
STATISTICAL PROPERTIES OF HYPERBOLIC BILLIARDS

CARLANGELO LIVERANI

Abstract. I will discuss some recent results and open problems concerning

the statistical properties of hyperbolic billiards. First I will discuss how to

establish hyperbolicity, and then I will discuss the statistical properties. I will
put the emphasis on some mathematical techniques useful to tackle such prob-

lems (e.g. standard pairs, dynamical functional spaces and transfer operators,

strictly invariant cones, and Hilber metric).
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1. Hyperbolic Billiards

The study of billiards has a double parallel history. On the one hand, starting
at least with G. Birkhoff, they are seen as simple examples of dynamical systems
and a tool to understand issues of integrability (billiard in an ellipse, polygonal
billiards) and tool to understand strongly irregular motion (Sinai and Bunimovich
Billiards). We here will concentrate on the second class of models.

1.1. Billiard tables.
The genesis of the study of the latter type of billiards goes back at least to Boltz-
mann who proposed to study the properties of a gas imagining that it consists of
balls colliding elastically.
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A two dimensional gas of particles in a box

The (seemingly ridiculous) simplest case is a gas of two particles in two dimen-
sions. For simplicity, let us consider two particles of radius r < 1

2 in a torus of

size one. Let x1, x2 ∈ T2 be the coordinate of the center of the disks, the velocity
changes at collision according to the law

(1.1)

{
v+

1 = v−1 − 〈n, v
−
2 − v

−
1 〉n

v+
2 = v−2 + 〈n, v−2 − v

−
1 〉n

where n is a unit vector in the direction x2 − x1.1

Here there are three integral of motion: the energy E = 1
2 (‖v1‖2 + ‖v2‖2) and

the total momentum P = v1 + v2. Thus, if we want to obtain an ergodic systems,
we have to reduce the system. We will then consider that phase spaces

XE,P =

{
(x1, x2, v1, v2) ∈ X | 1

2
(‖v1‖2 + ‖v2‖2) = E; v1 + v2 = P

}
.

Since, in the velocity space, the previous conditions correspond to the intersec-
tion between the surface of a four dimensional sphere (S3) and a two dimensional
linear space, the velocity vectors (v1 + v2) is contained in a one dimensional circle.
Thus, topologically, XE,P = T4 × S1.2 It is then natural to choose an angle θ as
coordinate on S1, moreover, since

2E = ‖v1‖2 + ‖v2‖2 =
1

2
‖v1 − v2‖2 +

1

2
‖P‖2,

it is hard to resist setting v2 − v1 = v(θ).3 Hence,{
v1 = 1

2 (P − v(θ))

v2 = 1
2 (P + v(θ)).

1To be precise x2 − x1 has no meaning since T2 it is not a linear space. Yet, at collision, the
distance between the two disks is 2r, so the global structure of T2 is irrelevant and we can safely

confuse it with a piece of R2.
2Of course, we are considering only the cases E 6= 0.
3As usual v(θ) = (sin θ, cos θ).
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The free motion is then given by{
x1(t) = x1(0) + 1

2 (P − v(θ))t

x2(t) = x2(0) + 1
2 (P + v(θ))t.

Accordingly, {
x1(t) + x2(t) = x1(0) + x2(0) + Pt mod 1

x2(t)− x1(t) = x2(0)− x1(0) + v(θ)t mod 1.

It is then clear the need to introduce the two new variables Q = x1 + x2 and
ξ = x2 − x1. The variable Q performs a translation on the torus, such a motions
is completely understood and we can then disregard it. The only relevant motion
is the one in the variables (ξ, θ). The reduced phase space is then B × S1 where
B = T2\{‖ξ‖ ≤ 2r}, that is the torus minus a disk of radius 2r. The domain B is
represented in the next Figure and, apart the different choice of the fundamental
domain, it corresponds exactly to simplest Sinai billiard.

The Siani billiard B
The free motion corresponds to the free motion of a point as well, while at

collision, from (1.1), we have

v(θ+) = v(θ−)− 2
〈 ξ

2r
, v(θ−)

〉
v(θ−)

that is exactly the elastic reflection from the disk!
It is the natural to consider the general problem of a particle moving in a region

with reflecting boundary conditions. Let B ⊂ Rd (or B ⊂ Td) be the region and
suppose that the boundary ∂B is made of finitely many smooth manifolds. Calling
(x, v) ∈ B × Rd the position and the velocity, respectively, the motion inside B is
described by a free flow

(1.2) φt(x, y) = (x+ vt, v),

When x ∈ ∂B a collision takes place. If n ∈ Rd, ‖n‖ = 1, is the nomal to ∂B at
x, then, calling v− and v+ the velocities before and after collsion, respectively, the
elastic collision is described by

v+ = v− − 2〈v−, n〉n.
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1.2. Hyperbolicity and how to establish it.
Since we will discuss hyperbolic billiards, we must say exactly what we mean and
how to see if a billiard is hyperbolic

First of all, recall Oseledec [32] (see [42] for a nice introduction and [23] for
a generalization and more recent bibliography). We content ourselves with the
following version.

Theorem 1.1 (Wojtkowski [40]). Let (X,µ) be a probability space and f : X → X
a measure-preserving transformation. Let A : X → GL(n,R) be a measurable
mapping to n × n matrices such that log+ ‖A(·)‖ ∈ L1(X,µ). Then for µ-almost
all x ∈ X there are subspaces {0} = V 0

x ⊂ V 1
x ⊂ · · · ⊂ V nx = Rn and numbers

λ1(x) ≤ · · · ≤ λn(x) such that, for all i ∈ {1, . . . , n}.

lim
k→∞

1

k
ln ‖A(fk−1(x)) · · ·A(τ(x))A(x)v‖ = χi(x)

if v ∈ V ix \ V i−1
x .

We are interested in the case A(x) = Dxφ1, where Φt is the billiard flow. Of
course, the flow will have a zero Lyapunov exponent (the flow direction).

Definition 1. A Billiard is hyperbolic if the only zero Lyapunov exponent is the
one associated with the flow direction. Equivalently, a Billiard is hyperbolic if the
Poincarè map has no zero Lyapunov exponent.

The problem is to have a tool to establish hyperbolicity. The following theorem
provides a very efficient tool.

Theorem 1.2 (Wojtkowski [40]). Let X be a Riemannian manifold, possibly with
boundaries, {C(x) ⊂ TxX : x ∈ X} a family of closed cones in the tangent space.
Let f : X → X and A : X → SL(n,R) as in Theorem 1.1. If for µ almost x ∈ X
there exists n(x) ∈ N such that A(fn(x)−1) · · ·A(x)C(x) ⊂ int(C(fn(x)(x))), then
the maximal Lyapunov exponent is strictly positive.

The above theorem suffices for planar billiards, where there are two Lyapunov ex-
ponents λi and, by volume conservation λ1 = −λ2. For higher dimensional billiard,
it does not control all the Lyapunov exponents. To achieve this, we have to use
explicitely the fact that the Billiards flows are Hamiltonian, and hence symplectic.
In addition, while a two dimensional cone is simply a sector, a higher dimensional
cone can have many different shapes and it is not obvious what is a natural cone
shape.

Given a symplectic form ω left invariant by ma f : M →M , we have a symplectic
flow. If TM = R2d, then a d-dimensional subspace V ⊂ R2d is called Lagrangian if
ω|V ≡ 0. Given two transversal Lagrangian subspaces V1, V2, we can write uniquely
v ∈ R2n ad v = w1 + w2, with wi ∈ Vi. we can then define the quadratic function

Q(v) = ω(v1, v2).

This allows us to define special cones with remarkable properties:

C = {v ∈ R2n : Q(v) > 0}.
Accordingly, if we specify a field of transversal Lagrangian subspace, we have the
quadratic functions Qx and the cone field Cx.

Obviously, if Qf(x)(dxfv) ≥ Qx(v), then dxfCx ⊂ Cf(x), hence we have cone
invarince. Such maps are called monotone.
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Lemma 1.3 ([29], Sections 6). A map is monotone if and only if the cone field is
invariant. The same is true for strict monotonicity.

Theorem 1.4 ([29] Sections 5, 6, or [28]). If a map is eventually strictly monotone,
then all its Lyapunov exponents are non-zero.

The above also has a continuous version: a Hamiltonian flow in a 2n+ 2 dimen-
sional manifold, is determined by a Hamiltonian H and the corresponding vector
field XH defined by

dH(v) = ω(XH , v)

for all tangent vectors v. If v is tangent to a constant energy surface H = c, we
have dH(v) = 0, it follows that ω(XH , v) = 0 and then ω(XH ,∇H) 6= 0, otherwise
ω would be degenerate. We can then define the spaces, on the surface H = c,

V(x) = {v ∈ R2(n+1) : dH(v) = 0}/XH ,

that is, given two vectors v, w tangent to the energy surface we consider them equal
if v = w + αXH(x) for some α ∈ R. Then V(x) have dimension 2n, moreover
ω(v + αXH , w + βXH) = ω(v, w), so we can quotient the simplectic form on V(x).
Moreover, dxφt(v + αXH(x)) = dxφt(v) + αXH(φt(x)). Thus also dφt can be
quotiented, and we are are reduced to the discrete case.

In alternative, one can consider the Poincarè map.

1.3. Some Billiard tables.

In the two dimensional case there are many possible billiards table that have
been studied. The most famous two are the Sinai billiard and the Bunimovich
stadium.

Sinai Billiard with finite horizon
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Bunimovich stadium

Further interesting billiard tables can be found in [41, 7, 9] and references therein.

1.4. Collision map and Jacobi fields.

To compute, in general, the collision map it is helpful to introduce appropriate
coordinates in T X. A very interesting choice is constituted by the Jacobi fields.4

Let X− be the set of configurations just before collision. For each (x, v) ∈ X\X−
there exists δ > 0 such that

φt(x, v) = (x+ vt, v) 0 ≤ t ≤ δ.
Let us consider the curve in X

ξ(ε) = (x(ε), v(ε)),

with ξ(0) = (x, v) and ‖v(ε)‖ = 1.
For each t such that φt(ξ(0)) 6∈ X−, let

ξ(ε, t) = (x(ε, t), v(ε, t)) = φt(ξ(ε)).

The Jacobi field J(t) is defined by

J(t) ≡ ∂x

∂ε

∣∣∣∣
ε=0

.

Note that, since x(0, t) 6∈ X−, for s < δ

ξ(ε, t+ s) = ξ(ε, t) + (v(ε, t)s, 0),

so

J ′(t) =
dJ(t)

dt
=
∂v(ε, t)

∂ε

∣∣∣∣
ε=0

.

That is, (J(t), J ′(t)) = dφtξ
′(0).

At each point ξ = (x, v) ∈ X we choose the following base for TξX:5

η0 = (v, 0); η1 = (v⊥, 0); η2 = (0, v⊥);

where ‖v⊥‖ = 1, 〈v, v⊥〉 = 0.
The vector η0 corresponds to a family of trajectories along the the flow direction

and it is clearly invariant; η1 to a family of parallel trajectories and η2 to a family of

4The Jacobi Fields are a widely used instrument in Riemannian geometry (see [18]) and have
an important rôle in the study of Geodetic flows, although we will not insists on this aspect at

present. Here they appear in a very simple form.
5Here v⊥ = Jv with

J =

(
0 1

−1 0

)
.
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trajectories just after focusing. It is very useful the following graphic representation.
We represent a tangent vector by drawing a curve that it is tangent to it. A curve
in T X is given by a base curve that describes the variation of the x coordinate
equipped with a direction at each point (specified by an arrow) which show how
varies the velocity.

A direct check shows that each vector η perpendicular to the flow direction will
stay so i.e.

〈dφtη, (vt, 0)〉 = 〈dφtη, dφt(v, 0)〉 = 〈η, (v, 0)〉 = 0.

So the free flow is described by

dφtη0 = η0; dφtη1 = η1; dφtη2 = η2 + tη1,

that is, in the above coordinates

(1.3) dφt =

1 0 0
0 1 0
0 t 1

 .

Let us see now what happens at a collision.
Let x0 ∈ ∂B be the collision point and let ξc = (x0, v) be the configuration at the

collision. We want to compute Rε := dφ−εξcφ
2ε, that is the tangent map from just

before to just after the collision. Clearly Rεη0 = η0. If γ(s) is the curve associated
to η1 at the point φ−εξc,

dφ2εγ(s) =

(
v⊥+

[
s+ ε

2s

r sinϕ

]
,

2s

r sinϕ

)
+O(s2)

where r is the radius of the osculating circle (that is the circle tangent to the
boundary up to second order) which is the inverse of the curvature K(x0) of the
boundary at the collision point.

The above equation means that

J(ε) = (1 +
2εK(x0)

sinϕ
)v⊥+ .

Accordingly, calling R = limε→0Rε the collision map, we have

Rη1 = η1 +
2K

sinϕ
η2; Rη2 = η2.

Hence,

(1.4) DR =

1 0 0
0 1 2K

sinϕ

0 0 1

 .

The above computations provide the following formula for the derivative of the
Poincaré section from the boundary of the obstacle, just after collision, to the
boundary of the obstacle just after the next collision

(1.5) DT =

(
1 2K

sinϕ

τ 1 + 2τK
sinϕ

)
,

where τ is the flying time between the two collisions and ϕ the collision angle.
Formula (1.5) is sometimes called Benettin formula (e.g., [25]).
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1.5. Hard spheres. For hard balls or radius 1
2 , and mass one, in dimension d, the

flow is given by φt(q, p) = q + tp if no collision occurs. If the ball i collides with
the ball j, then let p−i , p

−
j and p+

i , p
+
j be the velocities just before and after the

collision, respectively. Note that for the balls to collide is must be that before the
collision

0 >
d

dt
‖qi − qj‖2 = 〈qi − qj , pi − pj〉.

Thus, at collision, 〈qi − qj , pi − pj〉 ≤ 0. Let n = qi − qj , then

p+
i = p−i − 〈n, p

−
i − p

−
j 〉n

p+
j = p−j + 〈n, p−i − p

−
j 〉n.

(1.6)

Let us d(q,p)φt(δq, δp) across a collision. If τ is the collision time of the trajectory
then ‖qi(τ)− qj(τ)‖ = 1. If we consider the trajectories φt((q, p) + s(δq, δp)), then
the collision time τ(s) satisfies

〈qi(τ)− qj(τ), δqi − δqj〉+ 〈qi(τ)− qj(τ), pi(τ)− pj(τ)〉τ ′(0) = 0.

If the collision is non tangent (i.e. 〈n, pi(τ)− pj(τ)〉 6= 0), then,

τ ′(0) = − 〈n, δqi − δqj〉
〈n, pi(τ)− pj(τ)〉

.

To compute dφt is then convenient to shift along the flow direction by τ so all the
trajectories (q, p) + s(δq, δp) collide simultaneously. Let us call (δ̃q, δ̃p), the shifted
tangent vector. For such a tangent vector, we have that (1.6) yields

δ̃q+
i =δ̃q−i

δ̃q+
j =δ̃q−j

δ̃p+
i =δ̃p−i − 〈δ̃q

−
i − δ̃q

−
j , p

−
i − p

−
j 〉n− 〈n, p

−
i − p

−
j 〉(δ̃q

−
i − δ̃q

−
j )

− 〈n, δ̃p−i − δ̃p
−
j 〉n

δ̃p+
j =δ̃p−j + 〈δ̃q−i − δ̃q

−
j , p

−
i − p

−
j 〉n+ 〈n, p−i − p

−
j 〉(δ̃q

−
i − δ̃q

−
j )

+ 〈n, δ̃p−i − δ̃p
−
j 〉n.

(1.7)

And the derivative is then obtained shifting back along the flow direction. Note
that, by construction 〈δ̃q−i − δ̃q

−
j , n〉 = 0.

To apply Theorem 1.4 we have thus to construct the quadratic form Q. We
choose the lagrangian spaces V1 = {δq = 0} and V2 = {δp = 0}. The energy is only
kinetic energy, then the vectors tangent to the constant energy are 〈p, δp〉 = 0. This
yields the form Q(δq, δp) = 〈δq, δp〉. The vector field is (p, 0), and Q(δq+αp, δp) =
Q(δq, δp), so Q is well defined on the quotient and we can restrict ourselves to the
vectors {(δq, δp) : 〈p, δp〉 = 〈p, δq〉 = 0}. Note that

Q((δq + tδp, δp)) = Q(δq, δp) + t‖δp‖2 ≥ 0.

and if just a collision takes place in the interval [0, t], then

Q((δq + tp, δp)) = Q(δ̃q, δ̃p) = Q(δq, δp)− 〈n, p−i − p
−
j 〉‖δ̃q

−
i − δ̃q

−
j ‖

2 ≥ 0.

The invariance of the cone follows.
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Figure 1. A simple collision graph (the stars are the collisions)

Note that we have strict invariance if δp 6= 0. If δp = 0, then we have the strict
invariance if δ̃q−i 6= δ̃q−j . This fails only if

δq−i −
〈n, δqi − δqj〉
〈n, pi(τ)− pj(τ)〉

pi = δq−j −
〈n, δqi − δqj〉
〈n, pi(τ)− pj(τ)〉

pj ,

i.e. there exists z ∈ Rd and λ ∈ R such that

δqi = z + λpi

δqj = z + λpj .
(1.8)

To see how to use the above facts, it is convenient to introduce a bit of notation.

1.6. Collision graphs.
First of all I will introduce a collision graph to describe pictorially the relevant
features of a trajectory, it will be a directed graph (the direction being given by
time). The graph starts with n roots (each one representing one ball), from each
root starts an edge (representing the path of a ball). A collision is represented by a
vertex in the graph (I will idicate it pictorially by a star not to confuse it with edges
that crosses on due to the two dimensional reprentation). If the collision involves
k balls, then the vertex will have degree 2k with k entering edges–representing
the incoming particles–and k exiting edges–representing the outcoming particles.
Note that typically each vertex will have degree four, yet in the following we will
generalize the meaning of a vertex and vertex of higher degree will play an important
role.

See figure 1 for the case of four balls in which number one collides with two, then
two with four, and finally two with three.6

Next, let us call G a collision graph and let V (G) be the collection of its vertexes,

B̃(G) the collection of its edges and B(G) the collection of edges that connect starred
veteces. In addition for each edge b ∈ B(G) let ν(b), ν+(b) be the two vertices joined
by the edge.7

6The rule for tracing the graph is that the order of the balls is not changed at collision, so
the line on the left represents the particles entering the collision vertex from the left. Remark

that the collision graph is only a symbolic device and does not respect the geometry of the actual
collisions, so the ordering of the balls is only a device to tell them apart and has no relation with

the actual geometry of the associated configuration. Keeping this in mind, in figure 1 the final

disposition of the balls is: one, four, two, three.
7By convention ν(b) corresponds to the lower collision and ν+(b) to the upper.
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Figure 2. A decorated collision graph

To follow the history of a vector of type (δq, 0) that stubbornly refuses to enter
strictly in the cone it is convenient to specify at each vertex the values (λν , zν)
appearing in the associated equation (1.8). Of course, to recover the tangent vectors
from the {(λν , zν)}ν∈V (G), it is necessary to specify the velocities. To this end we
specify for each edge the velocity v(b) of the particle associated to such a line.
We can then decorate a graph with the above informations and we obtain a full
description of the history of a tangent vector that keeps being not increased by the
dynamics in the trajectory piece described by the graph (of course provided such a
vector exists at all).

Now consider a edge b ∈ B(G), if it represents the trajectory of the particle j
between the collision corresponding to the the vertex ν(b) and the one corresponding
to the vertex ν+(b), then the corresponding component of the tangent vector at
such times can be written both as δqj = z(ν(b))+λ(ν(b))v(b) and δqj = z(ν+(b))+
λ(ν+(b))v(b). Accordingly, the following compatibility condition must be satisfied:

(1.9) z(ν(b))− z(ν+(b)) = [λ(ν+(b))− λ(ν(b))]v(b).

It is then natural to define another decoration, this time associated to edges that
connect two collision vertexes,

(1.10) µ(b) := λ(ν+(b))− λ(ν(b)).

By decorated collision graph, we will mean a graph with (λ(ν), z(ν)) attached to
each vertex and µ(b), v(b) to each edge connecting two collisions, with a mild abuse
of notations we will call such decorated graph G as well, see figure 2.8

1.7. Cycles. As time progress the graph will grow more complex, in particular it
may develop cycles. By a cycle I mean a connected path of edges that leave a vertex
and go back to it, e.g. the thick edges in the graph of figure 3.

Once a cycle is formed a remarkable compatibility condition can be derived. In
fact, let C ⊂ G be a cycle, let us run it counterclockwise and define, for each edge
b ∈ C, εC(b) = 1 if the edge is run from bottom to top and εC(b) = −1 if it is
run from top to bottom. We have, by definition (1.10),

∑
b∈B(C) εC(b)µ(b) = 0. In

8Note that the above description is quite redundant due to (1.9), yet we will see in the following
that such a description is quite convenient.
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Figure 3. A cycle

addition, we can sum equation (1.9) for each edge in the cycle and obtain∑
b∈B(C)

µ(b)εC(b)v(b) = 0

∑
b∈B(C)

εC(b)µ(b) = 0.
(1.11)

The above formula is essentially the closed path formula introduced by Simanyi in
[34]. Such a formula expresses a compatibility condition that puts a clear restric-
tion on the possible existence of the decorated collision graph, and hence of the
corresponding nonincreasing vector. Studying the combinatorics of such collisions,
it is possible to establish the hyperbolicity, and ergodicity, of a gas of n particles.
This has been done in a series of papers of the Hungarian team [27, 34, 35, 36, 37].

2. Geometry of foliations

Once we know that the system is hyperbolic, we can try to take advantage of
hyperbolicity: the first step is to construct stable and unstable manifolds. The
strategy is the usual one: e.g., to construct the unstable manifold at x, consider
the trajectory f−n(x) (for simplicity, we consider the Poincarè map). If the tra-
jectory does not meet a discontinuity, then we can consider a manifold W , with
tangent space in the unstable cone, centered at f−n(x) and push it forward with
the dynamics. In this way, we obtain a sequence of manifolds Wn = fn(W ) that
we expect to converge to a limit object. Yet, one has to take into account that the
manifold can be cut by singularities, and this could be a serious problem.

In the uniformly hyperbolic case, the analysis is especially simple: since the
manifoldW expands exponentially (|Wn| ≥ eλn|W |), we have that the manifolds are
cut at a distance shorter than δ only if the distance of f−n(x) from the singularities
is less than δe−λn. This means that the manifold is cut short only if f−n(x) belongs
to a neighborhood Sn of measure δe−λn. But since the measure is preserved, we
have

Leb (∪∞n=0f
n(Sn)) ≤

∞∑
n=0

e−λnδ ≤ Cδ.

It follows that there exists a set of measure 1−Cδ in which the unstable manifold
has a length larger than δ.
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Implementing the above basic idea can be technically challenging, especially since
the formula (1.5) shows that the derivative blows up near tangencies. Yet, it can
be done, for details, see [25, 9]. A technical tool used to deal with the blow-up of
the differential at tangent collisions is the introduction, by Sinai, of homogeneity
strips. See [9] for details.

The above construction provides a stable foliation, yet the foliation has very poor
regularity properties, and this makes it very hard to use it; in general, it is only
measurable. Luckily, the holonomy is absolutely continuous. Moreover, it turns out
that it can be approximated by a foliation with much better properties that can be
conveniently used, see [2, Section 6] for details.

The next step is to prove ergodicity. Once we have an absolutely continuous
foliation, you can try to copy Hopf’s argument. Such an argument is based on the
observation that the ergodic averages of continuous functions are constant along
stable and unstable manifolds. This was achieved by Sinai [38]. But see [28] for
a more general version. In addition, [28] discusses a piecewise linear example in
which the technical difficulties are reduced to a bare minimum, and hence Sinai’s
argument can be easily understood. The idea is to prove local ergodicity, and then
a global argument can be employed to prove ergodicity. The same argument proves
that all the powers of the Poincare maps are ergodic, which implies mixing.

It remains the problem of flows. Since the flow can be seen as a suspension
over the Poicnarè map, the ergodicity of the flow follows from the ergodicity of the
map. Not so for mixing: think of a suspension with a constant ceiling. Mixing
for the flows follows from the contact structure. Forgetting for one second the
discontinuities, the fact that the flow is contact implies that is we do a cycle stable,
unstable, stable, unstable, we move in the flow direction, see Figure 4.
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Figure 4. Definition of the temporal function ∆(y, y′) and related quantities
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Indeed, let α be the contact form, then if v is a strong unstable or a strong
stable vector, then α(v) = 0, while α((p, 0)) = 1, where (p, 0) is the flow direction,
it follows that if the cycle in bold in figure 4, call it γ, has sides of length δ, then

δ2 =

∫
Σ

dα =

∫
∂Σ

α =

∫
γ

α

which equals exactly the displacement in the flow direction, which is then non-zero.
It follows that the stable and unstable foliations are not jointly integrable, and this
property shows that the flow cannot be reduced to a constant flow suspension by a
change of coordinates (since, in such a case, the foliations would indeed be jointly
integrable). This suffices to prove mixing of the flow.

3. Statistical Properties

All the properties discussed so far are of a qualitative nature, yet to obtain
physically relevant facts it is necessary to have quantitive information. First and
foremost, an estimate of the speed of mixing. Bunimovich and Sinai first achieved
this [5] for the Poincarè map, while the result for the flow is due to Demers, Baladi
Liverani [11], almost forty years later (not for lack of trying).

Several techniques have been developed to study the speed of decay of correla-
tions, the main one are

(1) coding the system via Markov Partitions (Bunimovich and Sinai [5])
(2) coding the systems via towers (Lai-Sang Young [43, 44])
(3) standard pairs and coupling (Lai-Sang Young [44], Dolgopyat [19])
(4) operator renewal theory (Sarig [33])
(5) Functional spaces adapted to the transfer operator (Blank, Keller, Liverani

[4]; Liverani, Gouezel [24]; Baladi, Tsujii [1]; Demers, Liverani [12]; Demers,
Zhang [16])

(6) Hibert metric (Ferrero, Schmitt [22], Liverani [30]; Demers, Liverani [17])
(7) Random perturbations (Liverani, Saussol, Vaienti [31])

The most powerful techniques are probably (5, 6), but they can work only if the
decay of correlations is exponential. For polynomial decay of correlations (2, 4)
or even the rougher (7) are the way to go. While (3) is unquestionably the more
versatile technique.

For an introduction to (3,5,6) see [13].
To conclude, let me recap part of the state of the art, giving a, idiosyncratic, list

of results.
The ergodicity of various billiard tables was established in many papers, e.g.,

[41, 7]. Ergodicity results also exist for billiards in which the particle is subject to
a soft potential, rather than a hard core one, e.g. [26, 21]. The ergodicity of a gas
of hard spheres was established, building on a rather long string of papers, in [37].
The statistical properties of billiards with finite and infinite horizon can be found in
[8, 20] where the standard pair technology is put to work. The functional analytic
approach has been developed in [14, 16]; such an approach also allows establishing
how the statistical properties depend on the billiard shape [15]. In addition, the
functional approach has proven instrumental in the proof of exponential mixing for
two dimensional uniformly hyperbolic billiard flow [2]. Many limit theorems have
been obtained for billiard systems for which mixing properties have been estab-
lished. Notable results are the polynomial decay of correlations in the Bunimovich
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stadium [3] and the monumental study of one massive particle interacting with a
light one in a box [10].

All the previous papers deal with isolated systems, if the system changes in
time (e.g. a time-dependent billiard table), then the simple study of the spectral
properties of the transfer operator does not suffice; one has to deal with the product
of different operators. This can be done using perturbation theory if the change in
time is very slow [39]. However, if the change in time is more violent, perturbation
theory fails, and a new approach is needed. This has been recently achieved in [17]
using Hilbert metrics on invariant cones of densities.

Even though the above list of results is very partial, I hope it gives an idea of
the breadth of the field and of the many directions along which the research is
developing.
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