
A foreword

These are partial notes for a course on billiards held in Maryland in the Fall
of 2024. The purpose here is to provide a basic understanding for people
with essentially no prior knowledge of the subject. First, I will discuss how
to establish hyperbolicity, and then I will discuss how to establish ergodic-
ity and, finally, the statistical properties. As the field is very wide, I will
put emphasis on the idea and the techniques rather than try to present an
exhaustive overview of the field. Also, I will try to present the ideas so that
it is clear how to use them for other relevant dynamical systems (e.g., cones
and hyperbolicity, Hopf argument for ergodicity, standard pairs, dynamical
functional spaces, and transfer operators, strictly invariant cones, and Hilber
metric). The notes are both more and less extensive than the lectures. I
apologize for that, but writing notes is a rather time-consuming activity for
a slow person like me. In addition, as I have written them in a hurry, they
may contain mistakes. So read at your own risk, and apologies again.
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Chapter 1

General facts and definitions

This chapter discusses some general facts concerning (measurable) dynam-
ical systems. It is intended for readers with no previous knowledge of Dy-
namical Systems.

The chapter contains few basic facts, some of which will be used in the
following while others are meant to provide a wider context to the material
actually discussed. For a much more complete discussion of the relevant
concepts the reader is referred to [44], [32].

1.1 Basic Definitions and examples

Definition 1 By Dynamical System1 with discrete time we mean a triplet
(X, T, µ) where X is a measurable space,2 µ is a probability measure and
T is a measurable map from X to itself that preserves the measure (i.e.,
µ(T�1

A) = µ(A) for each measurable set A ⇢ X).

1To be really precise this is the definition of “Measurable Dynamical Systems,” hope-
fully the reader will excuse this abuse of language. More generally a Dynamical System
can be defined as a set X together with a map T : X ! X or, even more generally, an
algebra A (e.g., the algebra of the functions on X) and an isomorphism ⌧ : A ! A (e.g.,
⌧f := f � T ). This last definition is so general as to include Stochastic Processes and
Quantum Systems. A further generalization consists in realizing that the above setting
can be viewed as the action of the semigroup N (or the group Z if T is invertible) on the
algebra A. One can then consider other groups (already in the next definition the group
is R), for example, Zn or Rn, this goes in the direction of the Statistical Mechanics and
it has received a lot of attention lately. Yet, such a generality is excessive for the task at
hand.

2By measurable space we simply mean a set X together with a �-algebra that defines
the measurable sets.
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6 CHAPTER 1. GENERAL FACTS AND DEFINITIONS

An equivalent characterization of invariant measure is µ(f�T ) = µ(f) for
each f 2 L

1(X, µ) since, for each measurable set A, µ(�A�T ) = µ(�T�1A) =
µ(T�1

A), where �A is the characteristic function of the set A.3

Remark 1.1.1 In this book we will always assume µ(X) < 1 (and quite
often µ(X) = 1, i.e. µ is a probability measure). Nevertheless, the reader
should be aware that there exists a very rich theory pertaining to the case
µ(X) = 1, see [1].

Definition 2 By Dynamical System with continuous time we mean a triplet
(X, �t, µ) where X is a measurable space, µ is a measure and �t is a mea-
surable group (�t(x) is a measurable function for a.e. x 2 X, �t(x) is a mea-
surable function of t for almost all x 2 X; �0 =identity and �

t
� �

s = �
t+s

for each t, s 2 R) or semigroup (t 2 R+) from X to itself that preserves the
measure (i.e., µ(��1

t
A) = µ(A) for each measurable set A ⇢ X).

The above definitions are very general, this reflects the wideness of the
field of Dynamical Systems. In the present book we will be interested in
much more restricted situations.

In particular, X will always be a topological compact space. The mea-
sures will alway belong to the class M(X) of Borel measures on X.4 For
future use, given a topological space X and a map T let us define MT as
the collection of all Borel measures that are T invariant.5

Tipically, X will consist of finite unions of smooth manifolds (eventually
with boundaries). Analogously, the dynamics (the map or the flow) will be
almost surely di↵erentiable on X.

Let us see few examples to get a feeling of how a Dynamical System can
look like.

1.1.1 Examples

Rotations

–Let T be R mod 1. By this we mean R quotiented with respect to the
equivalence relations x ⇠ y if and only if x� y 2 Z. T can be though as the
interval [0, 1] with the points 0 and 1 identified. We put on it the topology
induced by the topology of R via the defined equivalence relation. Such a

3We use the notation, for each measurable function f , µ(f) =
R
X
f(x)µ(dx).

4Remember that a Borel measure is a measure defined on the Borel �-algebra, that is
the �-algebra generated by the open sets.

5Obviously, for each µ 2 MT , (X,T, µ) is a Dynamical Systems.
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topology is the usual one on [0, 1], apart from the fact that each open set
containing 0 must contain 1 as well. Clearly, from the topological point of
view, T is a circle. We choose the Borel �-algebra. By µ we choose the
Lebesgue measure m, while T : T ! T is defined by

Tx = x+ ! mod 1,

for some ! 2 R. In essence, T translates, or rotates, each point by the same
quantity !. It is easy to see that the measure µ is invariant (Problem 1.4).

Bernoulli shift

–A Dynamical System needs not live on some di↵erentiable manifold, more
abstract possibilities are available.

Let Zn = {1, 2, ..., n}, then define the set of two sided (or one-sided)

sequences ⌃n = ZZ
n (⌃+

n = ZZ+
n ). This means that the elements of ⌃n

are sequences � = {..., ��1, �0, �1, ......} (� = {�0, �1, ......} in the one-
sided case) where �i 2 Zn. To define the measure and the �-algebra it is
necessary a bit of care. To start with, consider the cylinder sets, that is the
sets of the form

A
j

i
= {� 2 ⌃n | �i = j}.

Such sets will be our basic objects and can be used to generate the
algebra A of the cylinder sets via unions and intersections. We can then
define a topology on ⌃ (the product topology, if {1, . . . , n} is endowed by
the discrete topology) by declaring the above algebra made of open sets and a
basis for the topology. To define the �-algebra we could take the minimal �-
algebra containing A, yet this it is not a very constructive definition, neither
a particular useful one, it is better to invoke the Carathèodory construction.

Let us start by defining a measure on Zn, that is n numbers pi > 0 such
that

P
n

i=1 pi = 1. Then, for each i 2 Z and j 2 Zn,

µ(Aj

i
) = pj .

Next, for each collection of sets {A
jl
il
}
s

l=1, with il 6= ik for each l 6= k, we
define

µ(Aj1
i1
\A

j2
i2
\ ... \A

js
is
) =

sY

l=1

pjl .

We now know the measure of all finite intersection of the sets A
j

i
. The

measure of the union of two sets A, B obviously must satisfy µ(A [ B) =
µ(A) + µ(B) � µ(A \ B). We have so defined µ on A. It is easy to check
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that such a µ is �-additive on A; namely: if {Ai} ⇢ A are pairwise disjoint
sets and [

1
i=1Ai 2 A, then µ([1

i=1Ai) =
P1

i=1 µ(Ai). The following step is
to define the outer measure6

µ
⇤(A) := inf

B2A
B�A

µ(A) 8A ⇢ ⌃.

Finally, we can define the �-algebra as the collection of all the sets that
satisfy the Carathèodory’s criterion, namely A is measurable (that is belongs
to the �-algebra) i↵

µ
⇤(E) = µ

⇤(E \A) + µ
⇤(E \A

c) 8E ⇢ ⌃.

The reader can check that the sets in A are indeed measurable.

The Carathèodory Theorem then asserts that the measurable sets form
a �-algebra and that on such a �-algebra µ

⇤ is �-additive, thus we have our
measure µ.7 The �-algebra so obtained is nothing else that the completion
with respect to µ of the minimal �-algebra containing A (all the sets with
zero outer measure are measurable).

The map T : ⌃n ! ⌃n (usually called shift) is defined by

(T�)i = �i+1.

We leave to the reader the task to show that the measure is invariant (see
Problem 1.11).

To understand what’s going on, let us consider the function f : ⌃! Zn

defined by f(�) = �0. If we consider T
t, t 2 N, as the time evolution

and f as an observation, then f(T t
�) = �t. This can be interpreted as

the observation of some phenomenon at various times. If we do not know
anything concerning the state of the system, then the probability to see the
value j at the time t is simply pj . If n = 2 and p1 = p2 = 1

2 , it could
very well be that we are observing the successive outcomes of tossing a fair
coin where 1 means head and 2 tail (or vice versa); if n = 6 it could be the
outcome of throwing a dice and so on.

6An outer measure has the following properties: i) µ
⇤(;) = 0; ii) µ

⇤(A)  µ
⇤(B) if

A ⇢ B; iii)µ⇤([1
i=1Ai) 

P1
i=1 µ

⇤(Ai). Note that µ⇤ need not be additive on all sets.
7See [39] if you want a quick look at the details of the above Theorem or consult [48]

if you want a more in-depth immersion in measure theory. If you think that the above
construction is too cumbersome see Problem 1.13.



1.1. BASIC DEFINITIONS AND EXAMPLES 9

Dilation

–Again X = T and the measure is Lebesgue. T is defined by

Tx = 2x mod 1.

This map it is not invertible (similarly to the one sided shift). Note that, in
general, µ(TA) 6= µ(A) (e.g., A = [0, 12 ]).

Arnold cat

–This is an automorphism of the torus and gets its name from a picture
drawn by Arnold [2]. The space X is the two dimensional torus T2. The
measure is again Lebesgue measure and the map is

T

✓
x

y

◆
=

✓
1 1
1 2

◆✓
x

y

◆
mod 1 =: L

✓
x

y

◆
mod 1.

Since the entries of L are integer numbers it is clear that T is well defined
on the torus; in fat, it is a linear toral automorphism. The invariance of the
measure follows from det(L) = 1.

Hamiltonian Systems

– Up to now, we have seen only examples with discrete time. Typical exam-
ples of Dynamical Systems with continuous time are the solutions of an ODE
or a PDE. Let us consider the case of a Hamiltonian system. The simplest
case is when X = R2n, the �-algebra is the Borel one and the measure µ

is the Lebesgue measure m. The dynamics is defined by a smooth function
H : X ! R via the equations

dx

dt
= JgradH(x)

where grad(H)i = (rH)i =
@H

@xi
and J is the block matrix

J =

✓
0
� 0

◆
.

The fact that m is invariant with respect to the Hamiltonian flow is due to
the Liouville Theorem (see [3] or Problem 1.6).

Such a dynamical system has a natural decomposition. Since H is an in-
tegral of the motion, for each h 2 R we can consider Xh = {x 2 X | H(x) =
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h}. If Xh 6= ;, then it will typically consist of a smooth manifold.8, let us
restrict ourselves to this case. Let � be the surface measure on Xh, then
µh = �

kgradHk is an invariant measure on Xh and (Xh, �t, µh) is a Dynamical

System (see Problem 1.6).

Geodesic flow

–Along the same lines any geodesic flow on a compact Riemannian manifold
naturally defines a dynamical system.

1.2 Poincaré sections

Normally in Dynamical Systems is given a lot of emphasis to the discrete
case (we have already seen an instance of this in the introduction). One
reason is that there is a general device that allows to reduce the study of
many properties of a continuous time Dynamical System to the study of
an appropriate discrete time Dynamical System: Poincaré sections. Here
we want to make few comments on this precious tool that we will largely
employ in the study of billiards.

Let us consider a smooth Dynamical System (X,�
t
, µ) (that is a Dy-

namical Systems in continuous time where X is a smooth manifold and �
t

is a smooth flow). Then we can define the vector field V (x) := d�
t(x)
dt

|t=0.9

Consider a smooth compact submanifold (possibly with boundaries) ⌃
of codimension one such that Tx⌃ (the tangent space of ⌃ at the point x)
is transversal to V (x).10 We can then define the return time ⌧⌃ : ⌃ !

R+
[ {1} by

⌧⌃ = inf{t 2 R+
\{0} | �

t(x) 2 ⌃},

where the inf is taken to be 1 if the set is empty. Next we define the return
map T⌃ : D(T ) ⇢ ⌃! ⌃, where D(T ) = {x 2 ⌃|⌧⌃(x) < 1}, by

T⌃(x) = �
⌧⌃(x)(x).

It is easy to check that there exists c > 0 such that ⌧⌃ � c (Problem 1.9).
To define the measure, the natural idea is to project the invariant mea-

sure along the flow direction: for all measurable sets A ⇢ ⌃, define11

8By the implicit function theorem this is locally the case if rH 6= 0.
9Very often it is the other way around: first is given the vector field and then the

flow–as we saw in the introduction.
10That is Tx⌃� V (x) form the full tangent space at x.
11We use the notation: �I(A) := [t2I�

t(A) for each I ⇢ R.
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⌫⌃(A) := lim
�!0

1

�
µ(�[0, �](A)). (1.2.1)

See Problem 1.8 for the existence of the above limit; see Problem 1.9 for
the proof that ⌧⌃ is finite almost everywhere and Problem 1.10 for the proof
that (⌃, T⌃, ⌫⌃) is a dynamical system. The reader is invited to meditate
on the relation between this Dynamical System and the original one.

1.3 Suspension flows

A natural question is if it is possible to construct a flow with a given Poincaré
section, the answer is positive and it is based on a very useful construction.
Let (f,X) be a dynamical system (the Poincarè map) and ⌧ : X ! R+/{0}
be a positive function (the roof or ceiling function). We will construct a
flow, called supsension. Define eX = {(x, s) 2 X ⇥ R : 0  t < ⌧(x)} and
the flow

�t(x, s) =

(
(x, s+ t) if s+ t < ⌧(x)

(f(x), s� ⌧(x) + t) if ⌧(x)� s < t < ⌧(x)� s+ ⌧(f(x))

The reader can easily check that the flow has the wanted properties.

1.4 Invariant measures

A very natural question is: given a space X and a map T there always exists
an invariant measure µ? A non-exhaustive, but quite general, answer exists:
Krylov-Bogoluvov Theorem.

First, we need to characterize invariance in a useful way.

Lemma 1.4.1 Given a compact metric space X and map T continuous
apart from a compact set K,12 a Borel measure µ, such that µ(K) = 0, is
invariant if and only if µ(f � T ) = µ(f) for each f 2 C

(0)(X).

Proof. To prove that the invariance of the measure implies the invari-
ance for continuous functions is obvious since each such function can be
approximate uniformly by simple functions–that is, the sum of characteris-
tic functions of measurable sets–for which the invariance is obvious.13 The
converse implication is not so obvious.

12This means that, if C ⇢ X is closed, then T
�1

C [K is closed as well.
13This is essentially the definition of integral.
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The first thing to remember is that the Borel measures, on a compact
metric space, are regular [47]. This means that for each measurable set A

the following holds14

µ(A) = inf
G�A

G=
�
G

µ(G) = sup
C⇢A
C=C

µ(C). (1.4.2)

Next, remember that for each closed set A and open set G � A, there exists
f 2 C

(0)(X) such that f(X) ⇢ [0, 1], f |Gc = 0 and f |A = 1 (this is Urysohn
Lemma for Normal spaces [48]). Hence, setting BA := {f 2 C

(0)(X) | f �

�A},

µ(A)  inf
f2BA

µ(f)  inf
G�A

G=
�
G

µ(G) = µ(A). (1.4.3)

Accordingly, for each A closed, we have

µ(T�1
A)  inf

f2BA

µ(f � T ) = inf
f2BA

µ(f) = µ(A).

In addition, using again the regularity of the measure, for each A Borel
holds15

µ(T�1
A) = inf

U�K

U=
�
U

µ(T�1
A\U)  inf

U�K

U=
�
U

sup
C⇢T�1A\U

C=C

µ(T�1(TC))

 inf
U�K

U=
�
U

sup
C⇢A\TU

C=C

µ(T�1
C)  sup

C⇢A
C=C

µ(T�1
C) = sup

C⇢A
C=C

µ(C) = µ(A).

Applying the same argument to the complement A
c of A it follow that it

must be µ(T�1
A) = µ(A) for each Borel set. ⇤

Proposition 1.4.2 (Krylov–Bogoluvov) If X is a metric compact space
and T : X ! X is continuous, then there exists at least one invariant
(Borel) measure.

14Note that this is almost obvious if one thinks of the Carathéodory construction starting
from the open sets.

15Note that, by hypothesis, if C is compact and C \K = ;, then TC is compact.
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Proof. Consider any Borel probability measure ⌫ and define the fol-
lowing sequence of measures {⌫n}n2N:16 for each Borel set A

⌫n(A) = ⌫(T�n
A).

The reader can easily see that ⌫n 2 M
1(X). Indeed, since T

�1
X = X,

⌫n(X) = 1 for each n 2 N. Next, define

µn =
1

n

n�1X

i=0

⌫i.

Again µn(X) = 1, so the sequence {µi}
1
i=1 is contained in a weakly compact

set (the unit ball) and therefore admits a weakly convergent subsequence
{µni}

1
i=1; let µ be the weak limit.17 We claim that µ is T invariant. Since

µ is a Borel measure it su�ces to verify that for each f 2 C
(0)(X) holds

µ(f � T ) = µ(f) (see Lemma 1.4.1). Let f be a continuous function, then
by the weak convergence we have18

µ(f � T ) = lim
j!1

1

nj

nj�1X

i=0

⌫i(f � T ) = lim
j!1

1

nj

nj�1X

i=0

⌫(f � T
i+1)

= lim
j!1

1

nj

8
<

:

nj�1X

i=0

⌫i(f) + ⌫(f � T
nj+1)� ⌫(f)

9
=

; = µ(f).

⇤
16Intuitively, if we chose a point x 2 X at random, according to the measure ⌫ and we

ask what is the probability that Tn
x 2 A, this is exactly ⌫(T�n

A). Hence, our procedure
to produce the point T

n
x is equivalent to picking a point at random according to the

evolved measure ⌫n.
17This depends on the Riesz-Markov Representation Theorem [47] that states that

M(X) is exactly the dual of the Banach space C(0)(X). Since the weak convergence
of measures in this case correspond exactly to the weak-* topology [47], the result follows
from the Banach-Alaoglu theorem stating that the unit ball of the dual of a Banach space
is compact in the weak-* topology. But see problem Problem 1.16 if you want a more
direct proof.

18Note that it is essential that we can check invariance only on continuous functions:
if we would have to check it with respect to all bounded measurable functions we would
need that µn converges in a stronger sense (strong convergence) and this may not be true.
Note as well that this is the only point where the continuity of T is used: to insure that
f � T is continuous and hence that µnj (f � T ) ! µ(f � T ).
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The reason why the above theorem it is not completely satisfactory is
that it is not constructive and, in particular, does not provide any informa-
tion on the nature of the invariant measure. In fact, in many instances the
interest is focused not just on any Borel measure but on special classes of
measures, for example measures connected to the Lebesgue measure which,
in some sense, can be thought as reasonably physical measures (if such mea-
sures exists).

In the following examples we will see two main techniques to study such
problems: on the one hand it is possible to try to construct explicitly the
measure and study its properties in the given situations (expanding maps,
strange attractors, solenoid, horseshoe); on the other hand one can try to
conjugate19 the given problem with another, better understood, one (logistic
map, circle maps). In view of this last possibility, it is very important the
last example (Markov measures) that gives just a hint of the possibility of
constructing a multitude of invariant measures for the shift that, as we will
see briefly, is a standard system to which many others can be conjugated.

1.4.1 Examples

Contracting maps

Let X ⇢ Rn be compact and connected, T : X ! X di↵erentiable with
kDTk  �

�1
< 1 and T0 = 0 2 X. In this case 0 is the unique fixed point

and the delta function at zero is the only invariant measure.20

Expanding maps

The simplest possible case is X = T, T 2 C
(2)(T) with |DT | � � > 1.21 We

would like to have an invariant measure absolutely continuous with respect
to Lebesgue. Any such measure µ has, by definition, the Radon-Nikodym
derivative h = dµ

dm
2 L

1(T, m), [48]. In Proposition 1.4.2 we saw how a

measure evolves by defining the operator T⇤µ(f) = µ(f �T ) for each f 2 C
(0)

and µ 2 M(X) (see also footnote 17 at page 13). If we want to study a
smaller class of measures we must first check that T⇤ leaves such a class
invariant. Indeed, if µ is absolutely continuous with respect to Lebesgue

19See Definition 5 for a precise definition and Problem 1.38 and 1.39 for some insight.
20The reader will hopefully excuse this physicist language, naturally we mean that the

invariant measure is defined by �0(f) = f(0). The property that there exists only one
invariant measure is called unique ergodicity, we will see more of it in the sequel.

21Note that this generalizes Examples 1.1.1–Dilations.
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then T⇤µ has the same property. Moreover, if h = dµ

dm
and h1 = dT⇤µ

dm
then

(Problem 1.14)

h1(x) = Lh(x) :=
X

y2T�1(x)

|DyT |
�1

h(y).

The operator L : L1(T, m) ! L
1(T, m) is called Transfer operator or Ruelle-

Perron-Frobenius operator, and has an extremely important rôle in the study
of the statistical properties of the system. Notice that kLhk1  khk1. The
key property of L, in this context, is given by the following inequality (this
type of inequality is commonly called of Lasota-York type) (Problem 1.15)

k
d

dx
Lhk1  �

�1
kh

0
k1 + Ckhk1 (1.4.4)

where C = kD2
Tk1

kDTk21
.

The above inequality implies immediately k(Ln
h)0k1 

C

1���1 khk1 +
kh

0
k1, for all n 2 N. This, in turns, implies that the supn2N kL

n
hk1 < 1.

Consequently, the sequence hn := 1
n

P
n�1
i=0 L

i
h is compact in L

1 (this is a
consequence of standard Sobolev embedding theorems [28], but see Problem
1.16 for an elementary proof). In analogy with Lemma 1.4.2, we have that
there exists h⇤ 2 L

1 such that Lh⇤ = h⇤. Thus dµ := h⇤dm is an invariant
measure of the type we are looking for.

Logistic maps

Consider X = [0, 1] and

T (x) = 4x(1� x).

This map is not an everywhere expanding map (D 1
2
T = 0), yet it can be

conjugate with one.
To see this consider the continuous change of variables  : [0, 1] ! [0, 1]

defined by

 (x) =
2

⇡
arcsin

p
x,

thus  �1(x) =
�
sin ⇡

2x
�2
. Accordingly,

T̃ (x) :=  � T � �1(x) =  (4 sin2 ⇡

2x cos
2 ⇡

2x)

=  ([sin⇡x]2) = 2
⇡
arcsin[sin⇡x]
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which yields22

T̃ (x) =

(
2x for x 2 [0, 12 ]

2� 2x for x 2 [12 , 1].

The map T̃ is called tent map for its characteristic shape. What is more
interesting is that the Lebesgue measure is invariant for T̃ , as the reader can
easily check. This means that, if we define µ(f) := m(f � �1), holds

µ(f � T ) = m(f � T � �1) = m(f � �1
� T̃ ) = m(f � �1) = µ(f).

Hence, ([0, 1], T, µ) is a Dynamical Systems. In addition, a trivial computa-
tion shows

µ(dx) =
1

⇡

p
x(1� x)

dx,

thus µ is absolutely continuous with respect to Lebesgue.

Circle maps

A circle map is an order preserving continuous map of the circle. A simple
way to describe it is to start by considering its lift. Let T̂ : R ! R, such
that T̂ (0) 2 [0, 1], T̂ (x+ 1) = T̂ (x) + 1 and T̂⇤ � 0. The circle map is then
defined as T (x) = T̂ (x) mod 1. Circle maps have a very rich theory that
we do not intend to develop here, we confine ourselves to some facts (see
[32] for a detailed discussion of the properties below). The first fact is that
the rotation number

⇢(T ) = lim
n!1

1

n
T̂
n(x).

is well defined and does not depend on x.
We have already seen a concrete example of circle maps: the rotation R!

by !. Clearly ⇢(R!) = !. It is fairly easy to see that if ⇢(T ) 2 Q then the
map has a periodic orbit. We are more interested in the case in which the
rotation number is irrational. In this case, with the extra assumption that
T is twice di↵erentiable (actually a bit less is needed) the Denjoy theorem
holds stating that there exists a continuous invertible function h such that
R⇢(T ) � h = h � T , that is T is topologically conjugated to a rigid rotation.
Since we know that the Lebesgue measure is invariant for the rotations, we
can obtain an invariant measure for T by pushing the Lebesgue measure by
h, namely define

µ(f) = m(f � h
�1).

22Remember that the domain of arcsin is [�⇡
2 ,

⇡
2 ] and sin⇡x = sin⇡(1� x).
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The natural question if the measure µ is absolutely continuous with respect
to Lebesgue is rather subtle and depends, once again, by KAM theory. In
essence the answer is positive only if T has more regularity and the rotation
number in not very well approximated by rational numbers (in some sense
it is ‘very irrational’).

Strange Attractors

We have seen the case in which all the trajectories are attracted by a point.
The reader can probably imagine a case in which the attractor is a curve
or some other simple set. Yet, it has been a fairly recent discovery that
an attractor may have a very complex (strange) structure. The following is
probably the simplest example. Let X = Q = [0, 1]2 and

T (x, y) =

(
(2x, 1

8y +
1
4) if x 2 [0, 1/2]

(2x� 1, 1
8y +

3
4) if x 2]1/2, 1].

We have a map of the square that stretches in one direction by a factor
2 and contract in the other by a factor 8.

Note that T it is not continuous with respect to the normal topology, so
Proposition 1.4.2 cannot be applied directly. This problem can be solved in
at least two ways: one is to code the system, and we will discuss it later,
the other is to study more precisely what happens by iterating a measure in
special cases.

In our situation, since Tn
Q consists of a multitude of thinner and thinner

strips, it is clear that there can be no invariant measure absolutely continu-
ous with respect to Lebesgue.23 Yet, it is very natural to ask what happens
if we iterate the Lebesgue measure by the operator T⇤. It is easy to see
that T⇤m is still absolutely continuous with respect to Lebesgue. In fact,
T⇤ maps absolutely continuous measures in absolutely continuous measures.
Once we note this, it is very tempting to define the transfer operator. An
easy computation yields

Lh(x) = �TQ(x)
X

y2T�1(x)

| det(DyT )|
�1

h(y) = 4�TQ(x)h(T
�1(x)).

23In fact, if µ is an invariant measure, T⇤µ = µ, it follows

µ(�TnQ) = T
n
⇤ µ(�TnQ) = µ(�Q) = 1,

so µ must be supported on ⇤ = \1
n=0T

n
Q.
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Since the map expands in the unstable direction, it is quite natural to
investigate, in analogy with the expanding case, the unstable derivative Du,
that is the derivative in the x direction, of the iterate of the density.

kD
u
Lhk1 

1

2
kD

u
hk1 8h 2 C

(1)(Q) (1.4.5)

To see the consequences of the above estimate, consider f 2 C
(1)(Q) with

f(0, y) = f(1, y) = 0 for each y 2 [0, 1], then if ⌫ is a measure obtained by
the measure hdm (h 2 C

(1)) with the procedure of Proposition 1.4.2,24 we
have

⌫(Du
f) = lim

j!1

1

nj

nj�1X

i=0

(T⇤)
i
m(hDu

f) = lim
j!1

1

nj

nj�1X

i=0

m(Li
hD

u
f)

= � lim
j!1

1

nj

nj�1X

i=0

m(fDu
L
i
h)

where we have integrated by part. Remembering (1.4.5) we have

⌫(Du
f) = 0,

for all f 2 C
(1)
per(Q) = {f 2 C

(1)(Q) | f(0, y) = f(1, y)}. The enlargement

of the class of functions is due to the obvious fact that, if f 2 C
(1)
per(Q),

then f̃(x, y) = f(x, y)�f(0, y) is zero on the vertical (stable) boundary and
D

u
f̃ = D

u
f .

This means that the measure ⌫, when restrict to the horizontal direction,
is ⌫-a.e. constant (see Problem 1.30). Such a strong result is clearly a
consequence of the fact the map is essentially linear, one can easily imagine a
non linear case (think of dilations and expanding maps) and in that case the
same argument would lead to conclude that the measure, when restricted to
unstable manifolds, is absolutely continuous with respect to the restriction
of Lebesgue (these type of measures are commonly called SRB from Sinai,
Bowen and Ruelle).

We can now prove that indeed the measure ⌫ is invariant. The disconti-
nuity line of T is {x = 1

2}. Points close to {x = 1
2} are mapped close to the

boundary of Q, so if f(0, y) = f(1, y) = 0, then f � T is continuous. Hence,
the argument of Proposition 1.4.2 proves that ⌫(f �T ) = µ(f) for all f that

24As we noted in the proof of Proposition 1.4.2, the only part that uses the continuity
of T is the proof of the invariance. Thus, in general we can construct a measure by the
averaging procedure but the invariance it is not automatic.
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vanish at the stable boundary. Yet, the characterization of ⌫ proves that
⌫({(x, y) 2 Q | x 2 {0, 1}}) = 0, thus we can obtain ⌫(f � T ) = µ(f) for all
continuous functions via the Lebesgue dominate convergence theorem and
the invariance follows by Lemma 1.4.1.

Horseshoe

This very famous example consists of a map of the square Q = [0, 1]2, the
map is obtained by stretching the square in the horizontal direction, bending
it in the shape of an horseshoe and then superimposing it to the original
square in such a way that the intersection consists of two horizontal strips.25

Such a description is just topological, to make things clearer let us consider
a very special case:

T (x, y) =

(
(5x mod 1, 1

4y) if x 2 [1/5, 2/5]

(5x mod 1, 1
4y +

3
4) if x 2 [3/5, 4/5].

Note that T is not explicitly defined for x 2 [0, 1/5[[[23 ,
3
5 [[]4/5, 1] since

for this values the horseshoe falls outside Q, so its actual shape is irrelevant.
Since the map from Q to Q it is not defined on the all square, so we can have
a Dynamical System only with respect to a measure for which the domain
of definition of T , and all of its powers, has measure one. We will start by
constructing such a measure.

The first step is to notice that the set

⇤ = \n2ZT
n
Q (1.4.6)

of the points which trajectory is always in Q is 6= ;. Second, note that
� = T⇤ = T

�1⇤, such an invariant set is called hyperbolic set as we will
see later. We would like to construct an invariant measure on ⇤. Since ⇤ is
a compact set and T is continuous on it we know that there exist invariant
measures; yet, in analogy with the previous examples, we would like to
construct one coming from Lebesgue.

As already mentioned we must start by constructing a measure on ⇤� =
\n2N[{0}T

�n
Q since T

k⇤� ⇢ ⇤�. To do so it is quite natural to construct
a measure by subtracting the mass that leaks out of Q. namely, define the
operator T̃ : M(X) ! M(X) by

T̃ µ(A) := µ(TA \Q).

25We have already seen something very similar in the introduction.



20 CHAPTER 1. GENERAL FACTS AND DEFINITIONS

Again we consider the evolution of measures of the type dµ = hdm. For
each continuous f with supp(f) ⇢ Q holds

T̃ µ(f) = µ(f � T
�1

�Q) =

Z

T�1Q

fh � T | detDT |dm.

We can thus define the operator L that evolves the densities:

Lh(x) =
5

4
�T�1Q\Q(x)h(Tx).

Clearly T̃ µ(f) = m(fLh).
Note that T̃m(1) = 1

2 , thus T̃ does not map probability measures into
probability measures; this is clearly due to the mass leaking out ofQ. Calling
D

s (stable derivative) the derivative in the y direction, follows easily

kD
s
Lhk1 

1

4
kD

s
hk1

for each h di↵erentiable in the stable direction.
On the other hand, if kDs

hk1  c and � = [0, 1/4] [ [3/4, 1],

|T̃ µ(1)| =

Z

Q\TQ

h =

Z

�
dy

Z 1

0
dxh(x, y)

=

Z

�
dy

Z 1

0
dx

Z 1

0
d⇠h(x, ⇠) +O(kDs

hk1)

=|�|khk1 +O(kDs
hk1) =

1

2
µ(1) +O(kDs

hk1).

It is then natural to define L̂h := 2Lh and T̂ = 2T̃ . Thus kD
s
L̂hk1 

1
2kD

s
hk1. This means that {

1
n

P
n�1
i=0 T̂

i
µ} are probability measures. Ac-

cordingly, there exists an accumulation point µ⇤ and µ⇤(Ds
f) = 0 for each

f periodic in the y direction. By the same type of arguments used in the
previous examples, this means that µ⇤ is constant in the y direction, it is
supported on ⇤� by construction and T̃ µ⇤ = 1

2µ⇤ (conformal invariance) :
just the measure we where looking for.

We can now conclude the argument by evolving the measure as usual:

T⇤µ⇤(f) = µ⇤(f � T )

for all continuous f with the support in Q. Now the standard argument
applies. In such a way we have obtained the invariant measure supported
on ⇤.
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Markov Measures

Let us consider the shift (⌃+
n , T ). We would like to construct other invari-

ant measures bedside Bernoulli. As we have seen it su�ces to specify the
measure on the algebra of the cylinders. Let us define

A(m; k1, . . . , kl) = {� 2 ⌃+
n | �i+m = ki 8 i 2 {1, . . . , l}};

this are a basis for the algebra of the cylinders.
For each n ⇥ n matrix P , Pij � 0,

P
j
Pij = 1 by the Perron-Frobenius

theorem there exists {pi} such that pP = p. Let us define

µ(A(m; k1, . . . , kl)) = pk1Pk1k2Pk2k3 . . . Pkl�1kl
.

The reader can easily verify that µ is invariant over the algebra A and thus
extends to an invariant measure. This is called Markov because it is nothing
else than a Markov chain together with its stationary measure.26

1.5 Ergodicity

The examples in the previous section (strange attractor, horseshoe) show
only a very dim glimpse of a much more general and extremely rich theory
(the study of SRB measures) while the last (Markov measures) points toward
another extremely rich theory: Gibbs (or equilibrium) measures. Although
this it is not the focus here, we will see a bit more in the future.

One of the main objectives in dynamical systems is the study of the long
time behavior (that is the study of the trajectories Tn

x for large n). There
are two main cases in which it is possible to study, in some detail, such a
long time behavior. The case in which the motion is rather regular27 or close
to it (the main examples of this possibility are given by the so-called KAM
theory and by situations in which the motions is attracted by a simple set);
and the case in which the motion is very irregular.28 This last case may seem
surprising since the irregularity of the motion should make its study very
di�cult. The reason why such systems can be studied is, as usual, because

26The probabilistic interpretation is that the probability of seeing the state k at time
one, given that we saw the state l at time zero, is given by Plk. So the process has a bit of
memory: it remembers its state one time step before. Of course, it is possible to consider
processes that have a longer–possibly infinite–memory. Proceeding in this direction one
would define the so called Gibbs measures.

27Typically, quasi periodic motion, remember the small oscillation in the pendulum.
28Remember the example in the introduction.
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we ask the right questions,29 that is we ask questions not concerning the
fine details of the motion but only concerning its statistical or qualitative
properties.

The first example of such properties is the study of the invariant sets.

Definition 3 A measurable set A is invariant for T if T�1
A ⇢ A.

A dynamical system (X, T, µ) is ergodic if each invariant set has mea-
sure zero or one.

Note that if A is invariant then µ(A\T
�1

A) = µ(A) � µ(T�1
A) = 0,

moreover ⇤ = \
1
n=0T

�n
A ⇢ A is invariant as well. In addition, by definition,

⇤ = T⇤, which implies ⇤ = T
�1⇤ and µ(A\⇤) = 0. This means that, if A

is invariant, then it always contains a set ⇤ invariant in the stronger (maybe
more natural) sense that T⇤ = T

�1⇤ = ⇤. Moreover, ⇤ is of full measure
in A. Our definition of invariance is motivated by its greater flexibility and
the fact that, from a measure theoretical point of view, zero measure sets
can be discarded.

In essence, if a system is ergodic then most trajectories explore all
the available space. In fact, for any A of positive measure, define Ab =
[n2NT

�n
A (this are the points that eventually end up in A), since Ab � A,

µ(Ab) > 0. Since T
�1

Ab ⇢ Ab, by ergodicity follows µ(Ab) = 1. Thus,
the points that never enter in A (that is, the points in A

c

b
) have zero mea-

sure. Actually, if the system has more structure (topology), more is true
(see Problem 1.19).

1.5.1 Examples

Rotations

–The ergodicity of a rotations depends on !. If ! 2 Q then the system is
not ergodic. In fact, let ! = p

q
(p, q 2 N), then, for each x 2 T T

q
x = x+ p

mod 1 = x, so T
q is just the identity. An alternative way of saying this

is to notice that all the points have a periodic trajectory of period q. It is
then easy to exhibit an invariant set with measure strictly larger than 0 but
strictly less than 1. Consider [0, "], then A = [

q�1
i=1T

�i[0, "] is an invariant
set; clearly "  µ(A)  q", so it su�ces to choose " < q

�1.
The case ! 62 Q is much more interesting. First of all, for each point

x 2 T we have that the closure of the set {T
n
x}

1
i=0 is equal to T, which is

to say that the orbits are dense.30 The proof is based on the fact that there

29Of course, the “right questions” are the ones that can be answered.
30A system with a dense orbits called Topologically Transitive.
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cannot be any periodic orbit. To see this suppose that x 2 T has a periodic
orbit, that is there exists q 2 N such that T

q
x = x. As a consequence

there must exist p 2 Z such that x + p = x + q! or ! 2 Q contrary to the
hypothesis. Hence, the set {T

k0}1
k=0 must contain infinitely many points

and, by compactness, must contain a convergent subsequence ki. Hence, for
each " > 0, there exists m > n 2 N:

|T
m0� T

n0| < ".

Since T preserves the distances, calling q = m� n, holds

|T
q0| < ".

Accordingly, the trajectory of T jq0 is a translation by a quantity less than ",
therefore it will get closer than " to each point in T (i.e., the orbit is dense).
Again by the conservation of the distance, since zero has a dense orbit the
same will hold for every other point.

Intuitively, the fact that the orbits are dense implies that there cannot
be a non trivial invariant set, henceforth the system is ergodic. Yet, the
proof it is not trivial since it is based on the existence of Lebesgue density
points [28] (see Problem 1.41). It is a fact from general measure theory that
each measurable set A ⇢ R of positive Lebesgue measure contains, at least,
one point x such that for each " 2 (0, 1) there exists � > 0:

m(A \ [x� �, x+ �])

2�
> 1� ".

Hence, given an invariant set A of positive measure and " > 0, first
choose an interval I ⇢ A such that m(I\A) > (1�")m(I).Second, we know
already that there exists q,M 2 N such that {T�kq

x}
M

k=1 divides [0, 1] into
intervals of length less that "

2�. Hence, given any point x 2 T choose k 2 N
such that m(T�kq

I \ [x� �, x+ �]) > m(I)(1� ") so,

m(A \ [x� �, x+ �]) � m(A \ T
�kq

I)�m(I)"

� m(A \ I)�m(I)" � (1� 2")2�.

Thus, A has density everywhere larger than 1� 2", which implies µ(A) = 1
since " is arbitrary.

The above proof of ergodicity it is not so trivial but it has a definite
dynamical flavor (in the sense that it is obtained by studying the evolution
of the system). Its structure allows generalizations to contexts whit a less
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rich algebraic structure. Nevertheless, we must notice that, by taking ad-
vantage of the algebraic structure (or rather the group structure) of T, a
much simpler and powerful proof is available.

Let ⌫ 2 M
1
T
, then define

Fn =

Z

T
e
2⇡inx

⌫(dx), n 2 N.

A simple computation, using the invariance of ⌫, yields

Fn = e
2⇡in!

Fn

and, if ! is irrational, this implies Fn = 0 for all n 6= 0, while F0 = 1. Next,
consider f 2 C

(2)(T1) (so that we are sure that the Fourier series converges
uniformly, see Problem 1.29), then

⌫(f) =
1X

n=0

⌫(fne
2⇡in·) =

1X

n=0

fnFn = f0 =

Z

T
f(x)dx.

Hence m is the unique invariant measure (unique ergodicity). This is
clearly much stronger than ergodicity (see Problem 1.23)

Baker

–This transformation gets its name from the activity of bread making, it
bears some resemblance with the horseshoe. The space X is the square
[0, 1]2, µ is again Lebesgue, and T is a transformation obtained by squashing
down the square into the rectangle [0, 2]⇥ [0, 1

2 ] and then cutting the piece
[1, 2]⇥ [0, 1

2 ] and putting it on top of the other one. In formulas

T (x, y) =

8
><

>:

(2x,
1

2
y) mod 1 if x 2 [0,

1

2
)

(2x,
1

2
(y + 1)) mod 1 if x 2 [

1

2
, 1].

This transformation is ergodic as well, in fact much more. We will discuss
it later.

The properties of the invariant sets of a dynamical systems have very
important reflections on the statistics of the system, in particular on its time
averages. Before making this precise (see Theorem 1.6.7) we state few very
general and far reaching results.
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1.6 Some basic Theorems

Theorem 1.6.1 (Birkho↵) Let (X, T, µ) be a dynamical system, then for
each f 2 L

1(X, µ)

lim
n!1

1

n

n�1X

j=0

f(T j
x)

exists for almost every point x 2 X. In addition, setting

f
+(x) = lim

n!1

1

n

n�1X

j=0

f(T j
x),

holds Z

X

f
+
dµ =

Z

X

fdµ.

Proof
Since the task at hand is mainly didactic, we will consider explicitly

only the case of positive bounded functions, the completion of the proof
is left to the reader. Also, this is an elementary but lengthy proof. More
sophisticated and shorter proof exists [32].

Let f 2 L
1(X, dµ), f � 0, and

Sn(x) ⌘
1

n

n�1X

i=0

f(T i
x).

For each x 2 X, there exists

f
+
(x) = lim sup

n!1
Sn(x)

f
+(x) = lim inf

n!1
Sn(x).

The first remark is that both f
+
and f

+ are invariant functions. In fact,

Sn(Tx) = Sn(x) + f(Tn
x)� f(x)

so, tacking the limit the result follows.31

31Here we have used the boundedness, this is not necessary. If f 2 L
1(X, dµ) and

positive, then Sn(Tx) � Sn(x) � f(x), so f
+
(Tx) � f

+
(x) and it is and easy exercise to

check that any such function must be invariant.
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Next, for each n 2 N and k, j 2 Z we define

Dn,l,j =

⇢
x 2 X

���� f
+
(x) 2


l

n
,
l + 1

n

◆
; f+(x) 2


j

n
,
j + 1

n

◆�
,

by the invariance of the functions follows the invariance of the sets Dn,l,j .
Also, by the boundedness, follows that for each n exists n0 such as

[

j,l2{�n0, ..., n0}

Dn,l,j = X.

The key observation is the following.

Lemma 1.6.2 For each n 2 N and l, j 2 Z, setting A = Dn,l,j, holds

l + 1

n
µ(A) <

Z

A

fdµ+
3

n
µ(A)

j

n
µ(A) >

Z

A

fdµ�
3

n
µ(A)

From the Lemma follows

0 

Z

X

(f
+
� f

+)dµ =
n0X

l, j=�n0

Z

Dn,l,j

(f
+
� f

+)dµ



n0X

l, j=�n0


l + 1

n
�

j

n

�
µ(Dn,l,j) <

6

n

n0X

l, j=�n0

µ(Dn,l,j) =
6

n
.

Since n is arbitrary we have
Z

X

(f
+
� f

+)dµ = 0

which implies f
+

= f
+ almost everywhere (since f

+
� f

+ by definition)
proving that the limit exists. Analogously, we can prove

Z

X

(f � f
+)dµ = 0.

Proof of the Lemma 1.6.2 We will prove only the first inequality, the
second being proven in exactly the same way.

For each x 2 A we will call k(x) the first m 2 N such that

Sm(x) >
l � 1

n
,
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by construction k(x) must be finite for each x 2 A. Hence, setting Xk =
{x 2 A | k(x) = k}, [kXk = A, and for each " > 0 there exists N 2 N such
that

µ

 
N[

k=1

Xk

!
� µ(A)(1� ").

Let us call

Y = A\

N[

k=1

Xk.

Then µ(Y )  µ(A)", also set L = supx2A |f(x)|. The basic idea is to follow,
for each point x 2 A, the trajectory {T

i
x}

M

i=0, where M > N will be chosen
su�ciently large. If the point would never visit the set Y , we could group
the sum SM (x) in pieces all, in average, larger than l�1

n
, so the same would

hold for SM (x). The di�culties come from the visits to the set Y .
For each n 2 {0, ..., M} define

efn(x) =

8
<

:

f(Tn
x) if Tn

x 62 Y

l

n
if Tn

x 2 Y

and

eSM (x) =
1

M

M�1X

n=0

efn(x).

By definition y 2 Y implies y 62 X1, i.e. f(y)  l�1
n
. Accordingly, ef(x) �

f(Tn
x) for each x 2 A. Note that for each n we change the function f � T

n

only at some points belonging to the set Y and l

n
can be taken less or equal

than L ( otherwise µ(A) = 0), consequently

Z

A

fdµ =

Z

A

SMdµ �

Z

A

eSMdµ� Lµ(Y ) �

Z

A

eSMdµ� Lµ(A)".

We are left with the problem of computing the sum. As already mentioned
the strategy consists in dividing the points according to their trajectory with
respect to the sets Xn. To be more precise, let x 2 A, then by definition
it must belong to some Xn or to Y . We set k1(x) equal to j is x 2 Xj

and k1(x) = 1 if x 2 Y . Next, k2(x) will have value j if T k1(x)x 2 Xj or
value 1 if T

k1(x) 2 Y . If k1(x) + k2(x) < M , then we go on and define
similarly k3(x). In this way, to each x 2 A we can associate a number

m(x) 2 {1, ..., M} and indices {ki(x)}
m(x)
i=1 , ki(x) 2 {1, ..., N}, such that
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M � N 
Pm(x)�1

i=1 ki(x) < M ,
Pm(x)

i=1 ki(x) � M . Let us call Kp(x) =P
p

j=1 kj(x). Using such a division of the orbit in segments of length ki(x)
we can easily estimate

eSM (x) =
1

M

8
<

:

m(x)�1X

i=1

ki(x)

2

4 1

ki(x)

Ki(x)�1X

j=Ki�1(x)

efj(x)

3

5+
M�1X

i=Km(x)�1(x)

ef(T i
x)

9
=

;

�
1

M

m(x)�1X

i=1

ki(x)
l � 1

n
�

M �N

M

l � 1

n
.

Putting together the above inequalities we get

Z

A

fdµ �

⇢
(M �N)(l � 1)

Mn
� L"

�
µ(A)

�
l + 1

n
µ(A)�

⇢
2

n
+

N(l � 1)

Mn
+ L"

�
µ(A).

which, by choosing first " su�ciently small and, after, M su�ciently
large, concludes the proof. ⇤

To prove the result for all function in L
1(X, µ) it is convenient to deal

at first only with positive functions (which su�ce since any function is the
di↵erence of two positive functions) and then use the usual trick to cut o↵
a function (that is, given f define fL by fL(x) = f(x) if f(x)  L, and
fL(x) = L otherwise) and then remove the cut o↵. The reader can try it as
an exercise. ⇤

Birkho↵ theorem has some interesting consequences.

Corollary 1.6.3 For each f 2 L
1(X, µ) the following holds

1. f+ 2 L
1(X, µ);

2. f+(Tx) = f+(x) almost surely.

The proof is left to the reader as an easy exercise (see Problem 1.17).
Another important consequence pertains to the case of invertible dynam-

ics. Let T be invertible, we can then define the backward ergodic average

f�(x) = lim
n!1

1

n

n�1X

k=0

f � T
�k(x).

It is a surprising fact that the backward average equals the forward one.
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Corollary 1.6.4 Let (X,T, µ) be a dinamical systems and T be invertible.
Then, for all f 2 L

1(X,µ), almost surely we have f+ = f�.

Proof. We prove it for bounded functions, the result for L
1 function

can then be obtained by approximation. By Birkho↵ theorem, the set K =
{x 2 X : f+(x) � f�(x)} is invariant. It follows that

0 

Z

K

[f+(x)�f�(x)]µ(dx) = lim
n!1

1

n

n�1X

k=0

Z

K

[f�T k(x)�f�T
�k(x)]µ(dx) = 0

In the first equality, we used the Lebesgue dominated convergence theorem
and then the invariance of the measure. It follows that f+(x)  f�(x).
Exchanging the role of f+ and f� the Lemma follows. ⇤

A further interesting fact, that starts to show some connections between av-
erages and invariant sets, emerges by considering a measurable set A and its
characteristic function �A. A little thought shows that the ergodic average
�
+
A
(x) is simply the average frequency of visit of the set A by the trajectory

{T
n
x} (Problem 1.26).
One may wonder about other types of convergences that take place in the

ergodic average, notably L
2 convergence. The next theorem is a consequence

of Theorem 1.6.1 (see Problem 1.24). I provide an independent proof because
it introduces the idea of a coboundary decomposition that turns out to be
of great importance in many other situations.

Theorem 1.6.5 (Von Neumann) Let (X,T, µ) be a Dynamical System,
then for each f 2 L

2(X, µ) the ergodic average converges in L
2(X, µ).

Proof. We have already seen that it can be useful to lift the dynamics
at the level of the algebra of function or at the level of measures. This game
assumes di↵erent guises according to how one plays it, here is another very
interesting version.

Let us define U : L2(X,µ) ! L
2(X,µ) as

Uf := f � T.

Then, by the invariance of the measure, it follows kUfk2 = kfk2, so U is
an L

2 contraction (actually, and L
2-isometry). If T is invertible, the same

argument applied to the inverse shows that U is indeed unitary, otherwise
we must content ourselves with

kU
⇤
fk

2
2 = hUU

⇤
f, fi  kUU

⇤
fk2kfk2 = kU

⇤
fk2kfk2,
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that is kU⇤
k2  1 (also U

⇤ is and L
2 contraction).

Next, consider V1 = {f 2 L
2
| Uf = f} and V2 = Rank( � U). First of

all, note that if f 2 V1, then

kU
⇤
f � fk

2
2 = kU

⇤
fk

2
2 � hf, U

⇤
fi � hU

⇤
f, fi+ kfk

2
2  0.

Thus, f 2 V
⇤
1 := {f 2 L

2
| U

⇤
f = f}. The same argument applied to

f 2 V
⇤
1 shows that V1 = V

⇤
1 . To continue, consider f 2 V1 and h 2 L

2, then

hf, h� Uhi = hf � U
⇤
f, hi = 0.

This implies that V
?
1 = V2, hence V1 � V2 = L

2. Finally, if g 2 V2, then
there exists h 2 L

2 such that g = h� Uh and

lim
n!1

1

n

1X

i=0

U
i
g = lim

n!1

1

n
(h� U

n
h) = 0.

On the other hand if f 2 V1 then limn!1
1
n

P1
i=0 U

i
f = f . The only

function on which we do not still have control are the g belonging to the
closure of V2 but not in V2. In such a case there exists {gk} ⇢ V2 with
limk!1 gk = g. Thus,

k
1

n

1X

i=0

U
i
gk2  k

1

n

1X

i=0

U
i
gkk2 + kg � gkk2  k

1

n

1X

i=0

U
i
gkk2 +

"

2
,

provided we choose k large enough. Then, by choosing n su�ciently large
we obtain

k
1

n

1X

i=0

U
i
gk2  ".

We have just proven that

lim
n!1

1

n

n�1X

i=0

U
i = P

where P is the orthogonal projection on V1. ⇤

Another very general result, of a somewhat disturbing nature, is Poincaré
return theorem.

Theorem 1.6.6 (Poincaré) Given a dynamical systems (X, T, µ) and a
measurable set A, with µ(A) > 0, there exists infinitely many n 2 N such
that

µ(T�n
A \A) 6= 0.
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The proof is rather simple (by contradiction) and the reader can certainly
find it out by herself (see Problem 1.18).32

Let us go back to the relation between ergodicity and averages. From
an intuitive point of view a function from X to R can be thought as an “ob-
servable,” since to each configuration it associates a value that can represent
some relevant property of the configuration (the property that we observe).
So, if we observe the system for a long time via the function f , what we
see should be well represented by the function f

+. Furthermore, notice that
there is a simple relations between invariant functions and invariant sets.
More precisely, if a measurable set A is invariant, then its characteristic
function �A is a measurable invariant function; if f is an invariant function
then for each measurable set I 2 R the set f�1(I) is a measurable invariant
set (if the implications of the above discussions are not clear to you, see
Problem 1.25).

As a byproduct of the previous discussion it follows that if a system
is ergodic then for each function f 2 L

1(X, µ) the function f+ is almost
everywhere constant and equal to

R
X
f . We have just proven an interesting

characterization of the ergodic systems:

Theorem 1.6.7 A Dynamical System (X, T, µ) is ergodic if and only if for
each f 2 L

1(X, µ) the ergodic average f
+ is constant; in fact, f+ = µ(f)

a.e..

In other words, if we observe the time average of some observable for
a su�ciently long time then we obtain a value close to its space average.
The previous observation is very important especially because the space
average of a function does not depend on the dynamics. This is exactly what
we where mentioning previously: the fact that the dynamics is su�ciently
‘complex’ allows us to ignore it completely, provided we are interested only
in knowing some average behavior. The relevance of ergodic theory for
physical systems is largely connected to this fact.

32An unsettling aspect of the theorem is due to the following possibility. Consider a
room full of air, the motion of the molecules can be thought to happen accordingly to
Newton equations, i.e. it is an Hamiltonian systems, hence a dynamical system to which
Poincaré theorem applies. Let A be the set of configurations in which all the air is in the
left side of the room. Since we ignore, in general, the past history of the room, it could
very well be that at some point in the past the systems was in a configuration belonging
to A–maybe some silly experiment was performed. So there is a positive probability for
the system to return in the same state. Therefore the disturbing possibility of sudden
death by decompression.
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1.7 Mixing

We have argued the importance of ergodicity, yet from a physical point of
view ergodicity may be relevant only if it takes places at a su�ciently fast
rate (i.e., if the time average converges to the space average on a physically
meaningful time scale). This has prompted the study of stronger statistical
properties of which we will give a brief, and by no mean complete, account
in the following.

Definition 4 A Dynamical System (X, T, µ) is called mixing if for every
pairs of measurable sets A, B we have

lim
n!1

µ(T�n(A) \B) = µ(A)µ(B).

Obviously, if a system is mixing, then it is ergodic. In fact, if A is an
invariant set for T , then T

�n
A ⇢ A, so, calling A

c the complement of A, we
have

µ(A)µ(Ac) = lim
n!1

µ(T�n
A \A

c) = 0,

and the measure of A is either one or zero.
An equivalent characterization of mixing is the following:

Proposition 1.7.1 A Dynamical System (X, T, µ) is mixing if and only if

lim
n!1

Z

X

f � T
n
gdµ =

Z

X

fdµ

Z

X

gdµ

for every f, g 2 L
2(X, µ) or for every f 2 L

1(X,µ) and g 2 L
1(X,µ).33

The proof is rather straightforward and it is left as an exercise to the
reader (see Problem 1.27) together with the proof of the next statement.

Proposition 1.7.2 A Dynamical System (X, T, µ), with X a compact met-
ric space, T continuous and µ Borel, is mixing if and only if for each prob-
ability measure � absolutely continuous with respect to µ

lim
n!1

�(f � T
n) = µ(f)

for each f 2 C
(0)(T2).

33The quantity
R
X
f�Tg�

R
X
f
R
X
g is called “correlation,” and its tending to zero–which

takes places always in mixing systems–it is called “decay of correlation.”
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This last characterization is interesting from a mathematical point of
view. Define, as usual, the evolution of a measure via the equation

(T⇤�)(f) ⌘ �(f � T )

for each continuous function f . If for each measure, absolutely continuous
with respect to the invariant one, the evolved measure converges weakly
to the invariant measure, then the system is mixing (and thus the evolved
measures converge strongly). This has also a very important physical mean-
ing: if the initial configuration is known only in probability, the probability
distribution is absolutely continuous with respect to the invariant measure,
and the system is mixing, then, after some time, the configurations are
distributed according to the invariant measure. Again the details of the
evolution are not important to describe relevant properties of the system.

1.7.1 Examples

Rotations

–We have seen that the translations by an irrational angle are ergodic. They
are not mixing. The reader can easily see why.

Bernoulli shift

–The key observation is that, given a measurable set A, for each " > 0 there
exists a set A" 2 A, thus depending only on a finite subset of indices,34 with
the property35

µ(A"\A)  ".

This is not immediately obvious, but it is a general measure theoretic conse-
quence of our definition of the �-algebra (be more precise refers to previous
discussion). Then, given A, B measurable, and for each " > 0, let A", B"

be such an approximation, and IA, IB the defining sets of indices, then
��µ(T�m

A \B)� µ(A)µ(B)
��  4"+

��µ(T�m
A" \B")� µ(A")µ(B")

��.

If we choose m so large that (IA + m) \ IB = ;, then by the definition of
Bernoulli measure we have

µ(T�m
A" \B") = µ(T�m

A")µ(B") = µ(A")µ(B"),

34Remember, this means that there exists a finite set I ⇢ Z such that it is possible to
decide if � 2 ⌃n belongs or not to A" only by looking at {�i}i2I .

35This follows from our construction of the �-algebra and by the definition of outer
measure.
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which proves
lim

m!1
µ(T�m

A \B) = µ(A)µ(B).

Dilation

–This system is mixing. In fact, let f, g 2 C
(1)(T), then we can represent

them via their Fourier series f(x) =
P

k2Z e
2⇡ikx

fk, f�k = fk. It is well
known that

P
k2Z |fk| < 1 and |fk| 

c

|k| , for some constant c depending
on f . Therefore,

f(Tn
x) =

X

k2Z
e
2⇡i2nkx

fk,

which implies that the only Fourier coe�cients of f � T
n di↵erent from zero

are the {2nk}k2Z. Hence,

����
Z

T
f � T

n
g �

Z

T
f

Z

T
g

���� =

�����
X

k2Z
fkg2nk � f0g0

�����  c2�n
X

k2Z
|fk|.

The previous inequalities imply the exponential decay of correlations for
each smooth function. The proof is concluded by a standard approximation
argument: given f, g 2 L

2(X, dµ), for each " > 0 exists f", g" 2 C
(1)(X):

kf � f"k2 < " and kg � g"k2 < ". Thus,

����
Z

T
f � T

n
g �

Z

T
f

Z

T
g

���� 
����
Z

T
f" � T

n
g" �

Z

T
f"

Z

T
g"

����+ 2(kfk2 + kgk2)",

which yields the result by choosing first " small and then n su�ciently large.

1.8 Stronger statistical properties

Even more extreme form statistical behaviors are possible, to present them
we need to introduce the idea of equivalent systems. This is done via the
concept of conjugation that we have already seen informally in Example
1.4.1 (logistic map, circle map).

Definition 5 Two Dynamical Systems (X1, T1, µ1), (X2, T2, µ2) are (mea-
surably) conjugate if there exists a measurable map � : X1 ! X2 almost
everywhere invertible36 such that µ1(A) = µ(�(A)) and T2 � � = � � T1.

36This means that there exists a measurable function �
�1 : X2 ! X1 such that ����1 =

id µ2-a.e. and �
�1 � � = id µ1-a.e..
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Clearly, the conjugation is an equivalence relation. Its relevance for the
present discussion is that conjugate systems have the same ergodic properties
(Problem1.39).37

We can now introduce the most extreme form of stochasticity.

Definition 6 A dynamical system (X, T, µ) is called Bernoulli if there ex-
ists a Bernoulli shift (M, ⌫, �) and a measurable isomorphism � : X ! M

(i.e., a measurable map one one and onto apart from a set of zero measure
and with measurable inverse) such that, for each A 2 X,

⌫(�(A)) = µ(A)

and

T = �
�1

� � � �.

That is a system is Bernoulli if it is isomorphic to a Bernoulli shift. Since
we have seen that Bernoulli systems are very stochastic (remind that they
can be seen as describing a random event like coin tossing) this is certainly
a very strong condition on the systems. In particular it is immediate to see
that Bernoulli systems are mixing (Problem1.39).

1.8.1 Examples

Dilation

–We will show that such a system is indeed Bernoulli. The map � is obtained
by dividing [0, 1) in [0, 1

2) and [12 , 1). Then, given x 2 T, we define � : T !

⌃+
2 by

�(x)i =

8
><

>:

1 if T i
x 2 [0,

1

2
)

2 if T i
x 2 [

1

2
, 1)

the reader can check that the map is measurable and that it satisfy the
required properties. Note that the above shows that the Bernoulli measure
with p1 = p2 = 1

2 is nothing else than Lebesgue measure viewed on the
numbers written in basis two. This may explain why we had to be so careful
in the construction of the Bernoulli measure.

37Of course the reader can easily imagine other forms of conjugacy, e.g. topological or
di↵erential conjugation.
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Baker

–Let us define �
�1; for each � 2 ⌃2

x =
1X

i=0

��i

2i+1
,

y =
1X

i=1

�i

2i
.

Again the rest is left to the reader.

Problems

1.1 Given an invariant set A prove that, if T (A) is measurable, then
µ(TA) � (A).

1.2 Set M1(X) = {µ 2 M | µ(X) = 1} and M
1
T
(X) = M

1(X)\MT (X).
Prove that M1

T
(X) and M

1(X) are convex sets in M(x).

1.3 Call Me(X) ⇢ M
1(X) the set of ergodic probability measures. Show

that Me(X) consists of the extremal points of MT (X). (Hint: Krein-
Milman Theorem [49]).

1.4 Prove that the Lebesgue measure is invariant for the rotations on T.

1.5 Consider a rotation by ! 2 Q, find invariant measures di↵erent from
Lebesgue.

1.6 Prove that the measure µh defined in Examples 1.1.1 (Hamiltonian sys-
tems) is invariant for the Hamiltonian flow. (Hint: Use the properties
of H to deduce hr�txH, dx�

t
rxHi = krxHk

2, and thus dx�t
rxH =

krxHk2
kr�txHk2r�txH + v where hr�txH, vi = 0. Then study the evolution

of an arbitrarily small parallelepiped with one side parallel to rxH–
or look at the volume form if you are more mathematically incline–
remembering the invariance of the volume with respect to the flow.)

1.7 Given a Poincaré section prove that there exists c > 0 such that
inf ⌧⌃ � c > 0.

1.8 Show that ⌫⌃, defined in (1.2.1) is well defined.(Hint: use the in-
variance of µ and the fact that, by Problem 1.7, if A ⇢ ⌃ then
µ(�[0,�](A) \ �

[n�, (n+1)�]) = 0 provided (n+ 1)�  c.)
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1.9 Show that the return time ⌧⌃ is finite ⌫⌃-a.e. .(Hint: let � < c and
⌃� := �

[0,�]⌃, apply Poincaré return theorem to ⌃�.)

1.10 Show that ⌫⌃ is T⌃ invariant. Verify that, collecting the results of the
last exercises, (⌃, T⌃, ⌫⌃) is a Dynamical Systems.

1.11 Prove that the Bernoulli measure is invariant with respect to the shift.
(Hint: check it on the algebra A first.)

1.12 Let ⌃p be the set of periodic configurations of ⌃. If µ is the Bernoulli
measure prove that µ(⌃p) = 0 (Hint: ⌃p is the countable union of zero
measure sets.)

1.13 Consider the Bernoulli shift on Z and define the following equivalence
relation: � ⇠ �

0 i↵ there exists n 2 Z such that Tn
� = �

0 (this means
that two sequences are equivalent if they belong to the same orbit).
Consider now the equivalence classes (the space of orbits) and choose38

a representative from each class, call the set so obtained K. Show that
K cannot be a measurable set. (Hint: show that K \T

n
K ⇢ ⌃p, then

by using Problem 1.12 show that if K is measurable
P1

i=1 µ(T
n
K) = 1

which, by the invariance of µ, is impossible).

1.14 Compute the transfer operator for maps of T. (Hint: Use the equiva-
lent definition

R
gLfdm =

R
fg � Tdm.) Prove that kLhk1  khk1.

1.15 Prove the Lasota-York inequality (1.4.4).

1.16 Prove that for each sequence {hn} ⇢ C
(1)(T), with the property

sup
n2N

kh
0
nk1 + khnk1 < 1,

it is possible to extract a subsequence converging in L
1. (Hint: Con-

sider partitions Pn of T in intervals of size 1
n
. Define the conditional ex-

pectation E(h|Pn)(x) =
1

m(I(x)

R
I(x) hdm, where x 2 I(x) 2 Pn. Prove

that kE(h|Pn) � hk1 
1
n
kh

0
k1. Notice that the functions E(hn|Pm)

have only m distinct values and, by using the standard diagonal trick,
construct an subsequence hnj such that all the E(hnj |Pm) are converg-
ing. Prove that hnj converges in L

1.)

1.17 Prove Corollary 1.6.3.

38Attention !!!: here we are using the Axiom of choice.
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1.18 Prove Theorem 1.6.6 (Hint: Note that µ(T�n
A \ T

�m
A) 6= 0 then,

supposing without loss of generality n < m, µ(A \ T
�m+n

A) 6= 0.
Then prove the theorem by absurd remembering that µ(X) < 1.)

1.19 A topological Dynamical System (X,T ) is called Topologically transi-
tive, if it has a dense orbit. Show that if (Td

, T,m) is ergodic and T

is continuous, then the system is topologically transitive. (Hint: For
each n 2 N, x 2 Td consider B 1

m
(x)–the ball of radius 1

m
centered at

x. By compactness, there are {xi} such that [iB 1
m
(xi) = Td. Let

Am,i = {y 2 Td
| T

k
y \B 1

M
(XI) = ; 8k 2 N},

clearly Am,i = \k2NT
�k

B 1
m
(xi)c has the property T

�1
Am,i � Am,i.

It follows that Ãm,i = [n2NT
�n

Am,i � Am,i is an invariant set and
it holds µ(Ãm,i\Am,i) = 0. Since Am,i it is not of full measure, Ãm,i,
and thus Am,i, must have zero measure. Hence, Ām = \iAm,i has zero
measure. This means that [m2NĀm has zero measure. Prove now
that, for each y 2 Td, the trajectories that never get closer than 2

m
to

y are contained in Ām, and thus have measure zero. Hence, almost
every point has a dense orbit.)
Extend the result to the case in which X is a compact metric space
and µ charges the open sets (that is: if U ⇢ X is open, then µ(U) > 0).

1.20 Give an example of a system with a dense orbit which it is not ergodic.

1.21 Give an example of an ergodic system with no dense orbit.

1.22 Give an example of a Dynamical Systems which does not have any
invariant probability measure. (Hint: X = Rd, Tx = x+ v, v 6= 0.)

1.23 Show that a Dynamical Systems (X,T, µ) is ergodic if and only if there
does not exists any invariant probability measure absolutely continu-
ous with respect to µ, beside µ itself.

1.24 Prove that Birkho↵ theorem implies Von Neumann theorem. (Hint:
Note that the ergodic average is an isometry in L

2. Use Lebesgue
dominate convergence theorem to prove convergence in L

2 for boun-
ded functions. Use Fatou to show that if f 2 L

2 then f
+
2 L

2 and a
3� " argument to conclude).

1.25 Prove that if (X,T, µ) is ergodic, then all f 2 L
1(X,µ) and f � T = f

are a.e. constant. Prove also the converse.
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1.26 For each measurable set A, let

FA,n(x) = lim
n!1

nX

i=0

�A(T
i
x).

be the average number of times x visits A in the time n. Show that
there exists FA = limn!1 FA,n a.e. and prove that, if the system is
ergodic, FA = µ(A). (Hint: Birkho↵ theorem and Theorem 1.6.7).

1.27 Prove Proposition 1.7.1 and Proposition 1.7.2. (Hint: Note that for
each measurable set A and " > 0 there exists f 2 C

(0)(X) such
that µ(|f � �A|) < " –by Uryshon Lemma and by the regularity of
Borel measures. To prove that µ(T�n

A \ B) ! µ(A)µ(B) choose
d� = µ(B)�1

�Bdµ and use the invariance of µ to obtain the uniform
estimate �(|f � T

n
� �A � T

n
|)  µ(B)�1

µ(|f � �A|).)

1.28 Show that the irrational rotations are not mixing.

1.29 Prove that if f 2 C
(2)(T), then its Fourier series converges uniformly.39

(Hint: Remember that fn = 1
2⇡

R
T e

2⇡inx
f(x)dx.

Thus fn = 1
(2⇡in)22⇡

R
T e

2⇡inx
f
(2)(x)dx.)

1.30 Let ⌫ be a Borel measure on Q = [0, 1]2 such that ⌫(@xf) = 0 for all

f 2 C
(1)
per(Q) = {f 2 C

(1)(Q) | f(0, y) = f(1, y) 8 y 2 [0, 1]}. Prove
that there exists a Borel measure ⌫1 on [0, 1] such that ⌫ = m ⇥ ⌫1.
(Hint: The measure ⌫1 is nothing else then the marginal with respect to
x, that is: for each continuous function f : [0, 1] ! R define f̃ : Q ! R
by f̃(x, y) = f(y), then ⌫1(f) = ⌫(f̃). To prove the statement use
Fourier series. If f is smooth enough f(x, y) =

P
k2Z f̂k(y)e

2⇡ikx where
the Fourier series for f and @xf converge uniformly. Then notice that
0 = ⌫(@xe2⇡ik·) = 2⇡ik⌫(e2⇡ik·) implies ⌫(f) = ⌫(f̂0) = m⇥ ⌫1(f).)

1.31 Prove that is a flow is ergodic (mixing) so is each Poincarè section.
Prove that is a map is ergodic so is any suspension on the map. Give
an example of a mixing map with a non-mixing suspension (constant
ceiling).

1.32 Consider ([0, 1], T ) where

T (x) =
1

x
�


1

x

�

39This result is far from optimal, see [57] if you want to get deeper into the theory of
Fourier series
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([a] is the integer part of a), and

µ(f) =
1

ln 2

Z 1

0
f(x)

1

1 + x
dx.

Prove that ([0, 1], T, µ) is a Dynamical System.40 (Hint: write µ(f �

T ) =
P1

i=1

R 1
i
1

i+1

f � T (x)µ(dx), change variable and use the identity

1
a2+a

= 1
a
�

1
a+1 to obtain a series with alternating signs.)

1.33 Prove that for each x 2 Q \ [0, 1] holds limn!1 T
n(x) = 0. (Hint: if

x = p0
q0
, p0  q0, then q0 = k1p0 + p1, with p1 < p0, and T (x) = p1

p0
.

Let q1 = p0 and go on noticing that pi+1 < pi.)41

1.34 In view of the two previous exercises explain why it is problematic to
study the statistical properties of the Gauss map on a computer.(Hint:
The computer uses only rational numbers. It is quite amazing that tese
type of pathologies arises rather rarely in the nu,erical studies carried
out by so many theoretical physicist.)

1.35 Prove that any infinite continuous fraction of the form

1

a1 +
1

a2 +
1

a3 + .. .

with ai 2 N defines a real number. (Hint: Note that if you fix the first
n {ai}, this corresponds to specifying which elements of the partition
{[ 1

i+1 ,
1
i
]} are visited by the trajectory of {T i

x}. By the expansivity
of the map readily follows that x must belong to an interval of size
�
�n for some � > 1.)

40The above map is often called Gauss map since to him is due the discovery of the
above invariant measure

41This is nothing else that the Euclidean algorithm to find the greatest common divisor
of two integers [27] Elements, Book VII, Proposition 1 and 2. The greatest common divisor
is clearly the last non-zero pi. This provides also a remarkable way of writing rational
numbers: continuous fractions

p0

q0
=

1

k1 + 1

k2 + ...
+ 1

kn

.
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1.36 Prove that, for each a 2 N,

x =
1

a+
1

a+
1

a+ .. .

=
�a+

p
a2 + 4

2
.

(Hint: Note that T (x) = x.) Study other periodic continuous fractions.

1.37 Choose a number in [0, 1] at random according to Lebesgue distribu-
tion. Assuming that the Gauss map is mixing (which is), compute the
average percentage of numbers larger than n in the associated con-
tinuous fraction. (Hint: Define f(x) = [x�1], then the entries of the
continuous fraction of x are {f �T

i
}. The quantity one must compute

is then m(limk!1
i

k

P
k�1
i=0 �[n,1) � f � T

i) = µ([n,1)).)

1.38 Let (X0, T0, µ0) be a Dynamical System and � : X0 ! X1 an homeo-
morphism. Define T1 := � � T0 � �

�1 and µ1(f) = µ0(f � �
�1). Prove

that (X1, T1, µ1) is a Dynamical System.

1.39 Let (X0, T0, µ0) be measurably conjugate to (X1, T1, µ1), then show
that one of the two is ergodic if and only if the other is ergodic. Prove
the same for mixing.

1.40 Show that the systems described in Examples 1.4.1–strange attractor
and horseshoe, are Bernoulli.

1.41 Prove Lebesgue density theorem: for each measurable set A, m(A) >
0, there exists x 2 A such that for each " > 0 exists � > 0 such that
m(A\[x��, x+�]) > (1�")2�. (Hint: we have seen in Examples 1.8.1-
Dilations that Lebesgue measure is equivalent to Bernoulli measure
and that the cylinder correspond to intervals. It the su�ces to prove
the theorem for the latter. Let A ⇢ ⌃+ such that µ(A) > 0, then, for
each " > 0,there exists A" 2 A such that A" � A and µ(A")� µ(A) <
"µ(A). Since A" 2 A, it exists n" 2 N such that it is possible to decide
if � 2 A" only by looking at {�1, . . . ,�n"}. Consider all the cylinders
I{A(0; k1, . . . , kn")}, clearly if I 2 I then I \ A" is either I or ;. Let
I+ = {I 2 I | I \ A" = I} and I+ = {I 2 I | I \ A" = ;}. Now
suppose that for each I 2 I+ holds µ(I \A)  (1� ")µ(I) then

µ(A) =
X

I2I+

µ(A \ I)  (1� ")µ(A") < µ(A),
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which is absurd. Thus there must exists I 2 I+: µ(A \ I) > (1 �

")µ(I).)


