
Chapter 3

Hyperbolicity: how to

establish it

Here, we discuss how to establish hyperbolicity for symplectic maps and
flows. The ideas put forward can also be used for more general systems,
but simpleciticy provides an extra structure that allows the development of
a much richer theory. Since Billiards are Hamiltonian systems, and hence
give rise to symplectic flows and maps, this theory is relevant for Billiards.

The material of this chapter is taken from [63, 44], and the reader is
referred to such articles for the full details. Here I just try to present the
ideas in the simplest possible form.

3.1 Hamiltonian flows and Symplectic structure

Given the matrix 2d⇥ 2d defined by

J =

✓
0
� 0

◆

Hamilton’s equations can be written as1

ẋ = JrH(x) (3.1.1)

where x = (q, p). Note that J
2 = � e J

T = �J .2 The matrix J plays a
fundamental role in the Hamiltonian structure. In particular, one can define

1The gradient of a function f 2 C1(Rd
,R) is given by the vector rf := (@xif).

2Note the similarity with the imaginary number i, where the transpose takes the place
of the complex conjugation; this is no accident!
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56 CHAPTER 3. HYPERBOLICITY: HOW TO ESTABLISH IT

the bilinear form on R2d

!(v, w) := hv, Jwi. (3.1.2)

The form ! is called the symplectic form. A matrix A with the property
!(Av,Aw) = !(v, w), for every v, w 2 R2d, is called symplectic. A transfor-
mation F 2 C

1(R2d
,R2d) such that DF (x) is symplectic for every x 2 R2d

is said to be symplectic transformation.

Lemma 3.1.1 For each Hamiltonian H the Hamiltonian flow �t is a sym-
plectic transformation.

Proof. Let ⌅(x, t) = D�t, then

⌅̇(x, t) = JD
2
H � �t(x) · ⌅(x, t)

hence, for each v, w 2 R2d,

d

dt
!(⌅v,⌅w) = !(⌅̇v,⌅w)+!(⌅v, ⌅̇w) = hJD

2
H⌅v, J⌅wi�h⌅v,D2

H⌅wi = 0,

where we used the fact that D2
H is a symmetric matrix.3 ⇤

Lemma 3.1.2 The set of symplectic matrices form a group (called Sp(2d,R)).
Furthermore, if L 2 Sp(2d,R), then L

T
2 Sp(2d,R).

Proof. First note that a matrix is symplectic if and only if LT
JL = J .

Then it is trivial to verify that 2 Sp(2d,R). Furthermore, if L,B 2

Sp(2d,R), then
(LB)TJLB = B

T
L
T
JLB = J,

therefore LB 2 Sp(2d,R). Moreover, L[�JL
T
J ] = shows that L is invert-

ible and L
�1 = �JL

T
J , furthermore

(L�1)TJL�1 = (�JL
T
J)TJL�1 = JLL

�1 = J.

Hence L
�1

2 Sp(2d,R). Finally, if L 2 Sp(2d,R), then L
�1

J(LT )�1 = J

which impleis (LT )�1
2 Sp(2d,R) and L

T
2 Sp(2d,R). ⇤

Next, we provide a useful decomposition.

3Obviously we are assuming that H 2 C2 and symmetry follows from Schwartz’s
Lemma.
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Lemma 3.1.3 If L :=

✓
a b
c d

◆
2 Sp(2d,R), where a, b, c,d are d ⇥ d ma-

trices, and det(a) 6= 0, then there exist symmetric d⇥ d matrices R,P such
that

L =

✓
a 0
0 (a�1)T

◆✓
0

P

◆✓
R

0

◆
, (3.1.3)

Proof. A direct computation shows that L 2 Sp(2d,R) if and only if

cTa = (aTc)T = aTc ; dTb = (bTd)T = bTd ; aTd� cTb = . (3.1.4)

Since a is invertible, we can write

L =

✓
a 0
0 (a�1)T

◆✓
R

P H

◆
, (3.1.5)

where R = a�1b, P = aTc and H = aTd. Condition (3.1.4) implies

that

✓
a 0
0 (a�1)T

◆
is symplectic. Then, by Lemma 3.1.2, also the matrix

✓
R

P H

◆
must be symplectic. Accordingly, (3.1.4) implies

P
T = P ; H = + P

T
R = + PR.

On the other hand, by Lemma 3.1.2, also the matrix

✓
P

R
T

H
T

◆
is sym-

plectic, hence (3.1.4) implies
R

T = R

from which the Lemma follows. ⇤

Note that L
T
JL = J implies det(L)2 = 1. In fact, since the symplectic

group is connected, the above decomposition implies that det(L) = 1 by
continuity (see Problem 3.8 for a more direct proof of this latter fact).

3.2 Symplectic Poincarè sections and time one

maps

Let ⌧ : R2d
! R+ be a piecewise di↵erentiable function and define the map

f(x) = �⌧(x)(x). Where f is di↵erentiable, we have

Dxf = Dx�⌧ + JrH(�⌧ (x))⌦r⌧.
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We restrict the map f to a constant energy surface ME = {x 2 R2d :
H(x) = E}. Then, for v 2 TME we have hrH, vi = 0. It follows that, for
v, w 2 TME ,

!(Dfv,Dfw) =hD�⌧v + JrH(�⌧ (x))hr⌧, vi, J(D�⌧w + JrH(�⌧ (x))hr⌧, wi)i

=!(v, w) + hrH(�⌧ (x)), D�⌧wihr⌧, vi

� hD�⌧v,rH(�⌧ (x))ihr⌧, wi

+ hrH(�⌧ (x)), JrH(�⌧ (x))ihr⌧, vihr⌧, wi = !(v, w).

It is then natural to introduce the equivalence relation v ⇠ w is v � w =
�JrH for some � 2 R. Let Vx = TxME/ ⇠ be the vector space formed by
the equivalence classes. Note that

Dxf(v + �JrH(x)) = Dxfv + �Dx�⌧JrH(x) + �JrH(�⌧ (x))hr⌧, JrH(x)i

= Dxfv + �JrH(f(x)) [1 + hr⌧, JrH(x)i] .

Hence, the action of Df from TxME to Tf(x)ME quotients naturally in an
action between Vx and Vf(x). On the other hand, for v 2 Vx we have

!(JrH, v) = hrH, vi = 0.

Thus !(v+�JrH,w+µJrH) = !(v, w), that is we can quotient ! as well
on Vx. It follows that ! induces canonically a symplectic form, which we
still call !, on each Vx. By the above discussion the d dimensional spaces
W

+
1 = {(v, 0) : v 2 Rd

} and W
+
2 = {(0, v) : v 2 Rd

} quotient to
d � 1 dimensional spaces Wi in each Vx, moreover !(w,w0) = 0 for each
w,w

0
2 W1 or w,w0

2 W2 (such subspaces, as we will see briefly, are called
Lagrangian). Next, one can check that it is possible to choose basis {ei} in
W1 and {fi} in W2 such that !(ei, fj) = �ij . Then we can write any vector

a 2 Vx as a =
P

d�1
i=1 ⇠iei +

P
d�1
i=1 ⌘ifi and

!(a, a0) =
X

i,j

⇠i⌘
0
j!(ei, fj)+⌘i⇠

0
j!(fi, ej) =

X

i

⇠i⌘
0
i�⇠

0
⌘i = h(⇠, ⌘), J(⇠0, ⌘0).i

That is, in such coordinates, the symplectic form has the standard form
(3.1.2). We can thus identify all the spaces Vx and, in such coordinates,
Df |V is symplectic.

By choosing ⌧ ⌘ 1, the map �1 can be seen as a 2d� 2 symplectic map.
Moreover, if ⌃ is a Poncarè section for the flow, then we can choose ⌧ to be
the first return time and since V is naturally isomorphic to T⌃, again we
have that the Poincarè map f(x) = �⌧(x)(x) is symplectic.
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3.3 Two dimensions

We are interested in the case L(x) = Dx�1, where �t is the billiard flow. Of
course, the flow will have a zero Lyapunov exponent (the flow direction).

Definition 11 A symplectic flow is hyperbolic if the only zero Lyapunov
exponent is the one associated with the flow direction. Equivalently, a sym-
plectic flow is hyperbolic if the Poincarè map has no zero Lyapunov exponent.

The problem is to have a tool to establish hyperbolicity. The following
theorem provides a very e�cient tool (we do not provide the proof as it is a
special case of Theorem 3.5.1).

Theorem 3.3.1 (Wojtkowski [63]) Let X be a Riemannian manifold, pos-
sibly with boundaries, {C(x) ⇢ TxX : x 2 X} a family of closed cones
in the tangent space. Let f : X ! X and L : X ! SL(n,R) as in
Theorem 2.2.1. If for µ almost x 2 X there exists n(x) 2 N such that
L(fn(x)�1) · · ·L(x)C(x) ⇢ int(C(fn(x)(x))), then the maximal Lyapunov ex-
ponent is strictly positive.

The above theorem su�ces for planar billiards, where there are two Lya-
punov exponents �i and, by volume conservation �1 = ��2. For higher
dimensional billiard, it does not control all the Lyapunov exponents. To
achieve this, we have to use more heavily the fact that the Billiards flows
are Hamiltonian, and hence symplectic. In addition, while a two-dimensional
cone is simply a sector, a higher-dimensional cone can have many di↵erent
shapes, and it is not obvious what is a natural cone shape.

3.4 Higher dimensions: the symplectic structure

Given a symplectic form !, which is left invariant by map f : M ! M ,
we have a symplectic flow. If T M = R2d, then a d-dimensional subspace
V ⇢ R2d is called Lagrangian if !|V ⌘ 0. Given two transversal Lagrangian
subspaces V1, V2, we can write uniquely v 2 R2d ad v = v1+v2, with vi 2 Vi.
we can then define the quadratic function

Q(v) = !(v1, v2).

This allows us to define special cones with remarkable properties:

C = {v 2 R2n : Q(v) > 0}. (3.4.6)
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Accordingly, if we specify a field of transversal Lagrangian subspace, we have
the quadratic functions Qx and the cone field Cx.

Obviously, if Qf(x)(dxfv) � Qx(v), then dxfCx ⇢ Cf(x), hence we have
cone invarince. Such maps are called monotone.

If Qf(x)(dxfv) > Qx(v) for all v 6= 0, then dxf(Cx \ {0}) ⇢ Cf(x), such
maps are called strictly monotone.

Lemma 3.4.1 ([44], Sections 6) A map is monotone if and only if the
cone field is invariant. The same is true for strict monotonicity.

Theorem 3.4.2 ([44] Sections 5, 6, or [43]) If a map is eventually strictly
monotone, then all its Lyapunov exponents are non-zero.

This is proven exactly as Theorem 3.5.1, so we refer to the proof of the
latter.
The above also has a continuous version: a Hamiltonian flow in a 2d + 2
dimensional manifold, is determined by a Hamiltonian

3.4.1 Lagrangian subspaces

By a symplectic change of variables, we can assume that the space is R2d,
the vectors are written as (⇠, ⌘), ⇠, ⌘ 2 Rd and the symplecit form is given
by

!((⇠, ⌘), (⌘0, ⌘0) = h⇠, ⌘
0
i � h⌘, ⇠

0
i.

Then, A 2 GL(2d,R) is sympletc if and only if !(Av,Aw) = !(v, w) for all
v, w 2 R2d. That is if

A
T
JA = J

J =

✓
0
� 0

◆

To introduce an appropriate higher dimensional formalism, it is convenient
to discuss briefly Lagrangian subspaces.

Definition 12 A d-dimensional subspace V of R2d is Lagrangian i↵

!(v, w) = 0

for all v, w 2 V.

Lemma 3.4.3 For each d⇥ d matrix U , the space V = {(v, Uv) : v 2 Rd
}

is Lagrangian i↵ U is symmetric.
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Proof. Clearly V is d-dimensional. To conclude, it su�ces to compute

!((v, Uv), (w,Uw)) = hv, Uwi � hw,Uvi

which is zero only if U is symmetric. ⇤

Let V1, V2 2 R2d two transversal Lagrangian subspaces, then, for each v 2

R2d we can write uniquely v = v1 + v2 with vi 2 Vi. We then write

Q(v) := !(v1, v2)

By a symplectic change of variable, we can always reduce the general case
to the case V1 = {(v1, 0) : v1 2 Rd

} V1 = {(0, v2) : v2 2 Rd
}. In this case

Q((v1, v2)) = hv1, v2i.

We say that a symplectic matrix L is monotone if Q(Lv) � Q(v) for each
v 2 R2d, and we say that a symplectic matrix L is strictly monotone if
Q(Lv) > Q(v) for each v 2 R2d

\ {0}.
To measure precisely how much the quadric form increases, it is conve-

nient to introduce the cones

C = {v 2 R2d : Q(v) > 0} ; C = {v 2 R2d : Q(v) � 0}.

Lemma 3.4.4 A Lagrangian space V belongs to C [ {0} i↵ it is of the form
(v, Uv), with U strictly positive.

Proof. If ⇡i(v1, v2) = vi, then ⇡1 : V ! Rn is injective. If not, there
exists (v1, v2) 2 V \ {0} such that v1 = 0. But then Q((v1, v2)) = 0 contrary
to the hypothesis. We can then define U := ⇡2 � ⇡

�1
1 : Rn

! Rn and
V = {(v, Uv) : lv 2 Rd

}. Then, by Lemma 3.4.3 U must be symmetric.
Finally, for v 6= 0,

0 < Q((v, Uv)) = hv, Uvi

hence U is strictly positive. The opposit implication is trivial. ⇤

Lemma 3.4.5 A symplectic matrix L =

✓
a b
c d

◆
is strictly monotone if

and only if deta 6= 0 and the matrices R,P in the factorization (3.1.3) are
strictly positive.
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Proof. Indeed, if deta = 0, then there exists ⇠ 2 Rd
\ {0} such that

a⇠ = 0, but then

Q(L(⇠, 0)) = ha⇠, c⇠i = 0 = Q((⇠, 0))

contrary to the hypothesis. We can then apply Lemma 3.1.3 to write
✓
a 0
0 (a�1)T

◆✓
0

P

◆✓
R

0

◆
(v1, v2) = (a(v1+Rv2), (a

�1)T (Pv1+( +PR)v2)).

Thus,
Q(L(v1, v2)) = hv1 +Rv2, Pv1 + ( + PR)v2i (3.4.7)

If v2 = 0, then we have

0 < Q(L(v1, 0)) = hv1, Pv1i

hence P is a strictly positive matrix. On the other and, for each µ > 0 and
kvk = 1, we have that

µ < Q(L(v, µv)) = hv + µRv, Pv + µ( + PR)vi.

We can then chose v to be an eigenvector of R, so Rv = �v. Then we obtain

µ < h(1 + µ�)v, Pv + µ( + �P )vi = (1 + �)µ+ (1 + �µ)2hv, Pvi

that is
�µ+ (1 + �µ)2hv, Pvi > 0.

It follows that it must be � � 0 otherwise we can choose µ = ��
�1 and

obtain the contradiction �1 > 0. On the other hand, if � = 0, then

0 < Q(L(0, v)) = h0, vi = 0

which is also impossible. Finally, if det(a) 6= 0 and the matrices P,R are
strictly positive, then

Q(L(v1, v2)) = hv1, v2i+ hv2, Rv2i+ hv1 +Rv2, P (v1 +Rv2)i > Q((v1, v2)).

⇤

The above implies that if L is strictly monotone, then LVi ⇢ C [ {0}. There
is a useful partial converse of this fact.4

4Note that [44, Proposition 8.4] is false as the example L =

✓
0
◆✓

�2
0

◆
shows.
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Lemma 3.4.6 If LVi ⇢ C[{0} and, for all v 2 Rd, !(L(0,aT
v), (0, v)) � 0,

then L is strictly monotone.

Proof. First of all, note that

0 < Q(L(v, 0)) = hQ((av, cv)) = hv, cTavi.

Since (3.1.4) implies that cTa is a symmetric matrix, it follows that cTa
is strictly positive, hence det(a) 6= 0. We can then use the decomposition
(3.1.3) which yields the expression (3.4.7) which implies

0 < Q(L(v, 0)) = hv, Pvi

which implies that P is a strictly positive matrix. This implies that

Q

✓✓
0

P

◆✓
v1

v2

◆◆
= Q((v1, Pv1+v2)) = Q((v1, v2))+hv1, Pv1i � Q((v1, v2)).

On the other hand

0 < Q(L(0, v)) = hRv, ( + PR)vi = hv, (R+RPR)vi,

that is R + RPR is strictly positive matrix. Since R is symmetric it has
d eigenvectors, let w, kwk = 1, and eigenvector and � the corresponding
eigenvalue, then

0 < hw, (R+RPR)wi = �+ �
2
hw,Pwi

which implies � 6= 0. Finally, setting w = aT
v,

0  !(L(0, w), (0, (aT )�1
w)) = hRw,wi

implies that R is positive and hence strictly positive. The Lemma follows
then from Lemma 3.4.5. ⇤

Let us define

�(L) = inf
v2C

s
Q(Lv)

Q(v)
.

Lemma 3.4.7 If a symplectic matrix L =

✓
a b
c d

◆
is strictly monotone,

then the eaigenvalues of cTb are all strictly positive and, calling t the mini-
mal such eigenvalue, we have

�(L) �
p
t+

p
1 + t > 1.
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Proof. We use the decomposition (3.1.3) and note that the matrix

R =

 
R

� 1
2 0

0 R
1
2

!

is a Q-isometry, that is Q(Rv) = Q(v) for all v 2 R2d. In particular, this

implies that RC = C. Hence, setting L =

✓
R

P + PR

◆
,

inf
v2C

s
Q(Lv)

Q(v)
= inf

v2C

s
Q(Lv)

Q(v)
= inf

v2C

s
Q(RLR�1(Rv))

Q(Rv)
= inf

v2C

s
Q(RLR�1v)

Q(v)
.

Setting T = R
1
2PR

1
2 , we have

RLR
�1 =

✓

T + T

◆
=: T

Note that T is a strictly positive matrix; hence, calling ti its eigenvalues and
wi the associated eigenvector, we have ti > 0. In addition, we have

PR(R� 1
2wi) = R

� 1
2Twi = tiR

� 1
2wi.

That is, the eigenvalues of T are also the eigenvalues of PR = cTaa�1b =
cTb, where we have used (3.1.5) and the fact that P

T = P . To conclude,
we note that, setting v = (v1, v2) and calling t the minimal eigenvalue ot T ,

Q(T v)

Q(v)
=

hv1, v2i+ hv2, v2i+ h(v1 + v2), T (v1 + v2)i

hv1, v2i
� 1 +

kv2k
2 + tkv1 + v2k

2

hv1, v2i

= 1 +
(1 + t)kv1k2 + 2thv1, v2i+ tkv2k

2

hv1, v2i

= 1 +
2thv1, v2i+ (1 + t)

1
2 t

1
2

h
(1 + t)

1
2 t

� 1
2 kv1k

2 + (1 + t)�
1
2 t

1
2 kv2k

2
i

hv1, v2i

� 1 +
2
h
t+ (1 + t)

1
2 t

1
2

i
hv1, v2i

hv1, v2i
=
hp

t+
p
1 + t

i2
.

⇤
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3.5 Higher dimensions: hyperbolicity

We say that a Hamiltonian flow (M,�t) is hyperbolic on a constant
energy surface ME if, when restricted to such a surface, all his Lyponov
exponents, but one (the one in the flow direction), are non-zero. For sim-
plicity, we restrict to the case M ⇢ R2d, but the result holds for general
symplectic manifolds. Also, we require that ME is compact. Let µ be the
Liouville measure normalized so that µ(M) = 1. The goal of this section is
to prove the following theorem:

Theorem 3.5.1 ([63], or see [44] Sections 5, 6, or [43]) If a flow on
ME is eventually strictly monotone, then all its Lyapunov exponents, apart
from the one in the flow direction, are non-zero.

By the results of section 3.2, we can restrict ourselves to a discrete-time
analysis. We will consider the time one map f = �1 with the di↵erential
acting on the quotient space there described; the study of the Poincarè map
being similar. For x 2 M , le s(x) = min{k : Df

k is strictly monotone}.
By eventually strictly monotone, we mean that, for almost all x 2 M ,

Dxf is monotone and s(x) < 1.

Proof of Theorem 3.5.1. Let Am = {x 2 M : s(x) = m}. For such
m we define the first hyperbolic return time to Am as

nm(x) =

(
0 if x 62 Am

min{k � m : f
k(x) 2 Am} otherwise.

Lemma 3.5.2 (Kac’ s theorem) For each m 2 N, nm 2 L
1.

Proof. If µ(Am) = 0, the statement is trivial. We can then limit
ourselves to the case µ(Am) > 0. Let Am,k = {x 2 Am : nm(x) = k}.
Note that f , being the time one map of a flow, is invertible, so f

�1 is
measurable and preserves the measure. Moreover, if x 2 f

j(Am,k)\f l(Am,k0)
for some j + m  l  k

0 and j  k, then, setting y = f
�l(x) 2 Am,k0 and

w = f
�j(x) 2 Am,k we have f j(w) = f

l(y), that is f l�j(y) = w 2 Am which
contradicts the fact that y 2 Am,k0 since m  l� j < l  k

0. It follows that,
for j < k, l < k

0, f j(Am,k) \ f
l(Am,k0) 6= ; implies |j � l|  m. That is a
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point of Am can belong to no more than 2m+ 1 sets f j(Am,k). Then

Z

Am

nm(s)µ(dx) =
1X

k=1

kµ(Am,k) =
1X

k=1

k�1X

j=0

µ(f j(Am,k))

 (2m+ 1)µ([1
j=0f

j(Am))  2m+ 1.

The lemma follows since, by definition,
R
M

nm(s)µ(dx) =
R
Am

nm(s)µ(dx).
⇤

If f is eventually strictly monotone, then
P1

m=1 µ(Am) = 1. Hence, there
existsm > 0 such that µ(Am) > 0. Define the return map F (x) = f

nm(x)(x),
x 2 Am. For each n 2 N let k(x) = min{k 2 N :

P
k

j=0 nm(F j(x)) � n}.
Then

�(Df
n) � �(D

Fk(x)�1(x)f
nm(Fk(x)�1(x))

· · ·Dxf
nm(x))

�

k(x)�1Y

j=0

�(DF j(x)f
nm(F j(x))).

Also, note that, by definition, it must be nm(s) � m. So, by Lemma 3.4.7,
we have, for each y 2 Am, �(Dyf

nm(y)) �
p
t(x) +

p
1 + t(x) =: e

↵(x)

where ↵(x) > 0. Since ↵ could be unbounded it is convenient to set ↵̄(x) =
min{1,↵(x)} and again �(Dyf

nm(y)) � e
↵̄(x). Accordingly,

lim
n!1

1

n
ln�(Dxf

n) � lim
n!1

1

n

k(x)�1X

j=0

ln�(DF j(x)f
nm(F j(x)))

� lim
n!1

1

n

k(x)�1X

j=0

↵̄(F j(x)) �
limk!1

1
k

P
k�1
j=0 ↵̄(F

j(x))

limk!1
1
k

P
k

j=0 nm(F j(x))
.

By Birkho↵’s ergodic theorem, the limits exist almost surely and are L
1

functions. Hence, the limit can be zero on a positive measure set only if
the numerator is. Also, the points for which the numerator is zero form an
invariant set B ⇢ Am. But if µ(B) > 0, then we can restrict the above
argument to B and we obtain, for almost al x 2 B, the contradiction

0 =

Z

B

lim
k!1

1

k

k�1X

j=0

↵̄(F j(x)) = lim
k!1

1

k

k�1X

j=0

Z

B

↵̄(F j(x)) =

Z

B

↵̄(x) > 0.
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The above implies that for each v 2 C we have

lim
n!1

1

n
ln kDf

n
vk = lim

n!1

1

2n
ln kDf

n
vk

2
� lim

n!1

1

2n
lnQ(Df

n
v)

� lim
n!1

1

2n
ln�(Df

n) > 0.

Since the Lagrangian spaceW = {(w,w)} ⇢ C[{0}, we have a d-dimensional
subspace with strictly positive Lyapunov exponents. Hence, we have d

strictly positive Lyapunov exponents. Let Vi the spaces in Oseldets’ The-
orem, so that dim(Vi) = i (note that if the spectrum is not simple, there
are many possible choices). Note that for each i 2 {d + 1, . . . 2d}, there
must be v 2 Vi, and w 2 V2d�i+1 such that !(v, w) 6= 0; otherwise the
two spaces would be skew orthogonal which is impossible since the sum of
their dimensions is 2d + 1. Thee, by continuity, we can find vi 2 Vi \ Vi�1

and wi 2 V2d�i+1 \ V2d�i such that !(vi, wi) 6= 0. By construction, �i is
the Lyapunov exponent associated to vi ad �2d�i+1 the Lyapunov exponents
associated with ŵi. Then

0 = lim
n!1

1

n
ln!(vi, wi) = lim

n!1

1

n
ln!(Df

n
vi, Df

n
wi)

 lim
n!1

1

n
ln kDf

n
vikkDf

n
wik = �i + �2d�i+1.

On the other hand, by Oseledets Theorem 2.2.1,

0 = lim
n!1

1

n
ln | ^d

!(vd+1, . . . v2d, wd+1, . . . , w2d)|

= lim
n!1

1

n
ln | ^d

!(Df
n
vd+1, . . . Df

n
v2d, Df

n
wd+1, . . . , Df

n
w2d)|

= lim
n!1

1

n
ln | det(Df

n)| | ^d
!(vd+1, . . . v2d, wd+1, . . . , w2d)|

=
2dX

i=1

�i =
dX

i=1

[�i + �2d�i+1] � 0

which implies �2d�i+1 = ��i, hence all the Lyapunov exponents are non
zero. ⇤

Problems

3.1 Construct a strictly invariant cone family for the irrational transla-
tion on T2 (see Examples 1.1.1) and show that it is not measurable.
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(Hint: For each trajectory choose a point x. At such a point choose
the standard cone C+, let C�

n = {(v1, v2) 2 R2
| 1 + 1

n


v2
v1

 2 + 1
n
}

and C
+
n = {(v1, v2) 2 R2

| � 2 �
1
n


v2
v1

 �1 �
1
n
}
c. Then set

C(Tn
x) = C

+
n and C(T�n

x) = C
�
n . Such a cone family is strictly mono-

tone by construction (since DxT = 1), yet the system has obviously
zero Lyapunov exponents. Since all the other hypothesis of Theorem
2.2.1 are satisfied, it follows that the above cone family cannot be
measurable.)

3.2 Show that for two dimensional symplectic maps the sum of the Lya-
punov exponent is zero (pairing of the Lyapunov exponents). (Hint:
If !(v, w) = 1 then 1 = !(DT

n
v,DT

n
w) ⇠ kDT

n
vkkDT

n
wk.)

3.3 Check that inf
v2C+

q
Q(Lv)
Q(v) =


inf
v2C�

q
Q(L�1v)
Q(v)

��1

, remember that C� =

(C+)c. (Hint: see [43])

3.4 Consider R2 endowed with the scalar product hv, wiG := hv,Gwi,
where h·, ·i is the standard scalar product and G > 0. Show that
there exists a change of coordinates M : R2

! R2 such that, in the
new coordinates h·, ·iG becomes the standard scalar product.

3.5 Consider the cone C defined by the two transversal vectors v1, v2 2 R2.
This means that v 2 R2 belongs to the cone i↵ v = ↵v1 + �v2 with
↵� � 0. Show that there is a linear change of coordinatesM : R2

! R2

such that MC = C+ and detM = 1.

3.6 Show that, in a two dimensional area preserving systems, if the LE are
di↵erent from zero then there exists and eventually strictly invariant
cone family. (Hint: By Oseledets there exists the unstable distribu-
tions, then construct the cones around it.)

3.7 Prove that if M is the two by two matrix

M =

✓
a b

b c

◆
,

with a, b, c 2 Z, then M > 0 i↵ a, c > 0 and c >
b
2

a
.

3.8 Prove that is L is symplect then detL = 1. (Hint: The determinant of
a matrix is nothing else than the volume of the parallelepiped of sides
(Le1, . . . , Le2d) (where e1, . . . , e2d is the standard orthonormal basis
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of R2d). On the other hand the volume form can be written has ^d
!

(since that is a 2d form with the right normalization and the space
of 2d forms is one dimensional). Thus detL = ^

d
!(Le1, . . . , Le2d) =

^
d
!(e1, . . . , e2d) = 1 where we have used the fact that !(Lv, Lu) =

!(v, u). The reader that wants to appreciate the power of the above
geometrical interpretation of the determinant and of the external forms
can try to prove the statement by purely algebraic means.)

3.9 Show that all symplectic Q-isometrys L (that is Q(Lv) = Q(v)) have
the form

L =

✓
A 0
0 A

⇤�1

◆
.

(Hint: Start by considering the vector (0, u), U 2 Rd, clearlyQ((0, u)) =
0 thus Q(L(0, u)) = 0 if L is a Q-isometry. But if

L =

✓
A B

C D

◆

it follows hBu,Dui = 0 for each u 2 Rd, that is B⇤
D = 0. The same

argument applied to the vector (u, 0) yields A⇤
C = 0. Accordingly, by

symplecticity

Q(L(v, u)) =hAu+Bv, Cu+Dvi = hu, (A⇤
D + C

⇤
B)vi

=hu, ( + 2C⇤
B)vi

thus Q(L(v, u)) = Q(v, u) i↵ C
⇤
B = 0 which implies A⇤

D = .)

3.10 Show that if the matrix

L =

✓
A B

C D

◆

is symplectic then

L
�1 =

✓
D

⇤
�B

⇤

�C
⇤

A
⇤

◆

3.11 Show that the symplectic matrices form a multiplicative group. (Hint:
Use the definition and the above problems.)

3.12 A symplectic map L is a Q-isometry i↵ LC = C. (Hint: One direction
is trivial. On the other hand, if LC = C it follows that L maps the
boundary, of C, to the boundary. Accordingly, if hv, ui = 0 it must be

0 = hAv + bu, Cv +Dui. (3.5.8)
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Choosing in 3.5.8 u = 0 yields A⇤
C = 0, choosing v = 0 shows that it

must be B
⇤
D = 0. Thus 3.5.8 yields

0 = hu, (A⇤
D + C

⇤
B)vi = 2hu, C⇤

Bvi.

The above equality shows that C⇤
Bv is parallel to v for each v 2 R

d,
that is C⇤

B = ↵ for some ↵ 2 R. If ↵ = 0, then A
⇤
D = and thus

C = 0 which is the wanted result. If ↵ 6= 0, then B is invertible and
C = ↵B

⇤1 . But this implies A = 0 and hence � = C
⇤
B = ↵ , that

is ↵ = �1. Accordingly the matrix would have the form

L =

✓
0 B

�B
⇤�1 0

◆

which sends C in its complement, contrary to our requirement.)

3.13 Show that a strictly monotone symplectic matrix can be put into the
form ✓

M +M

◆

by multiplying it by Q-isometries on the left and on the right.

3.14 Show that all the Lagrangian subspaces transversal to V = {(0, ⌘) 2
R2d

| ⌘ 2 Rd
} can be represented as {(⇠, U⇠) 2 R2d

| ⇠ 2 Rd
} for some

symmetric matrix U . (Hint: Let VU := {(⇠, U⇠) 2 R2d
| ⇠ 2 Rd

}, then
!((⇠, U⇠), (⇣, U⇣)) = 0, thus VU is Lagrangian. On the other hand, if
Ṽ is Lagrangian, then it is a d dimensional space. Let {(⇠i, ⌘i)}di=1 be
a base for Ṽ , then ⇠i 6= 0 by the transversality assumption and we can
define the matrix U via U⇠ := ⌘i. It is immediate that Ṽ Lagrangian
implies U = U

⇤.)

3.15 Show that VU := {(⇠, U⇠) 2 R2d
| ⇠ 2 Rd

}, U = U
⇤, belongs to the

standard cone i↵ U � 0.

3.16 Show that given any two transversal lagrangian subspaces V1, V2,5

there exists a symplectic map L such that LV1 = {(⇠, 0)} and LV2 =
{(0, ⌘)}. (Hint: choose coordinates in which Vi are transversal to
V = {(0, ⌘) 2 R2d

| ⌘ 2 Rd
}, then we can write Vi = {(⇠, Ui⇠)}. Note

that, since V1 and V2 are transversal, U1�U2 must be invertible. The,
e.g., set D = and B = (U1 � U2)�1 and check the algebra.)

5Recall that two space are transversal i↵ V1 \ V2 = ;.
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3.17 Find a symplectic change of coordinates that transforms the standard
form Q into the form Qh defined by:

Qh((x, y)) =
1

2
(hx, xi � hy, yi),

and draw the associate cone. (Hint: Consider

x = x
0�y

0
p
2

y = x
0+y

0
p
2
.
�

3.18 Hilbert metric for a disc and the half plane–hyperbolic geometry.

3.19 Show that the Perron-Frobenius operator associated to a smooth ex-
panding map of the circle has a spectral gap as an operator on Lip(T2).
(Hint: Check that there exists b 2 R+ such that the norm

khk := khk1 + bkhkLip

is adapted to the cone. Define V = {h 2 Lip(T2) |
R
h = 0}, notice

that LV = V. Then, for each h 2 V there exists⇢ 2 R+ such that
h+ ⇢h⇤ 2 C↵, so

kL
n
hk = kL

n(h+ ⇢h⇤)� ⇢h⇤k  K⇤n
⇢.

Thus the spectral radius of L|V is less than ⇤.)

3.20 Estimate the rate of mixing for Lipschitz functions for a smooth ex-
panding map of the circle (Hint: use the spectral gap of the previous
Problem.)

3.21 Prove that any continuous fraction of the form

1

a1 +
1

a2 + ...

ai > 0 is convergent provided the series
P1

n=1 an is divergent. (Hint:
Let

nY

i=1

✓
1 a2(n�i)

0 1

◆✓
1 0

a2(n�1)+1 1

◆✓
1
u

◆
=

✓
�n

↵n

◆
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and verify, by induction, that ↵n
�n

is exactly the 2n truncation of the
continuous fraction. Thus the continuous fraction is a projective co-
ordinate for the vector (↵n, �n). Consider the cone C+ = {(x, y) 2

R2
| x � 0; y � 0}. Then, for each a, b 2 R+, holds

✓
1 a

0 1

◆✓
1 0
b 1

◆
C+ ⇢ C+.

The result follows by computing the Hilbert metric contraction, see
[20, Appendix D] for details on the Hilber metric and its properties.

For a di↵erent approach, see [62, Th14.1].)


