holomorphic map G : Sr
nk → Snk in the following way. If

x ∈ Uj and F (x) ∈ Ul then

G(x) := ϕ−1
l (ϕj(x)− kn).

Similarly if x ∈ U ′
j and F (x) ∈ U ′

l then we define G(x) := (ϕ′
l)
−1(ϕ′

j(x) − kn). We
have only to check that the map G(x) is well defined if x ∈ Uj ∩U ′

j , which follows at once
from the definition of ϕj , ϕ

′
j . By the very definition it follows that in local coordinates

Gjl(ζ) = ϕl ◦G ◦ ϕ−1
j (ζ) = ζ − kn.

The upshot is to show that F is topologically conjugated to G on Sr
nk, which will imply

that f is topologically conjugated to g := πnk ◦G ◦ π−1
nk on C∗

r . Since also λz(1 + znk) is
topologically conjugated to g this will prove the theorem.

We define a new C∞ diffeomorphism K : Sr
nk → Snk by gluing together F and G.

Such a map K is better defined on C∗
r = πnk(Sr

nk). Let 0 < r2 < r1 < r < 1. Let
ρ : R → R be a C∞ function such that 0 ≤ ρ ≤ 1, ρ|[−∞,0] ≡ 0, ρ|[1,+∞] ≡ 1. Then we
define

k(z) = g(z) + ρ

(
r1 − |z|
r1 − r2

)
[f(z)− g(z)].

The map K is then given by K = π−1
nk ◦ k ◦ πnk. We have to show that K is a diffeomor-

phism. To see this, we notice that Fjl(ζ) − Gjl(ζ) goes to zero as ζ tends to infinity, for
any j, l. This means that |f(z) − g(z)| is very small as r << 1. In particular then k is
C1-close to the diffeomorphism g on C∗

r and therefore it is a diffeomorphism, and hence
K is.

Let Sr1
nk = π−1

nk (C
∗
r1) and similarly define Sr2

nk. Then Sr1
nk ∩ Uj is given by {ζ ∈ Uj :

|ζ| > r−kn
1 }, while Sr2

nk ∩ Uj = {ζ ∈ Uj : |ζ| > r−kn
2 }. By definition K ≡ G on

B := Sr
nk \ S

r1
nk, while K ≡ F on Sr2

nk.
It is now enough to show that K is topologically conjugated to G. The idea is to

define a conjugation H on a set E, called exaggerated fundamental domain, such that for
any x ∈ Snk there exists a ∈ Z such that Ga(x) ∈ E, and then extend the conjugation by
means of the relation H ◦G ◦H−1 = K.
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We let Lt be defined as Lt ∩ Ut := {ζ ∈ Sr
nk : Reζ = 0}, for t = 1, . . . , k. By

definition we know that Gn(Lt) ⊂ Ut, and actually Gn(Lt) is a line in Sr
nk ∩ Ut given

by the translation of Lt. We let L′
t = Gn(Lt), t = 1, . . . , k. We define the exaggerated

fundamental set E to be the union of B and the 2k-th semi-strips bounded by Lt∩Ut, L
′
t∩

Ut for t = 1, . . . , k. This set E is clearly fundamental for G, for Gn is a translation on each
Uj with step given by the distance between L1 and L′

1; also, if k > 1 then G permutes
cyclically the n charts contained into the k-th cycles, as explained when talking about
dynamics. Now we define H|B = Id, H|Lt

= Id, while we define H|L′
t
:= K|L′

t
for

t = 1, . . . , k. Clearly H conjugates G to K on B∪tLt∪tL
′
t. Now we simply extend H as

a diffeomorphism into the interior of each semi-strip between Lt and L′
t. For x ∈ Sr

nk we
can define H(x) by means of H(x) := K−a ◦H ◦ Ga(x), where a ∈ Z is the minimum
(in modulus) integer such that Ga(x) ∈ E. For this definition to make sense, we have
to be sure that K−b(H(Ga(x)) ∈ Sr

nk for b = 1, . . . , a if a > 0 (b = −1, . . . ,−a if
a < 0). Indeed K(B) �⊂ Sr

nk (this corresponds dynamically to the existence of repelling
directions). However, from the fact that H|B = Id one can easily see that the definition is
well posed. Finally, we note that H is, by construction, a diffeomorphism. �

REMARK 3.4. The proof shows that, if fn(z) �= z, then actually f is C∞-conjugated
to λz(1 + zkn) outside 0.
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