
Chapter 4

Billiards

Billiards are very widely studied model systems. The study of billiards
has a double parallel history. On the one hand, starting at least with G.
Birkho↵, they are seen as simple examples of dynamical systems and a tool to
understand issues of integrability (billiard in an ellipse, polygonal billiards)
and tool to understand strongly irregular motion (Sinai and Bunimovich
Billiards). We will concentrate on the second class of models here.

In general, billiards consist of a material point confined to some region of
Rn or Tn with piecewise smooth boundaries;1 in the simplest situation such
a point moves with constant velocity until it reaches the boundary, and at
the boundary it undergoes an elastic reflection. Such models include, e.g., a
system of n hard spheres that interacts via elastic collisions (see section 4.4);
the importance of such a systems as a basic model in statistical mechanics
can be hardly overestimated.

These systems are conceptually extremely simple, yet they have an un-
pleasant feature: they lack smoothness. As we will see in the following
there are three main type of non-smoothness: a) tangent collisions; b) col-
lision with a corner; c) accumulation of infinitely many collisions in a finite
time. Due to such pathologies these models, in spite of their simplicity, may
present some incredibly annoying complications in their treatment.

Let B be the region in which the point is allowed to move and suppose
that @B is a finite union of smooth manifolds with boundary. Clearly the
motion can be seen as a flow �t on the unitary tangent bundle of B (in fact,
given the initial position and the initial velocity the following motion is

1Although one can easily consider billiards in a region of a Riemannian manifold with
piecewise smooth boundaries, in this case the motion in the interior is just the geodesic
flow; see [12] for such a general setting.

73



74 CHAPTER 4. BILLIARDS

uniquely determined, moreover the modulus of the velocity will be constant
through the motion, so it can be assumed equal to one without loss of
generality).2

It can be checked directly that the flow is symplectic (Hamiltonian) in
eX := B⇥Rn (see problem Problem 4.6). So, calling m the measure induced
by Lebesgue on X ⌘ B ⇥ {v 2 Rn

| kvk = 1}, (X, �t, m) is a smooth flow
with collisions (crf. Examples 2.4.1).

4.0.1 Examples

Polygonal Billiards

The name is self-explanatory: the domain B is a polygon. The simplest case
is probably a rectangle: B = [0, a] ⇥ [0, b] ⇢ R2. Although the notion is
fairly trivial, to study it we will employ a neat trick that has many other
applications. Consider a trajectory x+vt that reaches the wall `1 := {(a, y)}.
The law of reflection states that, if v = (v1, v2), the reflected velocity is
(�v1, v2). Now define the map Ra(x, y) = (2a � x, y). This is a reflection
(R2

a = identity) with respect to the wall {(a, y)}. Remark that RaB =
[a, 2a]⇥ [0, b], moreover DRa(�v1, v2) = v. This means that, in the reflected
box RaB, the reflected velocity is equal to the velocity before reflection.

The above algebraic discussion corresponds to a very intuitive geomet-
rical fact: if the wall is a mirror, then the trajectory in the mirror is the
continuation of the trajectory before collision.

After noticing this it is quite clear that one can understand better the
trajectory in the “universal covering’ of the box obtained be reflecting the
box repeatedly with respect to its walls. In this covering the trajectory is
simply a straight line and the trajectory in the original box is obtained by
undoing the reflections (for the more mathematical inclines let us say that
the plane is covered by equal boxes that are identified via reflections, see
Problem 4.2). It is then obvious that, given the original velocity v only
four velocities are possible: (±v1,±v2). In fact, if we identify the opposite
sides we obtain exactly a flat torus with sides twice as long as the ones of
the original rectangle. In addition, the motion on such a torus corresponds
precisely to the flow at unit speed in direction v. In other words, the motion
is equivalent to rigid translations (geodesic flow) of the associated torus.

Accordingly, the motion is ergodic only if v1b

v2a
is irrational.

2A little thought will convince the reader that two motions with initial velocities that
di↵er only in modulus will be exactly the same apart from the fact that they are run at
di↵erent speeds.
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Circular Billiards

In this case B is a disk of radius r. For convenience, let us center it at
the origin of a Cartesian coordinate frame. Let us consider a point that
has just collided with the boundary at the position rn(✓) := r(cos ✓, sin ✓),
where ✓ is the angle with the x axis counted counterclockwise, and has
velocity v(✓�') := (� sin(✓�'), cos(✓�')), which means that the velocity
forms an angle ' with the tangent at the collision point. Accordingly, the
trajectory will move along the cord of length 2r sin' and collide with the
angle ⇡ � ' which, after reflection, will be ' again.

This phenomena is nothing else than the conservation of the angular
momentum (for the mechanical inclined) or of the Claroit integral (for the
di↵erential geometers).

All the above implies that, if '

⇡
2 Q, then the motion will be peri-

odic, otherwise the collision point will perform an irrational rotation on the
boundary. In fact, let us choose as coordinates the distance ⌧ form the
last collision point computed along the trajectory; the distance s, computed
along the circumference, of the last collision point from a fixed point on the
circumference; and the angle '. Then the phase space is

X = {(⌧, s,') 2 [0, r]⇥ S
1
⇥ [0,⇡] | 0  ⌧  2r sin'}

and the flow is noting else than a suspension flow with ceiling function
2r sin' constructed on the map T defined by

T (s,') = (s+ r(⇡ � 2'),').

At the same time the middle point of the cords between two consecutive
collisions will describe an irrational rotation on the circle of radius r cos'.
This last circle is called caustic; the name derives from optic because if
the trajectory is run by a beam of light that is the place with the highest
luminosity.3 Note that this means that the trajectory under consideration
(if '/⇡ 62 Q) covers densely a two dimensional torus in the three dimensional
space and it is ergodic restricted to it.

3In ancient Greek caustic (↵��⌧◆ó⇣) means “that burns”. Of course, that would be
an important concept if you want, e.g., burn a Roman ship (to be honest, we do not know
if Archimedes really knew and used burning mirrors against the Romans. Nor if he had
the knowledge to do so, since his work on optic, if ever existed, has been lost. Yet, his
work on conics shows that he was not so far o↵ [2, On the sphere and the cylinder and
Quadrature of the parabola]).
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The above examples correspond to very regular motions (“integrable
motion”) that is exactly the opposite of what we mean to investigate. Un-
fortunately, to progress in the direction we are interested in many more
technical tools are needed. Yet, before going on with general facts and def-
initions, let us anticipate two concrete examples that will be particularly
relevant.

4.1 Sinai Billiard

The simplest example of Sinai billiards (introduced in [58] and studied in
[59]) are given when B ⇢ T2. More precisely, given a disk D, centered at
the origin and with diameter r <

1
2 , let B = T2

\D. Calling (x, v) 2 B⇥ R2

the position and the velocity, respectively, the motion is described by a free
flow

�t(x, y) = (x+ vt, v), (4.1.1)

provided kx+ vtk � r, that is provided the motion does not exist B. When
x 2 @B = @D a collision takes place. Of course, at the collision, it must
be hx, vi  0, the velocity points toward D, otherwise the point would
not have reached the obstacle D but rather would be flowing away from
it. The collision law is, as already said, an elastic collision–namely, the
total energy and the momentum tangential to the collision plane must be
preserved. Thus, calling v� the velocity before collision and v+ the velocity
after collision, we require

kv+k = kv�k ; hJx, v�i = hJx, v+i,

where

J =

✓
0 �1
1 0

◆
,

so that hJx, xi = 0, that is r
�1

Jx is a unit vector tangent to the disk and
oriented counterclockwise. This implies:

v+ = v� �
2

r2
hx, v�ix. (4.1.2)

4.1.1 Flow

From the above discussion, it is clear that (X,�
t
,m) is a smooth flow with

collisions, the only property that needs to be checked is (2.4.3).
Let us call V (x, v) = (v, 0) the vector field generating �

t. A useful fact
is the following.
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Figure 4.1: Collision

Lemma 4.1.1 If w 2 T⇠X and hw, V (⇠)i = 0, then hd�
t
w, V (�t(⇠))i = 0.

Proof. If no collision takes place, then the statement it is obvious by
equation (4.5.9) and since for each w = (w1, w2) 2 T X it must be hw1, vi = 0
(just di↵erentiate kvk

2 = 1). Let us see what happens at collision.
Given the tangent vector w = (w1, w2) at the point ⇠ 2 X, we can

consider the curve �(s) = ⇠ + ws that generates it (�0(0) = w). Suppose
that the next collision takes place with an angle '. If we refer to the Figure
4.1 all we need to compute is the relation between h and l. A bit of geometry
shows that

h = s arctan'+O(s2); l =
s

cos ✓
arctan'+O(s2) = s arctan'+O(s2).

Thus, if ⌧ is the collision time of the trajectory starting at ⇠ and �̃(s) =
�
⌧+(�(s)), we have �̃

0(0) = d⇠�
⌧+w := w̃, and, calling v+ the velocity after

reflection, hv+, w̃i = 0, which proves the lemma. ⇤

This means that in this case there is a particularly simple way to quotient
out the flow direction: consider only vectors perpendicular to the flow.

4.1.2 Reeb flows

A more general way to understand and contextualize Lemma 4.1.1 is to
realize that billiards are an example of Reeb flow.

Definition 13 Given a 2d+1 dimensional manifold M equipped with a one
form ! such that !^ (d!)d 6= 0 (that is, a contact manifold), we call a Reeb
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flow a flow generated by a vector field V such that

!(V ) = 1

!(V, v) = 0 for all tangent vectros v

Let �t be the Reb flow, generated by the vector field V .

Lemma 4.1.2 For each t 2 R we have �
⇤
t! = !.

Proof. By Cartan formula, we have

d

dt
(�⇤

t!) = LV (�
⇤
t!) = d(iV [�

⇤
t!]) + iV (d[�

⇤
t!])

= d(iV [�
⇤
t!]) + iV ([�

⇤
td!]) = d([�⇤

t iV !]) + ([�⇤
t iV d!]) = 0

Thus ! is invariant for D�t. ⇤

As we want to extend the idea of Reeb flows to piecewise smooth flows,
it is natural to say that a piecewise smooth flow is Reeb is !(V ) = 1, where
it makes sense and !(D�tw) = !(w), again where it makes sense.

We can then prove that Billiards are Reeb flows on the constant energy
surface. First of all, note that the energy is just the Kinetic energy, hence
ME = {(q, p) 2 R2 : kpk

2 = 2E} is an invariant surface for the flow.
Note that (�q, �p) 2 TME i↵ h�p, pi = 0. We then consider the one form
!(�q, �p) = 1

2E hp, �qi. Note that the vector field V = (p, 0) generates the
flow away from collisions, and !(V ) = 1. Note that

hV, (�q, �p)i = hp, �qi = !((�q, �p)),

thus being Reeb automatically implies the result in the previous section as
a special case. It remains to check the invariance. If the flow does not
experience collisions, then

D�t(�q, �p) = (�q + t�p, �p).

Hence,

!(D�t(�q, �p)) = hp, �q + t�pi = hp, �qi = !((�q, �p)).

It remains to see what happens at a collision. First of all, note that a curve
with tangent vector (�q, �p) in general consists of trajectories that collide at
di↵erent times. We want then to flow each point along the flow direction
the exact amount that makes the curve collide simultaneously. This means
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that the new curve will have the tangent vector ( e�q, e�p) = (�q, �p)+ ⌧V , for
some ⌧ determined by the condtion h e�q, qi = 0. Yet,

!(( e�q, e�p)) = !((�q, �p)) + ⌧.

By (4.1.2) it follows that

e�q+ = e�q

e�p+ = e�p� 2

r2

h
h e�q, p�iq + hq, e�piq + hq, p�i e�q

i
.

Thus, using (4.1.2) again,

!(( e�q+, e�p+)) = hp+,
e�q+i = hp�, �q+i = !(( e�q, e�p)).

After the collision, we have to subtract the time shear that we introduced,
and this yields

!((�q+, �p+)) = !((�q, �p)

which is the wanted time invariance.

4.1.3 Poincaré map

For many purposes it is useful to view the Sinai billiards as a symplectic
map from a two dimensional domain to itself. Such a reduction is obtained
via a general technique widely used in dynamical system: a Poincaré section
(see 1.2). A Poincaré section consists in introducing some codimension one
manifolds in the phase spaceX and then defining a map from such manifolds
to themselves in such a way that to each point is associated its first return
to the manifolds (if it exists). Let us be more concrete.

Historically the choice of the section to realize a Poincaré map as been
based on @B. In our case this consists of the boundary of the disk, that
is a circle. Of course, it is also necessary to specify the velocity. Clearly
there are two possibilities: one can consider velocities just before collision,
which means hx, vi  0, (this is the Poincaré map from before collision to
before collision) or one can consider the velocity just after collision, meaning
hx, vi � 0, (that is the Poincaré map from just after collision to just after
the next collision). The two choices are equivalent, let us make the second.

If we define the velocity by the angle ' between v and the tangent
(directed clockwise) to the disk at the collision point, then the phase space
is M = S

1
⇥ [0,⇡].

We can then define a map T : M ! M in the following way: for each
⇠ 2 M, let T ⇠ be the point just after the next reflection (if such a reflection
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exists). Note that, if no reflections would occur, almost all the trajectories
would fill T2 densely,4 hence T is defined almost everywhere.

It is natural to use as coordinate on the boundary the distance s, com-
puted counterclockwise along the circle, from a given point. If we want to
compute the induced invariant measure on the Poincaré section M, we can
to introduce the change of coordinates ⌅ : M⇥ [0, �] ! X defined by

⌅(s,', t) = (rn(sr�1) + v(sr�1 + ')t, sr�1 + '�
⇡

2
),

where n(✓) = (cos ✓, sin ✓), v(✓) = (sin ✓,� cos ✓). In this coordinates a point
is determined by its collision data (s,') and the time t past from the last
collision.

A direct computation shows that

det⌅ =

����
�v(sr�1) + r

�1
n(sr�1 + ')t n(sr�1 + ') v(sr�1 + ')

r
�1 1 0

����

=

����
�v(sr�1) n(sr�1 + ') v(sr�1 + ')

0 1 0

����

=
���v(sr�1) v(sr�1 + ')

�� = sin'.

So, given a set A ⇢ M, calling A" = [
"

t=0�
t
A,

µ(A) :=
1

"
m(A") =

1

"

Z

A"

|det(⌅)|dsd'dt =

Z

A

sin'dsd'.

Thus dµ = sin'dsd' and (M, T, µ) is a Dynamical Systems.
It is interesting to notice that µ becomes degenerate for ' 2 {0,⇡},

which correspond to tangent collisions. Another annoying feature of the
above choice is that some trajectories never meet the boundary of the disk
(for example consider the initial condition x = (1, 0), v = (0, 1)) and other
will travel an arbitrarily long time before the next collision.5 These facts,
although not catastrophic, may look unpleasant to someone. It is there-
fore relevant to notice that there are several other possible choices for the
Poincaré section, each one with is own advantages and disadvantages. Let
us see a couple of them.

Consider the fundamental domain Q = [�1
2 ,

1
2 ]

2 of T2, choose @Q as
the basis of the Poincaré section. Of course, @Q is not a smooth manifold
(it consists of four lines). This problem is easily solved by extending the

4Since for almost all velocities v we would have an irrational translation on T2.
5This property is called infinite horizon. We will discuss it further in the sequel.
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concept of Poincaré section to the case in which the section ⌃ is a finite
(or even countable) union of smooth manifolds; the reader can see that this
generalization is indeed immediate. This section has the advantage of a
simple structure, that there is a maximal time from ⌃ to itself, yet it does
not solve the problem of the degeneration of the measure. Here, we also have
problems with the trajectories that meet the section at very small angles.

To overcome such a problem one can choose the section ⌃ ⇥ [�,⇡ � �] .
It is easy to see that if � is chosen small enough then the only e↵ect is to
skip at most one crossing of the boundary ⌃.

We will keep using the relation between the two dynamical systems
(X, m, �t) and (M, µ, T ). In particular it is convenient to define the cone
family on all T X instead that only on T M. We will see that an invariant
cone family on T X induces an invariant cone family on T M.

4.1.4 Singularity manifolds

In this subsection we will study more precisely the singularities of the system
and we will verify that they belong to the general setting developed in 10.
We will consider two di↵erent Poincaré section to give the reader a more
complete idea of the situation.

Let us start with the classical section just after collision. As already
mentioned, the phase space isM = S

1
⇥[0, ⇡]. Clearly, the only singularities

of the map correspond to coordinates where the next collision is a tangent
one. To analyze such a pathology, it is more convenient to look at the billiard
on the universal covering of the torus. In such a covering, the obstacles
will form a lattice and the particles moves along a straight line between
collisions.6

The particle with coordinates (s,'), just after collision, will move in the
direction v(r�1

s + ') with unit speed.7 Hence, if C 2 R2 is the coordinate
of the center of the obstacle with which the next collision will take place,
the condition for a tangent collision reads

rn(r�1
s) + tv(r�1

s+ ') = C ± rn(r�1
s+ '). (4.1.3)

Where t = t(s,') is the collision time. From (4.1.3) we can immedi-
ately extract two interesting informations multipling it by n(r�1

s+ ') and

6This trick is very similar to the one used at the beginning of the chapter to discuss
rectangular billiards, only now we take advantage of the periodicity of the torus rather
than the invariant properties of the domain with respect to the reflections.

7Remember the convention n(✓) := (cos ✓, sin ✓) and v(✓) := (sin ✓,� cos ✓).
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Figure 4.2: Few discontinuity lines in the Poicaré map

v(r�1
s+ ') respectively

hC, v(r�1
s+ ')i = t+ r sin' > 0

F (s,') := hC, n(r�1
s+ ')i � r cos'± r = 0

Taking the derivative of F with respect to ' we get

�r sin'+ hC, v(r�1
s+ ')i = t > 0,

thus we can apply the implicit function theorem and conclude that the
manifold corresponding to this discontinuity can be represented as the graph
of a function '(s). In addition,

d'

ds
= �(

1

r
+

sin'

t
) < 0. (4.1.4)

Since there are infinitely many obstacles with which the next collision can
take place, there must be countably many discontinuity line (some of them
are schematically represented in figure 4.2)

To analize the preimages of the boundary of the section one can proced
in analogy with what we have done before, equation (4.1.3) in this case
beomes

rn(r�1
s) + tv(r�1

s+ ') = C ± rn(r�1
s+ '± �). (4.1.5)

From (4.1.5) we obtain

d'

ds
= �(

1

r
+

sin'

t+ r sin �
) < 0. (4.1.6)
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Clearly, the map is smooth up to, and including, this type of disconti-
nuity, not so for the tangencies. In fact, it is easy to verify that the map
is continuously crossing a tangency line (see Problem 4.8) but we will see
immediately that it is not di↵erentiable. By the discussion of section 5.1
(see in particular fromulae (5.1.1) and (5.1.2)) it follows that if the next
collision takes place with an angle ' 62 [�,⇡ � �], then calling ⌧1 the time
up to the tangent collision and ⌧2 the time from the tangent collision to the
next, we have the formula

DT =

 
1 + 2⌧1

r sin'

2
r sin'

⌧2(1 +
2⌧1

r sin'
) 1 + 2⌧2

r sin'

!
.

Clearly, the norm of DT is bounded by a constant time 1
sin'

(if in doubt
do Problem 4.9). Now, if a point has distance " from the singularity line, it
will land at a distance

p
" from the tangency, which means that there exists

a constant ct > 0 such that, calling S the singularity line and ⇠ the point

| sin'| � ct

p
d(⇠,S).

This means that the Derivative blows up only as a square root getting close
to the singularity. By similar considerations, it is possible to verify also that
the second derivative blows up polynomially (see Problem 4.10).

4.2 Bunimovich Stadium

These billiards have been introduced [10] and first studied [11] by Buni-
movich. In this case the table of the billiard is a convex subset of R2. The
simplest, and original, one consists in two half circles joined by two straight
lines (see Figure 4.3).

The name “stadium” is due to the shape of the domain B in which
the motion takes place. The only di↵erence is that now the curvature of the
boundary is either zero (collisions against the straight segments) or negative
(collision against the half circles).

4.2.1 Flow

We have seen that the flow in a square or in a circle is well defined and
rather regular. Clearly the only relevant discontinuity in the Bunimovich
Billiard arise when a trajectory hit the joining between the circumference
and the straight lines.
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Figure 4.3: Bunimovich stadium

4.3 Di↵erent Tables, di↵erent games

Let us start with a bit of classification.

Definition 14 Here are some standard classes of billiards:

• dispersing billiards are billiards with the boundary @B of the table is a
finite union of stricly convex manifolds with boundary (this are often
called Sinai billiards as well)

• semi-dispersing billiards are billiards with the boundary @B of the table
is a finite union of stricly convex manifolds with boundary

• convex billiards are billiards where the tale B is a convex set.

The remainder of the section is devoted to a more explicit description of
several concrete examples of the above cases.

4.3.1 Dispersing

We have already seen the standard Sinai billiard in section 4.1. In general
several convex obstacles may be present and they are not necessarily dis-
joint. One main issue in this class of billiards is the distinction between
finite and infinite horizon. Finite Horizon means that there is a maximal
time after which a collision must take place, infinite horizon means that
there exists trajectories that never experience a collision.8 The relevance of
such a concept stems from the fact that orbit with no collision have zero
Lyapunov exponents, hence the corresponding billiards cannot be uniformly
hyperbolic.

8Note that the other possibility (all the trajectories experience a collision in finite time,
but there does not exist an upper bound for such a time) cannot take place (see Problem
4.12).
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Infinite Horizon

As already mentioned we have already seen the prototypical example in
this class, yet it may be instructive to analize its properties a bit further.
Consider the Sinai billiard described in section 4.1 and let r1 the radius of
the obstacle. Clearly it is necessary r1 < 1/2 to have no self intersections of
the obstacle. It is also obvious that if r1 < 1/2 then there are trajecotirs that
never collide. Let us study such trajectories a bit more in detail. First of all,
since the sistem has a square simmetry, it is enough to consider trajectories
with velocity in the first half of the first quadrant, i.e. velocities parallel to
the directions (1,!) with ! 2 [0, 1].9

Let us consider the motion with no obstacle (a traslation on the torus)
and see if there are trajectories that never enter in the region k(x, y)k 

r1. Clearly such trajetories are trajectories for the billiard systems as well
and precisely the trajecotries that never experince a collision. For such
trajectories it is particularly convenient to consider the poincarè section
determined by the line S : {x = �1/2}. If we look at the motion only
when the particle intersects such a line we have that the corresponding
map is given by Ty = y + ! mod 1, that is a rotation by ! of the circle
(�1/2, 1/2]. If ! 62 Q then the map T is ergodic and this means that the
trajectory will eventually collide. On the contrary, if ! = p/q, p, q 2 N and
with no common divisors, then all the orbits will be periodic of period q and
it may be possible that some of them never collide.

Notice that a point in S with velocity parallel to (1,!) will experience be-
fore a collision before meeting S again only if y 2 [�!/2�r1

p
1 + !2, �!/2+

r1

p
1 + !2]. On the other hand, since the orbit of the point y has lenght

q and because it is restricted to points of the type y + n/q mod 1, which
are exactly q, it follows that the orbit consists exactly of all such points.
Accordingly, the orbit can avoid only intervals of size less than 1/q. We can
then conclude that there are orbits of the type p/q that never collide if and
only if

2r1

s

1 +
p2

q2
<

1

q
. (4.3.7)

If q = 1 then for p = 0, we have the already know result r1 < 1/2; for p = 1
there can be no collisions only if r1 <

1
2
p
2
. For q  2 there are always

collisions if r1 > [2
p
5]�1.

9If this it is not clear, read again the discussion of polygonal billiards in section 4.0.1.
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Finite Horizon

The simplest case of Sinai billiard with a finite horizon is obtained by em-
ploying two circular obstacles. We have thus a torus of size one together
with a circular obstacle at the point (0, 0) with radius r1 and a circular
obstacle at the point (1/2, 1/2) with radius r2.10 Clearly

r1 + r2 <
1
p
2

in order for the obstacels not to intersect each other. By the discussion of
the infinite horizon case it follows that we can choose r1 > 1/(2

p
2) and

0 < r2 < 1/
p
2� r1 to have a Sinai billiard with disjoint obstacles and finite

horizon. For example one could choose r1 = 3/7 and r2 = 1/4.
In the following we will need a more in depth undertanding of the above

model. Let us consider a regularized Poincarè section of the type introduced
in section 4.1.4 and discuss the structure of the singularity lines for such a
section.

The first step is to understand multiple consecutive tangencies. Let us
start with a double tangency, the first of which is with the central obstacle.
By simmetry, one can limit the analysis to the case in which the second
takes place with the upper right copy of the obstacle. The position of the
particle at time t is given by r1n(✓) + v(✓)t, where n(✓) = (cos ✓, sin ✓) and
v(✓) = (sin ✓,� cos ✓), so we have the next two equations

kr1n(✓) + v(✓)t� pk = r2

hr1n(✓) + v(✓)t� p, v(✓)i = 0,

where p = (1/2, 1/2) are the coordiantes of the center of teh second obstacle
(of course we are working in the universal covering). The first equation
determine the value of t for which the second collision takes place while the
second impose that the collision is tangent. Solving the above equations
yields

1
p
2
cos
⇣
⇡

4
� ✓

⌘
= hn(✓), pi = r1 ± r2.

Accordingly we have four solutions: ⇡

4 � ✓ = ±(cos�1
p
2(r1 ± r2)). In

fact, only two are really relevant since the other two are obtained by sim-
metry around the line joining the two centers. It remains to check that
the above tajectories do not intersect any other obstacle between the two

10Remember that the coordinates are in the universal covering of the torus and that
the points (1/2,�1/2), (1/2, 1/2), (�1/2, 1/2), (�1/2,�1/2) are identified.
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tangencies. In fact, it turns out that the trajectories of the type ⇡

4 � ✓ =

±(cos�1
p
2(r1 � r2)) have a tangent collision with the central scatterer be-

fore colliding with the corner one. It is then easy to see that there can be at
most four consecutive tangencies after that the next collision will take place
with an angle of more than 70 degree.

4.4 Hard spheres

We have already mentioned that the motions of several discs or balls that
collide elastically among themselves are an example of billiards. The study
of such models goes back at least to Boltzmann, who proposed studying the
properties of a gas, imagining that it consists of balls colliding elastically.

We start by looking at the simplest possible case.

A two dimensional gas of particles in a box

4.5 A gas with two particles

The (seemingly ridiculous) simplest case is a gas of two particles in two
dimensions. For simplicity, let us consider two particles of radius r <

1
2 in

a torus of size one. Let x1, x2 2 T2 be the coordinate of the center of the
disks, the velocity changes at collision according to the law
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(
v
+
1 = v

�
1 � hn, v

�
2 � v

�
1 in

v
+
2 = v

�
2 + hn, v

�
2 � v

�
1 in

(4.5.8)

where n is a unit vector in the direction x2 � x1.11

Here, there are three integrals of motion: the energy E = 1
2(kv1k

2 +
kv2k

2) and the total momentum P = v1+ v2. Thus, if we want to obtain an
ergodic system, we have to reduce the system. We will then consider that
phase spaces

XE,P =

⇢
(x1, x2, v1, v2) 2 T4

⇥ R4
���
1

2
(kv1k

2 + kv2k
2) = E; v1 + v2 = P

�
.

Since, in the velocity space, the previous conditions correspond to the
intersection between the surface of a four-dimensional sphere (S3) and a
two-dimensional linear space, the velocity vectors (v1 + v2) are contained in
a one-dimensional circle. Thus, topologically, XE,P = T4

⇥ S
1.12 It is then

natural to choose an angle ✓ as coordinate on S
1, moreover, since

2E = kv1k
2 + kv2k

2 =
1

2
kv1 � v2k

2 +
1

2
kPk

2
,

it is hard to resist setting v2 � v1 = v(✓).13 Hence,

(
v1 =

1
2(P � v(✓))

v2 =
1
2(P + v(✓)).

The free motion is then given by

(
x1(t) = x1(0) +

1
2(P � v(✓))t

x2(t) = x2(0) +
1
2(P + v(✓))t.

Accordingly,

(
x1(t) + x2(t) = x1(0) + x2(0) + Pt mod 1

x2(t)� x1(t) = x2(0)� x1(0) + v(✓)t mod 1.

11To be precise x2�x1 has no meaning since T2 it is not a linear space. Yet, at collision,
the distance between the two disks is 2r, so the global structure of T2 is irrelevant, and
we can safely confuse it with a piece of R2.

12Of course, we are considering only the cases E 6= 0.
13As usual v(✓) = (sin ✓, cos ✓).
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The Siani billiard B

Figure 4.4: Sinai Billiard with infinite horizon

It is then clear the need to introduce the two new variables Q = x1 + x2

and ⇠ = x2�x1. The variable Q performs a translation on the torus, such a
motions are completely understood, and we can then disregard it. The only
relevant motion is the one in the variables (⇠, ✓). The reduced phase space
is then B ⇥ S

1 where B = T2
\{k⇠k  2r}, that is, the torus minus a disk of

radius 2r. The domain B is represented in the next Figure and, apart from
the di↵erent choices of the fundamental domain, it corresponds exactly to
the simplest Sinai billiard. The free motion corresponds to the free motion
of a point as well, while at collision, from (4.5.8), we have

v(✓+) = v(✓�)� 2
⌦ ⇠

2r
, v(✓�)

↵
v(✓�)

that is exactly the elastic reflection from the disk!
It is then natural to consider the general problem of a particle moving

in a region with reflecting boundary conditions. Let B ⇢ Rd (or B ⇢ Td)
be the region and suppose that the boundary @B is made of finitely many
smooth manifolds. Calling (x, v) 2 B ⇥ Rd the position and the velocity,
respectively, the motion inside B is described by a free flow

�t(x, v) = (x+ vt, v), (4.5.9)

When x 2 @B, a collision takes place. If n 2 Rd, knk = 1, is the normal
to @B at x, then, calling v� and v+ the velocities before and after collision,
respectively, the elastic collision is described by

v+ = v� � 2hv�, nin.
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Remark 4.5.1 Here, I will provide a few ideas on billiards and hyperbolic-
ity. This should allow the reader to be able to easily takle a more complete
account of the theory (in particular [16]).

4.6 Some Billiard tables

In the two-dimensional case, there are many possible billiards tables
that have been studied. The two most famous are the Sinai Billiard and the
Bunimovich Stadium.

Sinai Billiard with finite horizon

Bunimovich stadium

Further interesting billiard tables can be found in [64, 14, 16] and refer-
ences therein.
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Problems

4.1 Check that the maps �
t generated by a billiard flow are symplectic.

(Hint: It is obvious for the free flow, but it remains to be checked for
the reflections. This can be done by using formulae like (5.1.3)).

4.2 Given a rectangular box B, with its sides labeled by {1, 2, 3, 4} and let
Ri(B) be the reflection with respect to the side i of the box B.14 Let
R0 be the identity. Consider G = [

1
n=0{0, 1, 2, 3, 4}

n, if g 2 G then we
define Rg(B) = Rg1(· · ·Rg�n(B) · · · ) and, for each g

i
2 {0, 1, 2, 3, 4},

i 2 {1, 2}, g = g
2
� g

1
2 {0, 1, 2, 3, 4}n1+n2 , is defined by gk = g

1
k

for k  n1 and gk = g
2
n�k

, for k > n1. Verify that Rg2(Rg1(B)) =
Rg(B). Introduce the equivalence relation g1 ⇠ g2 i↵ Rg1(B) = Rg2(B).
Let G̃ be the collection of the equivalence classes. Verify the G̃ is a
commutative group with respect to the operation �. (hint: Note that
the geometrical meaning is simply that the final position of the box
after a certain number of reflections does not depend on the order of
the reflections. Clearly, it su�ces to check such a property for two
reflections.)

4.3 Study the motion in a triangular billiard when the angles defining the
triangle are all rational multiples of ⇡. (Hint: use reflections again)

4.4 Study the motion in an elliptical billiard. (Hint: Verify that there
exists an integral of motion.)

4.5 Verify that the caustics correspond to a two dimensional torus.

4.6 Check that the maps �
t generated by a billiard flow are symplectic.

(Hint: It is obvious for the free flow, but it remains to be checked for
the reflections. This can be done by using formulae (5.1.3))

4.7 Find a change of variable that transforms the symplectic form in a
regularized boundary section in the standard symplectic form.

4.8 Verify that, in a regularized boundary section, the map is continuous
across a singularity line corresponding to a tangency.

14The labels attached to the sides of the reflected boxes are the ones obtained naturally
from the old ones.
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4.9 Prove that, given an n ⇥ n matrix A the norm kAk := supv2Rn
kAvk
kvk

where kvk :=
pP

n
v2n satisfies

kAk  constantmax
ij

|Aij|

and compute explicitely the optimal constant.

4.10 Determine the rate at which the second derivative explode as one gets
near a tangency singularity in the Sinai billiard with one circular ob-
stacle in the torus.

4.11 Compute the number of collisions in a convex angle.

4.12 Show that in a Sinai billiard on T2 for which there exist trajectories
that spend an arbitrarily long time without colliding, there must exist
trajectories that never collide. (Hint: some continuity...)

4.13 Study two disks with di↵erent masses.

4.14 Prove that the Poincarè map for the Sinai billiard is piecewise Hölder
of Hölder exponent 1

2 .


