
Chapter 2

Hyperbolic Systems–general

facts

This chapter is designed to give a general idea of hyperbolic theory. Since
such a theory covers a rather vast landscape, and it contains very technical
results our exposition is bound to be quite sketchy.

2.1 Hyperbolicity

Our goal in this section is to introduce and discuss a class of systems for
which we can hope to investigate the properties introduced in the previous
section. As we have seen, the chief property that we used in the study of
the Arnold cat were the expanding and contracting properties of the map.
These are generalized in the following definition.

Definition 7 By Hyperbolic System (with discrete time) we mean a Dynam-
ical System (X, f, µ) such that X is a smooth compact Riemannian manifold
(possibly with boundary), f is µ-almost everywhere di↵erentiable and there
exists two measurable families of invariant1 subspaces E

u(x), Es(x) 2 TxX

almost surely transversal,2 and measurable functions ⌫(x) > 1, c(x) > 0
such that for almost all x 2 X

kDxf
n
vk � c(x)�1

⌫(x)nkvk 8v 2 E
u(x)

kDxf
n
vk  c(x)⌫(x)�n

kvk 8v 2 E
s(x).

1That is DxfE
s(u)(x) = E

s(u)(fx).
2That is, Eu(x) \ E

s(x) = {0} and E
u(x)� E

s(x) = TxX a.e.
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44 CHAPTER 2. HYPERBOLIC SYSTEMS–GENERAL FACTS

If the functions c, ⌫ can be chosen constant and the distributions are transver-
sal at each point, then the system is called Uniformly Hyperbolic. In ad-
dition, if f is a di↵eomorphism and E

u
, E

s vary with continuity, then the
system is called Anosov (or sometimes C or U systems).

The condition in Definition 7 is essentially equivalent to saying that two
very close initial conditions almost certainly will grow apart at an exponen-
tial rate. This corresponds to a strong instability with respect to the initial
conditions and characterizes the sense in which the dynamics of hyperbolic
systems is a very complex one. Such complex behaviour has captured the
popular fantasy under the ambiguous name of chaos.

2.1.1 Examples

Rotations

Clearly the rotations are not hyperbolic since Df = 1.

Dilation

One can easily see that such a system is expanding, hence E
u = R and

E
s = ;.

Arnold cat

We have seen it in detail in the previous chapter.

Baker

In this case one direction is expanding and one is contracting, dimE
u =dimE

s =
1

A more general notion of hyperbolicity is the one of hyperbolic set.

Definition 8 Given a di↵eomorphism f of a manifold X, we say that ⇤ ⇢

X is hyperbolic if ⇤ is compact, f(⇤) = ⇤ and there exists two measurable
families of invariant subspaces Eu(x), Es(x) 2 TxX transversal at each point
and measurable functions ⌫(x) > 1, c(x) > 0 such that for all x 2 ⇤

kDxf
n
vk � c(x)�1

⌫(x)nkvk 8v 2 E
u(x)

kDxf
n
vk  c(x)⌫(x)�n

kvk 8v 2 E
s(x).

If the constants c, ⌫ can be chosen independently of x 2 ⇤ then ⇤ is called
Uniformly Hyperbolic.
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2.1.2 Examples

Smale Horseshoe

In this case the set ⇤ is the one constructed in Examples 1.4.1 and dimE
s =

dimE
u = 1.

Forced pendulum

Same situations as for the horseshoe, see Examples 1.8.1.
Definition 7 it is not particularly helpful in concrete cases since, in gen-

eral, it is not clear how to verify if a systems is hyperbolic or not.

2.2 Lyapunov exponents and invariant distribu-

tions

We start by a di↵erent and very helpful characterization of hyperbolicity
obtained by introducing the so called Lyapunov Exponents (LE).

Definition 9 For each x 2 X, v 2 TxX we define

�(x, v) = lim
n!1

1

n
log kDxf

n
vk.

If �(x, v) exists it is called “Lyapunov exponent” (LE).

It is interesting to notice that �(f(x), Dxfv) = �(x, v) (see Problem
2.1). Moreover, it should be clear that, if the system is ergodic and the map
invertible, then �(x, v), if it exists, can assume only finitely many values (see
Problem 2.3).

The existence and properties of the LE have been intensively studied
and have given rise to a multitude of results. Here, we content ourselves
with the following theorem, which is by far not the most general version,
but it su�ces for our needs. See [62] for a more extensive presentation of
the theorem and its proof. I will provide some ideas related to the proof at
the end of the section.

Theorem 2.2.1 (Oseledets [45]) Let (X,µ) be a probability space and f :
X ! X a measure-preserving transformation. Let L : X ! GL(d,R) be
a measurable mapping from X to the invertible n ⇥ n matrices such that
ln kL(·)±1

k 2 L
1(X,µ). Then for µ-almost all x 2 X there are subspaces
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{0} = V
0
x ⇢ V

1
x ⇢ · · · ⇢ V

d
x = Rd and numbers �1(x)  · · ·  �

d(x) such
that, for all i 2 {1, . . . , d},3

lim
n!1

1

n
ln kL(fn�1(x)) · · ·L(f(x))L(x)vk = �i(x)

if v 2 V
i
x \ V

i�1
x .

The above theorem is taylored to study cocylces, that is the dynamical sys-
tems (X⇥Rd

, F ) where F (x, v) = (f(x), L(x)v). Indeed one can easily check
that Fn(x, v) = (fn(x), L(fn�1(x)) · · ·L(x)v)).
Given a measurable dynamical system (X, f, µ), where X is a d dimen-
sional Riemannian manifold (possibly with boundary) and T is almost surely
di↵erentiable we have the natural cocycle (X ⇥ Rd

, F ) where F (x, v) =
(f(x), Dxf(v)). Note that, by the chain rule, Fn(x, v) = (fn(x), Dxf

n
v).

So, the Lyapunov exponents of f are exactly the numbers given by Oseledets’
Theorem for the associated cocycle. The connection between Lyapunov ex-
ponents and hyperbolicity is illustrated by the following.

Theorem 2.2.2 A system (X, f, µ, ), where X is a Riemannian manifold
and f is a di↵eomorphism. Then, f is hyperbolic i↵ for almost all x 2 X

�(x, v) 6= 0 8v 2 TxX, v 6= 0.

Proof. Clearly, if the system is hyperbolic, then all the LE are di↵erent
from zero. The other implication is almost as trivial. Define E

s(x) = {v 2

Tx | �(x, v) < 0}; then consider the Dynamical system (X, f
�1

, µ) and its
LE �

�(x, v) and define E
u(x) = {v 2 Tx | �

�
< 0}. Next, let

⇢(x) = sup{�(x, v), ��(x,w) | v 2 E
s(x), w 2 E

u(x)}

clearly ⇢(x) < 0 a.e.. Then setting ⌫(x) = e
�⇢(x)/2 and

c(x) = sup
n

{⌫(x)nkDxf
n
vk, ⌫(x)nkDxf

�n
wk | v 2 E

s(x); w 2 E
u(x)}n2N,

which is almost surely finite by construction, hence proving the theorem. ⇤

To conclude the section, let me provide a few ideas related to the proof of
Theorem 2.2.1 to give a feeling of what is involved. Note that, thanks to
the ergodic decomposition, we can assume w.l.o.g. that µ is ergodic. Let us
define

�̄(x, v) = lim sup
n!1

1

n
ln kL(fn�1(x)) · · ·L(f(x))L(x)vk. (2.2.1)

3Note that the Vi and the �i are not necessarily distinct.
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Note that, for each ↵ 2 R,

�̄(x,↵v) = lim sup
n!1

1

n
ln
�
kL(fn�1(x)) · · ·L(f(x))L(x)vk|↵|

 
= �(x, v).

In addition,

�̄(x, v)  lim sup
n!1

1

n
ln kL(fn�1(x)) · · ·L(f(x))L(x)k

 lim sup
n!1

1

n

n�1X

k=0

ln kL(fk�1(x))k =

Z

X

ln kL(x)kµ(dx) = �+(x).

where the last inequality follows by Birkho↵’s theorem. In addition, for
kvk = 1,

0 = ln kL(x)�1
L(f(x))�1

· · ·L(fn�1(x))�1
L(fn�1(x)) · · ·L(x)vk

 ln kL(x)�1
L(f(x))�1

· · ·L(fn�1(x))�1
k+ ln kL(fn�1(x)) · · ·L(x)vk.

Which, arguing as before, yields

�̄(x, v) �

Z

X

ln kL(x)�1
k
�1

µ(dx).

Hence, the numbers �̄(x, v) are almost surely bounded. Next, for v, w 2 Rd

let

vn = sup
m�n

kL(fn�1(x)) · · ·L(f(x))L(x)(v + w)k

wn = sup
m�n

kL(fn�1(x)) · · ·L(f(x))L(x)(v + w)k

then

�̄(x, v + w) = lim sup
n!1

1

n
ln

kL(fn�1(x)) · · ·L(f(x))L(x)(v + w)k

max{vn, wn}

+max{�̄(x, v), �̄(x,w)}  max{�̄(x, v), �̄(x,w)}

since kL(fn�1(x)) · · ·L(f(x))L(x)(v + w)k  2max{vn, wn}. Finally, by
definition,

�̄(x, L(x)v) = �̄(f(x), v).

It follows that if we define V(x,↵) = {v 2 Rd : �̄(x, v)  ↵}, then the
V(x,↵) are vector spaces and L(x)V(x,↵) = V(f(x),↵). Two technical
issues remain: to show that the functions V(·,↵) are measurable;4 to show
that the limsup in (2.2.1) is indeed a limit. I refer to [62] for a proof.

4Here we see V(·,↵) as elements of the union of Grassmanian, which is a topological
space. If you do not want to be very fancy given V1,V2 ⇢ Rd let their distance be the
Hausdro↵ distance between their intersection with the unit sphere. This gives a topology
and we consider the associated Borel �-algebra.
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2.3 Comments on the non-smooth case

The results of the last section can be applied to non-smooth systems, how-
ever to develop a useful theory the singularities of the system cannot be
arbitrary. As we will see in the following, systems that are quite natural
both from the mathematical point of view and from the physical one are not
smooth–typically they have discontinuities. In this section we will discuss
a class of systems called smooth systems with singularities. Although the
theory of such systems has been done in great generality, here we will give
a restrictive definition, just su�cient for our later purposes. See the notes
at the end of the chapter for information on more general settings.

Definition 10 By Smooth Dynamical System with singularities we mean
a Dynamical Systems (X,T, µ), where

• X is the union of finitely many compact pieces Xi of Rn, @Xi is the
union of finitely many n� 1 dimensional smooth manifolds.

• T is smooth outside a compact set S. The singularity set S is the
finite union of smooth n� 1 dimensional manifolds with boundary Si,
Si \ Sj 6⇢ @Si \ @Sj implies i = j. In addition, the boundary @Si is
the finite union of smooth n� 2 dimensional manifolds.

• There exists c1, c2 > 0 such that

kDxTk+ kD
2
xTk  c1dist (x,S)

�c2 .

• The measure µ is absolutely continuous with respect to Lebesgue.

Remark 2.3.1 Note that the fact that (X,T, µ) is a Smooth Dynamical
System with singularities does not implies immediately that the same holds
for (X,T

k
, µ). The problem is that the map T can be very wild near the set S,

so it is not clear that the singularity set of T k will satisfy our requirements.
Nevertheless, in the examples we will consider, all the Dynamical System
(X,T

k
, µ) will always be Smooth Dynamical System with singularities.

Remark 2.3.2 We will call a smooth Dynamical System with singularities
invertible if T�1 is densely defined and (X,T

�1
, µ) is itself a smooth Dy-

namical System with singularities.

Note that the above conditions imply the applicability of Oseledets The-
orem.
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2.3.1 Examples

Backer map

It is easy to check that the Backer map is a Smooth Dynamical System with
singularities.

Discontinuous Arnold cat

If we consider (R2
, L,m) where

L

✓
x1

x2

◆
=

✓
1 a

a 1 + a
2

◆✓
x1

x2

◆
(2.3.2)

with a 62 Z, then it is not possible to project the system down to a torus
preserving the continuity of the map. Yet, we can construct a discontinuous
version of the Arnold cat.

Consider M+ = {(x, y) 2 R2
| 0  x + ay < 1; 0  y < 1} and

M� = {(x, y) 2 R2
| 0  x < 1; 0  ax � y < 1}. It is easy to see

that, if ⇧ is the projection from the universal cover R2 to the torus T2

(⇧⇠ = ⇠ mod 1), then ⇧, restricted to M±, is one-one and onto. Moreover,
LM+ = M�. This means that we can define T : T2

! T2 by

T = ⇧L(⇧|M+)
�1

.

Of course T is discontinuous on S+ := @M+ and T
�1 is discontinuous on

S� := @M�. In addition, the Lebesgue measure is invariant and the map is
hyperbolic since DT = L.

The question arises if there exists stable and unstable manifolds. A
moment of thought shows that this is equivalent to the following question:
there exist segments in the stable (unstable) direction such that their images
in the future (past) never meet the discontinuity set S+ (S�)?

Let us analyze the unstable manifolds. Call S� the � neighborhood of
S+. Consider a segment J centered at x, in the unstable direction, and
suppose that T�n

J \ S+ 6= ;, then J cannot be the unstable manifold since
its points do not have the same asymptotic trajectory in the past. Let � > 1
the eigenvalue of L, then T

�n
J has total length �

�n
|J |, so the trajectory of

x can be fairly close to S+ without having a problem. This discussion leads
naturally to considering the set

G� = {x 2 T2
| dist (T�n

x,S+) � �
�n

�}.

On the one hand, it is clear that if x 2 G�, a segment in the unstable
direction of size � is indeed an unstable manifold. On the other hand,
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m(G�)  c�. Thus almost all the points do have an unstable manifold of
some positive size. This it is encouraging, yet it is clearly not su�cient to
perform the Hopf argument. For the time being it su�ces to notice that
what we have seen so far implies that the discontinuous Arnold cat has, at
most, countably many ergodic components.

2.4 Flows

All what we have described so far has a rather straightforward generalization
in the case of flows, yet some natural changes are called for.

To appreciate the problem let us consider a flow, on a compact Rieman-
nian manifold, generated by a smooth non-zero vector field V . By definition
d

dt
�
t
|t=0 = V (x) and d�

t
V (x) = V (�t

x), thus �(x, V (x)) = 0. This is a
rather general fact: the Lyapunov exponent in a flow, with a nonvanishing
vector field, is zero in the flow direction. The only relevant exception is
constituted by hyperbolic fixed points (think of the unstable equilibrium
point of the pendulum) that, in the previous example, was ruled out by the
assumption that the vector field be non zero. We will consider only such
case.

Consequently a flow is hyperbolic if the tangent space is split in three
transversal subspaces Es

, E
u
, E

0, where E
0 is the flow direction and corre-

sponds to a zero Lyapunov exponents.
Oseledec Theorem (Theorem 2.2.1) holds unchanged with the L

1 condi-
tion on the cocycle obviously replaced by

Z

X

k log d�t
kdµ < 1.

For a smooth flow coming from a non vanishing vector field Theorem 2.2.2
holds unchanged as well.

2.4.1 Examples

Smooth flows with collisions

Let M be a smooth manifold with piecewise smooth boundary @M . We
assume that the manifold M is equipped with a symplectic structure !.5

Given a smooth function H on M with non vanishing di↵erential we obtain
the non vanishing Hamiltonian vector field F = r!H on M by !(r!H, v) =

5That is a non–degenerate closed antisymmetric two form.
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dH(v). The vector field F is tangent to the level sets of the Hamiltonian
M

c = {z 2 M |H(z) = c}.
We distinguish in the boundary @M the regular part, @Mr, consisting

of the points which do not belong to more than one smooth piece of the
boundary and where the vector field F is transversal to the boundary. The
regular part of the boundary is further split into “outgoing” part, @M�,
where the vector field F points outside the manifold M and the “incoming”
part, @M+, where the vector field is directed inside the manifold. Suppose
that additionally we have a piecewise smooth mapping � : @M� ! @M+,
called the collision map. We assume that the mapping � preserves the
Hamiltonian, H � � = H, and so it can be restricted to each level set of the
Hamiltonian.

We assume that all the integral curves of the vector field F that end (or
begin) in the singular part of the boundary lie in a codimension 1 subman-
ifold of M .

We can now define a flow  t : M ! M , called a flow with collisions,
which is a concatenation of the continuous time dynamics �t given by the
vector field F , and the collision map �. More precisely a trajectory of the
flow with collisions,  t(x), x 2 M , coincides with the trajectory of the flow
�t until it gets to the boundary of M at time tc(x), the collision time. If
the point on the boundary lies in the singular part then the flow is not
defined for times t > tc(x) (the trajectory “dies” there). Otherwise the
trajectory is continued at the point �( tcx) until the next collision time,
i.e., for 0  t  tc

�
�( tc(x)x)

�

 tc+t
x = �t� tcx.

We define a flow with collisions to be symplectic, if for the collision map
� restricted to any level set M c of the Hamiltonian we have

�⇤! = !.

More explicitly we assume that for every vectors ⇠ and ⌘ from the tangent
space Tz@M

c to the boundary of the level set M c we have

!(Dz�⇠, Dz�⌘) = !(⇠, ⌘).

We restrict the flow with collisions to one level setM c of the Hamiltonian
and we denote the resulting flow by  t

c. This flow is very likely to be badly
discontinuous but we can expect that for a fixed time t the mapping  t

c is
piecewise smooth, so that the derivative D t

c is well defined except for a
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finite union of codimension one submanifolds of M c. We will consider only
such cases.

The symplectic volume ^d
! is clearly invariant for the flow, so will be the

measure µc obtained by restricting the symplectic volume to the manifold
M

c. Clearly for such an invariant measure all the trajectories that begin (or
end) in the singular part of the boundary have measure zero. With respect
to the measure µc the flow  t

c is a measurable flow in the sense of Definition 2
and we obtain a measurable derivative cocycle D t

c : TxM
c
! T t

cx
M

c. We
can define Lyapunov exponents of the flow  t

c with respect to the measure
µc, if we assume that6

Z

Mc
log+ kDx 

t

ckdµc(x) < +1

Z

@M
c
�

log+ kDy�kdµcb(y) < +1 (2.4.3)

(cf.[45]).

Problems

2.1 Prove that �(Tx,DxTv) = �(x, v).

2.2 Prove that �(x, v+w)  max{�(x, v),�(x,w)} and �(x,↵v) = �(x, v)
for each ↵ 2 R, if they all exist. (Hint: Just apply the definition of
LE and note that

�(x, v + w)  lim
n!1

max{
1

n
log kDxT

n
vk,

1

n
log kDxT

n
wk}.

�

2.3 Assuming only that the LE are well defined a.e., prove that, if (X,T, µ)
is ergodic, X is a d dimensional manifold and T a di↵eomorphism,
then there exists d numbers {�i} such that the Lyapunov exponents
�(x, v) 2 {�i} a.e.. (Hint: For each ↵ 2 R define V↵(x) := {v 2

TxX | �(x, v)  ↵}. By Problem 2.2 V↵(x) is a linear vector space
and, by Problem 2.1 the distribution V↵ is invariant. Then d↵(x) :=
dimV↵(x) is an invariant function, thus a.e. constant for each ↵. In
addition, d↵ is an increasing function of ↵ and can assume only the
values {0, . . . , d}. Thus there are at most s  d {↵j} where d↵ jumps.
But this means that the LE are discrete. In fact, let v 2 V↵(x)\V�(x),

6Here µcb is the restriction of the volume to @M
c
�.
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↵ > �, then for each w 2 span{v, V�(x)} it is easy to compute that
�(x,w) = �(x, v) > �, which means: the LE is constant over V↵(x)
apart for lower dimensional subspaces. In addition, we have a flag of
subspaces {Vi}

s

i=0, s  d, such that V↵ 2 {Vi}
s

i=0 for each ↵ 2 R.
Hence, if V↵ � Vi but V↵ 6� Vi+1 it must be V↵ = Vi, thus if v 2 V↵

but v 62 Vi�1 �(x, v) = ↵i where ↵i = inf{↵ 2 R | V↵ � Vi}.)

2.4 Show that, if T is invertible, {�i(x)} is equal a.e. to {��
�
i
(x)} where

{�
�
i
(x)} are the LE of (X,T

�1
, µ).

2.5 Show that

lim
n!1

1

n
log | det(DxT

n)|

exists almost everywhere. (Hint: Apply BET.)

2.6 Let (X,T, µ) be a Dynamical Systems, X a compact Riemannian
manifold and T a.e. di↵erentiable. Suppose that there exists a one-
dimensional distribution E(x) such that DxTE(x) = E(Tx). Prove,
without using Oseledets theorem, that for each v 2 E(x) the LE
�(x, v) is well defined. (Hint: Let v(x) 2 E(x), kv(x)k = 1, then
DxTv(x) = ↵(x)v(Tx) and thus DxT

n
v(x) =

Q
n

i=1 ↵(T
i
x)v(T i

x).
Then the result follows by the BET.)

2.7 Define a cocycle associated with a flow with collision, which yields all
the Lyapunov exponents, but the one in the flow direction. (Hint: The
derivative of the flow with collisions can also be naturally factored onto
the quotient of the tangent bundle TM

c of M c by the vector field F ,
which we denote by bTM c. Note that for a point z 2 @M

c the tangent
to the boundary at z can be naturally identified with the quotient
space. We will again denote the factor of the derivative cocycle by

A
t(x) : bTxM

c
! bT t

cx
M

c
.

We will call it the transversal derivative cocycle. If the derivative cocy-
cle has well defined Lyapunov exponents then the transversal deriva-
tive cocycle has also well defined Lyapunov exponents which coin-
cide with the former ones except that one zero Lyapunov exponent is
skipped.)

The theory of foliations for piecewise continue maps is developed in great
generality in [33].


