
Chapter 7

Geometry of foliations and

ergodicity (very few words)

We have seen conditions that imply hyperbolicity. Once the map is hyper-
bolic Pesin Theory (e.g. see [37]) implies that there exists stable and unsta-
ble manifolds. However, the objects constructed in Pesin’s theory have very
poor regularity properties. For applications, a more explicit construction
can be essential, especially if it provides extra information on the properties
of the manifolds. For this, the mere existence of an eventually strictly in-
variant cone field is not enough; from now on, we will assume that the cone
field is continuous.

7.1 Cones and invariant distributions

We have seen that the growth of an appropriate quadratic form implies the
contraction of a cone. A natural question is if such a contraction can be
described in a more quantitative way. This is possible, a general theory can
be found in [45], here we give only a quick overview.

Definition 20 The symplectic angle between two vectors u,w → int(C) is
the real number !(u,w) defined by

ω(u, v) =
√
Q(u)

√
Q(v) sinh!(u, v)

Definition 21 The distance s(U,W ) of two Lagrangian subspaces U, V ↑

int(C) is equal to the supremum of absolute values of symplectic angles be-
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tween nonzero vectors from the two Lagrangian subspaces i.e.

s(U, V ) = sup
0 →=u↑U
0 →=v↑V

|!(u, v)|.

It turns out that s is a metric on the set of Lagrangian subspaces contained
in the cone (e.g. see [45]). Here, we just note that if s(U, V ) = 0 it follows,
by definition, that ω(v, u) = 0 for all u → U and v → V , but this implies that
V = U .
Note that if s(U, V ) < ↓ and L is a monotone symplectic matrix, then

√
Q(u)

√
Q(v) sinh!(u, v) = ω(u, v) = ω(Lu,Lv)

=
√
Q(Lu)

√
Q(Lv) sinh!(Lu,Lv)

Thus,

sinh s(LU,LV ) = sup
0 →=u↑U
0 →=v↑V

sinh!(u, v)

√
Q(u)

Q(Lu)

√
Q(v)

Q(Lv)

↔ ε(L)↓2 sinh s(U, V ).

(7.1.1)

The following Theorem gives a criterion for s(U, V ) to be finite.

Theorem 7.1.1 (Theorem 2 [45]) For a strictly monotone map L the di-
ameter of LC, where C is determined by the transversal lagrangian spaces
V1, V2, is equal to the s distance of LV1 and LV2, Moreover, for each La-
grangian spaces V, U ↑ C

tanh

(
s(LV,LU)

2

)
= ε(L)↓2

.

Lemma 7.1.2 Given a smooth Symplectic Dynamical Systems with syngu-
larities (X,T, µ), X a symplectic two dimensional manifold, µ the symplectic
volume, if the systems is eventually strictly monotone, then {E

u(x)} is al-
most everywhere well defined. Moreover, if C(x) is continuous, then {E

u(x)}
is continuous (where it is defined). In addition, if the cone family is strictly
monotone, then {E

u(x)} is everywhere defined.

Proof. Let Cn(x) := DT→nxT
n
C(T↓n

x) and ”n(x) := diam(Cn(x)),
then ”n is decreasing, thus we can define

”↔(x) := lim
n↗↔

”n(x).
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By Theorem 7.1.1

”↔(Tm
x) = lim

n↗↔
diam(DTm→nxT

n
C(T↓n+m

x))

= lim
n↗↔

diam(DxT
m
DT→nxT

n
C(T↓n

x))

↔
1

ε(DxT
m)2

”↔(x).

Next, let # = {x → X | ”↔(x) = ↓}, we claim that µ(#) = 0. In
fact, let Bm = {x → X | ε(DxT

m) ↗ 2}, by eventual strict monotonicity
of the cone field it follows µ(↘m↑NBm) = µ(X), recall (3.5.8). In addition,
Bm ≃ Bm0

for all m > m0. Moreover, if x → Bm, then ”↔(Tm
x) < ↓ (see

Theorem 7.1.1). Thus T↓n# ⇐Bm = ⇒ for all n ↗ m, and

µ(#) = lim
n↗↔

µ(T↓n#) ↔ lim
n↗↔

µ(X\ ↘m↘n Bm) = 0.

Finally, let #L = {x → X |
L

2 ↔ ”↔(x) ↔ L} and suppose µ(#L) > 0. Then,
there exists m → N such that µ(#L ⇐ Bm) > 0. Consequently, for almost
all x → #L ⇐ Bm there exists a return time n̄m → N in the past (that is
T
↓mn̄

x → #L ⇐Bm). Accordingly,

L

2
↔ ”↔(x) ↔

1

ε(DxT
m)2

”↔(T↓mn̄
x) ↔

L

4
,

which is a contradiction unless L = 0. We have so proven that µ(#0) =
µ(X). In other words the cones C↔ = ⇐n≃0Cn(x) is almost everywhere
degenerate since, having zero diameter, means that the cone is a Lagrangian
suspace which is precisely the unstable direction.

To prove the continuity of the above distribution note that the cone
family Cn(x) is continuous. Let x be such that ”↔(x) = 0, then, for each
ϑ > 0, there exists m → N such that ”m(x) < ω

2 . Then one can chose ϖ such
that the edges of Cm(y) vary by an amount less than ω

2 if d(x, y) < ϖ. The
result follows then taking into account that the Hilbert metric bounds the
angle and that the unstable distribution is contained in Cn for each n → N.

The proof of the last fact is obvious: just a simplification of the above
arguments. ↭

Let us conclude with an interesting simple fact.

Lemma 7.1.3 A smooth two-dimensional Symplectic Dynamical System (X, T, µ)
is Anosov i! it admits a strictly monotone continuous cone family.
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Proof. By Lemma 7.1.2 it follows that the stable and unstable distri-
bution are continuous. But then, by continuity, there exists ϱ > 0 and ε > 1
such that

ϱ

√
Q(v) ↔ ⇑v⇑ ↔ ϱ

↓1
√
Q(v) ⇓x,→ X and v → E

u(x)
ε(DxT ) ↗ ε ⇓x → X.

Thus,
⇑DxT

n
v⇑ ↗ ϱ

√
Q(DxT

nv) ↗ ϱε
n
√
Q(v) ↗ ϱ

2
ε
n
⇑v⇑.

Analogously one can obtain the statement for the stable direction by using
the cone family given by the complementary cones (see Problem 3.3).

The proof that an Anosov systems admit a continuous, strictly invariant
cone family is obvious and it is left to the reader. ↭

7.2 Invariant foliations

Once we know that the system is hyperbolic, we can try to take advantage
of hyperbolicity: the first step is to construct stable and unstable manifolds.

The strategy is the usual one: e.g., to construct the unstable manifold at
x, consider the trajectory f

↓n(x) (for simplicity, we consider the Poincarè
map). If the trajectory does not meet a discontinuity, then we can consider
a manifold W , with tangent space in the unstable cone, centered at f↓n(x)
and push it forward with the dynamics. In this way, we obtain a sequence of
manifolds Wn = f

n(W ) that we expect to converge to a limit object. Yet,
one has to take into account that the manifold can be cut by singularities,
and this could be a serious problem.

In the uniformly hyperbolic case, the analysis is especially simple: since
the manifold W expands exponentially (|Wn| ↗ e

εn
|W |), we have that the

manifolds are cut at a distance shorter than ϖ only if the distance of f↓n(x)
from the singularities is less than ϖe

↓εn. This means that the manifold is
cut short only if f↓n(x) belongs to a neighborhood Sn of measure ϖe

↓εn.
But since the measure is preserved, we have

Leb (↘↔
n=0f

n(Sn)) ↔
↔∑

n=0

e
↓εn

ϖ ↔ Cϖ.

It follows that there exists a set of measure 1 ⇔ Cϖ in which the unstable
manifold has a length larger than ϖ.

Implementing the above basic idea can be technically challenging, es-
pecially since the formula (5.1.3) shows that the derivative blows up near
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tangencies. Yet, it can be done, for details, see [38, 17]. A technical tool
used to deal with the blow-up of the di$erential at tangent collisions is the
introduction, by Sinai, of homogeneity strips. See [17] for details.

The above construction provides a stable foliation, yet the foliation has
very poor regularity properties, and this makes it very hard to use it; in
general, it is only measurable. Luckily, the holonomy is absolutely continu-
ous. Moreover, it turns out that it can be approximated by a foliation with
much better properties that can be conveniently used, see [6, Section 6] for
details.

The next step is to prove ergodicity. Once we have an absolutely con-
tinuous foliation, you can try to copy Hopf’s argument. Such an argument
is based on the observation that the ergodic averages of continuous func-
tions are constant along stable and unstable manifolds. This was achieved
by Sinai [61]. But see [45] for a more general version. In addition, [45]
discusses a piecewise linear example in which the technical di%culties are
reduced to a bare minimum, and hence Sinai’s argument can be easily un-
derstood. The idea is to prove local ergodicity, and then a global argument
can be employed to prove ergodicity. The same argument proves that all
the powers of the Poincare maps are ergodic, which implies mixing.

It remains the problem of flows. Since the flow can be seen as a sus-
pension over the Poicnarè map, the ergodicity of the flow follows from the
ergodicity of the map. Not so for mixing: think of a suspension with a
constant ceiling. Mixing for the flows follows from the contact structure.
Forgetting for one second the discontinuities, the fact that the flow is con-
tact implies that is we do a cycle stable, unstable, stable, unstable, we move
in the flow direction, see Figure 7.1.

Indeed, let ϱ be the contact form, then if v is a strong unstable or a
strong stable vector, then ϱ(v) = 0, while ϱ((p, 0)) = 1, where (p, 0) is the
flow direction, it follows that if the cycle in bold in figure 7.1, call it ς, has
sides of length ϖ, then

ϖ
2 =

∫

!
dϱ =

∫

ϑ!
ϱ =

∫

ϖ

ϱ

which equals exactly the displacement in the flow direction, which is then
non-zero. It follows that the stable and unstable foliations are not jointly
integrable, and this property shows that the flow cannot be reduced to a
constant flow suspension by a change of coordinates (since, in such a case,
the foliations would indeed be jointly integrable). This su%ces to prove the
mixing of the flow, eventhough the argument is a bit more technical than
this.



7.2. INVARIANT FOLIATIONS 127

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

x y
⇐

y ẑ
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Figure 7.1: Definition of the temporal function”(y, y⇐) and related quantities



Chapter 8

Statistical Properties

8.1 The problem and a brief overview

Given a topological Dynamical System we would like first to characterize the
invariant measures in order to have a clearer picture of which measurable
Dynamical Systems can be associated with them. This is still at the qualita-
tive level. In addition, we would like to have tools to actually compute such
invariant measures with a given precision, and this is a first quantitative
issue.

Next, we would like to study in-depth statistical properties for some
measures that we deem interesting. The type of questions we would like to
address are

If we make repeated finite time and precision measurements, what do we
observe?

Remember that a measurement is represented by the evaluation of a
function. The fact that the measurement has a finite precision corresponds
to the fact that the function has some uniform regularity (otherwise, we
could identify the point with an arbitrary precision). The fact that the
measure is made for finite time means that we are able only to measure finite
time averages. In other words, we would like to understand the behavior of

N↓1∑

k=0

f ↖ T
k

for large but finite N .
We will see that to achieve this, it is necessary, first and foremost, an

estimate of the speed of mixing. In the case of two-dimensional hyperbolic
billiards, Bunimovich and Sinai first achieved this [9] for the Poincarè map,
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while the result for the flow is due to Demers, Baladi Liverani [19], almost
forty years later (not for lack of trying). For higher dimensional billiards,
the problem is still open.

Several techniques have been developed to study the speed of decay of
correlations, the main one are

1. coding the system via Markov Partitions (Bunimovich and Sinai [9])

2. coding the systems via towers (Lai-Sang Young [68, 69])

3. standard pairs and coupling (Lai-Sang Young [69], Dolgopyat [28])

4. operator renewal theory (Sarig [55])

5. Functional spaces adapted to the transfer operator (Blank, Keller,
Liverani [8]; Liverani, Gouezel [36]; Baladi, Tsujii [5]; Demers, Liverani
[20]; Demers, Zhang [24])

6. Hibert metric (Ferrero, Schmitt [34], Liverani [47]; Demers, Liverani
[25])

7. Random perturbations (Liverani, Saussol, Vaienti [48])

The most powerful techniques are probably (5, 6), but they can work only if
the decay of correlations is exponential. For polynomial decay of correlations
(2, 4) or even the rougher (7) are the way to go. While (3) is unquestionably
the more versatile technique.

For an introduction to (3,5,6) see [21].
To conclude, let me recap part of the state of the art, giving a, idiosyn-

cratic, list of results.
The ergodicity of various billiard tables was established in many papers,

e.g., [66, 14]. Ergodicity results also exist for billiards in which the particle
is subject to a soft potential, rather than a hard core one, e.g. [39, 30]. The
ergodicity of a gas of hard spheres was established, building on a rather long
string of papers, in [59]. The statistical properties of billiards with finite and
infinite horizon can be found in [16, 29] where the standard pair technol-
ogy is put to work. The functional analytic approach has been developed
in [22, 24]; such an approach also allows establishing how the statistical
properties depend on the billiard shape [23]. In addition, the functional
approach has proven instrumental in the proof of exponential mixing for
two dimensional uniformly hyperbolic billiard flow [6]. Many limit theorems
have been obtained for billiard systems for which mixing properties have
been established. Notable results are the polynomial decay of correlations
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in the Bunimovich stadium [7] and the monumental study of one massive
particle interacting with a light one in a box [18].

All the previous papers deal with isolated systems, if the system changes
in time (e.g. a time-dependent billiard table), then the simple study of the
spectral properties of the transfer operator does not su%ce; one has to deal
with the product of di$erent operators. This can be done using perturbation
theory if the change in time is very slow [63]. However, if the change in time
is more violent, perturbation theory fails, and a new approach is needed.
This has been recently achieved in [25] using Hilbert metrics on invariant
cones of densities.

Even though the above list of results is very partial, I hope it gives an
idea of the breadth of the field and of the many directions along which the
research is developing.

Given a Dynamical System, it is, in general, very hard to study its er-
godic properties, especially if the goal is to have a quantitative understand-
ing. To make clear what is meant by a quantitative understanding and which
type of obstacles may prevent it, I refer the reader to the first chapters of
the book [21], available online.

8.2 A machine to construct invariant measures

Dynamical systems typically have many invariant measures, exceptions like
minimal or unique ergodic systems are rare but important.

In particular, given any periodic orbit, one can construct an invariant
measure supported on such an orbit. These are not so interesting measures,
even though the asymptotic growth of the periodic orbits contains an in-
credible amount of information about the system, see the book [27] to have
an idea of what I am talking about.

In this section we describe how to construct manifold invariant measures
for the simplest possible system: a smooth expanding map of the cirlce.

Let f → C
2(T,T) with f

⇐
↗ φ > 1 and g → C

1(T,R). We define the
operator

Lgh(x) =
∑

y↑f→1(x)

e
g(y)

h(y).



8.2. A MACHINE TO CONSTRUCT INVARIANT MEASURES 131

Problem 8.2.1 Show that, for all n → N,

L
n

gh(x) =
∑

y↑f→n(x)

e
gn(y)h(y),

gn(y) =
n↓1∑

k=0

g ↖ f
k(y).

Problem 8.2.2 (Lasota-Yorke) Show that, for all n → N, and h → C
1(T,C),

⇑L
n

gh⇑↔ ↔ ⇑L
n

g1⇑↔⇑h⇑↔∥∥∥∥
d

dx
L
n

gh

∥∥∥∥
↔

↔ ⇑L
n

g1⇑↔

[
φ
↓n

⇑h
⇐
⇑↔ +

⇑g
⇐
⇑↔

1⇔ φ↓1
⇑h⇑↔

]

Note that Problem 8.2.2 implies that Lg → L(C1
, C

1), that is a bounded
operator on C

1 functions.

Problem 8.2.3 Use subjectivity of an = ln ⇑Ln
g1⇑↔ to show that it exists

↼ = lim
n↗↔

⇑L
n

g1⇑
1

n↔.

Then use Problem 8.2.2 to show that

↼ = lim
n↗↔

⇑L
n

g⇑
1

n

where the norm is the usual operator norm that makes L(C1
, C

1) a multi-
plicative algebra.

Thus sup{|z| : z → ε(Lg)} = ↼. Also, since the unit ball of C1 is compact in
C
0 by Ascoli-Arzela, it follows that the Hennion Theorem applies (see [21,

Appendix B] for a precise statement and a proof). As a consequence, we
know that the essential spectral radius of Lg is bounded by φ

↓1
↼. We then

have the following spectral decomposition

Lg =
M∑

ϱ=1

[
e
iςω↼’ϱ +Nϱ

]
+R

where ↽ϱ → [0, 2⇀), dϱ → N ↘ {0}, with the convention N
0
ϱ
= ’ϱ, the spectral

radius of R is strictly samller than ↼1 < ↼, and PϱPϱ↑ = ϖϱ,ϱ↑ , PϱNϱ↑ =

Nϱ↑’ϱ = ϖϱ,ϱ↑Nϱ, N
dω
ϱ

= 0 and N
dω↓1
ϱ

↙= 0, and PϱR = NϱR = R’ϱ = RNϱ =
0.
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Problem 8.2.4 Show that

L
n

g =
M∑

ϱ=1

[
e
iςω↼’ϱ +Nϱ

]
n

+R
n

Let d = sup dϱ. For the following, it turns out to be useful to do the following
computation, for all ↽ → [0, 2⇀),

1

nd

n↓1∑

k=0

e
↓iςk

↼
↓k

L
k

g =
1

nd

n↓1∑

k=0

M∑

ϱ=1




d↓1∑

j=0

e
↓iςk

(
k

j

)
↼
↓j

e
iςω(k↓j)’ϱN

j

ϱ



+ e
↓iςk

↼
↓k

R
k

=
M∑

ϱ=1

e
↓iςω(d↓1)

↼
↓d+1 1

nd

n↓1∑

k=0

e
i(ςω↓ς)k k · · · (k ⇔ d+ 2)

(d⇔ 1)!
N

d↓1
ϱ

+O

(
1

n

)

Problem 8.2.5 Show that if ↽ ↙→ {↽ϱ}, then

lim
n↗↔

1

nd

n↓1∑

k=0

e
↓iςk

↼
↓k

L
k

g = 0.

It remains to consider the case when ↽ = ↽
ϱ̄
for some ↽

ϱ̄
→ {↽ϱ}. Then

lim
n↗↔

1

nd

n↓1∑

k=0

e
↓iςω̄k↼

↓k
L
k

g = lim
n↗↔

e
↓iςω̄(d↓1) ↼

↓d+1

nd

n↓1∑

k=0

k · · · (k ⇔ d+ 2)

(d⇔ 1)!
N

d↓1
ϱ̄

= e
↓iςω̄(d↓1) ↼

↓d+1

(d⇔ 1)!


lim
n↗↔

n↓1∑

k=0

(
k

n

)
d↓1 1

n


N

d↓1
ϱ̄

= e
↓iςω̄(d↓1) ↼

↓d+1

(d⇔ 1)!

[∫ 1

0
x
d↓1

dx

]
N

d↓1
ϱ̄

= e
↓iςω̄(d↓1) ↼

↓d+1

d!
N

d↓1
ϱ̄

.

(8.2.1)

We can now start to harvest the above facts. First of all, if 0 ↙→ {↽ϱ}, then

lim
n↗↔

1

nd

n↓1∑

k=0

↼
↓k

⇑L
k

g1⇑↔ = 0.

But by definition there exists ⇁̄ and ψ̄ → C
1 such that N

ϱ̄
ψ̄ = ψ̃ ↙= 0, hence
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equation (8.2.1) implies

↼
↓d+1

d!
⇑(̃⇑↔ = lim

n↗↔

∥∥∥∥∥
1

nd

n↓1∑

k=0

e
↓iςk

↼
↓k

L
k

g ψ̄

∥∥∥∥∥
↔

↔ lim
n↗↔

1

nd

n↓1∑

k=0

↼
↓k

⇑L
k

g1⇑↔⇑ψ̄⇑↔ = 0

yielding a contradiction. Hence, 0 → {↽ϱ}. Then let ψ = N
d↓1
0 1, it follows

that Lgψ = ↼ψ. Also equation (8.2.1) implies ψ ↗ 0.

Problem 8.2.6 Show that for all x → T the preimmages
↔

n=1 f
↓n(x) form

a dense set.

Suppose now there exist x̄ such that ψ(x̄) = 0, then

0 =
∑

y↑f→n(x̄)

e
gn(y)ψ(y)

hence ψ is zero on the preimmags of x̄ and, by Problem 8.2.6, this implies
that ψ ∝ 0. Hence, c = infx ψ(x) > 0 and, reacalling Problem 8.2.4, for
each n → N,

↼
n
⇑ψ⇑↔ = ⇑L

n

gψ⇑↔ ↗ c⇑L
n

g1⇑↔ ↗ c⇑Lg⇑
n
↗ C#↼

n
n
d↓1

which implies d = 1; that is, the peripheral spectrum has no Jordan blocks,
and then neither has the rest of the peripheral spectrum.

Next, suppose there is another eigenvector ψ̄ ↙= ψ such that Lgψ̄ = ↼ψ̄.
Note that the real and imaginary parts of ψ̄ must be eigenvectors as well.
Hence, we can consider ψ̄ real without loss of generality. Let a → R be such
that infx ψ(x)⇔ aψ̄(x) = 0. But then, since also ψ⇔ aψ̄ is an eigenvector of
Lg, we can argue as before and conclude that ψ ∝ aψ̄. This implies that ↼
is a simple eigenvalue of Lg.

At the moment, we have thus established the following decomposition

Lg = ↼’0 +
M↓1∑

ϱ=1

e
iςω↼’ϱ +R

where ’0 is a rank one operator, that is, there exists ⇁ → (C1)⇐ such that
⇁(ψ) = 1 and ’0h = ψ · ⇁(h), or, alternatively, ’0 = ψ ′ ⇁. On the other
hand (8.2.1), for ↽

ϱ̄
= 0 implies that ⇁(ϕ) ↗ 0 for all ϕ ↗ 0. In turn, this

implies ⇁ → (C0)⇐, that is ⇁ is a measure.
Since ’0Lg = Lg’0 = ↼’0, we have ⇁(Lgϕ) = ↼⇁(ϕ) for all ϕ → C

0.
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Problem 8.2.7 Show that the support of ⇁ is all T.

We can now suppose that there exists ↽ → {↽1, . . . , ↽M} and h such that

Lgh = e
iς
↼h.

Then
↼|h| ↔ Lg|h|

but then 0 ↔ ⇁(Lg|h|⇔ ↼|h|) = 0 implies ↼|h| = Lg|h| ⇁-almost-surely, which
implies ↼|h| = Lg|h| by Problem 8.2.7. By yhe simplicity of ↼ the above
implies |h| = ψ. Accordingly, it must be h = e

iφ
ψ, for some ▷ → C

1(T,R).
We can then write

Lg(e
iφ↓i(φ⇒f+ς)

ψ) = e
↓i(φ+ς)

Lg(e
iφ
ψ) = ↼ψ = Lgψ

which, applying ⇁ and taking the real part implies

⇁ ((1⇔ cos(▷⇔ ▷ ↖ f ⇔ ↽))ψ) = 0

which is possible only if ▷⇔ ▷ ↖ f ⇔ ↽ = 2⇀k for some k → N. Since the map
is expanding, it must have at least a fixed point; let us call it p. Then

2⇀k = ▷(p)⇔ ▷ ↖ f(p)⇔ ↽ = ⇔↽

which means ↽ = 0, contrary to the hypotheis. We have finally obtained the
spectral decomposition

Lg = ↼ψ ′ ⇁+R.

What does this tell about invariant measures?

Problem 8.2.8 Prove that µ(ϕ) := ⇁(ϕ · ψ) is a probability measure.

Here is the punchline

µ(ϕ ↖ f) = ⇁(ϕ ↖ fψ) = ↼
↓1

⇁(Lg(ϕ ↖ fψ)) = ↼
↓1

⇁(ϕLgψ) = ⇁(ϕψ) = µ(ϕ)

that is we have a invariant measure of full support.


