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Chapter 1

The origins: Differential
equations

As this book is about Dynamical Systems, let’s start by defining the
object of study. The concept of Dynamical System is a very general one
and it appears in many branches of mathematics from discrete mathematics,
number theory, probability, geometry and analysis and has wide applications
in physics, chemistry, biology, economy and social sciences.

Probably the most general formulation of such a concept is the action of a
monoid over an algebra. Given a monoid G and an algebra A, the (left)-action
of G on A is simply a map f : G×A → A such that1

1. f(gh, a) = f(g, f(h, a)) for each g, h ∈ G and a ∈ A;

2. f(e, a) = a for every a ∈ A, where e is the identity element of G;

3. f(g, a+ b) = f(g, a) + f(g, b) for each g ∈ G and a, b ∈ A;

4. f(g, ab) = f(g, a)f(g, b) for each g ∈ G and a, b ∈ A;

In our discussion we will be mainly motivated by physics. In fact, we will
consider the cases in which G ∈ {N,Z,R+,R}2 is interpreted as time and

1In an alternative, one can consider the action on a vector space, if one wants to include,
e.g, stochastic processes.

2Although even in physics other possibilities are very relevant, e.g. in the case of Statis-
tical Mechanics it is natural to consider the action of the space translations, i.e. the groups
{Zd,Rd} for some d ∈ N, d > 1.

1
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A, interpreted as the observables of the system,3 is a commutative algebra
consisting of functions over some set X. In addition, we will restrict ourselves
to situations where the action over the algebra is induced by an action over
the set X (this is a map f : G×X → X that satisfies condition 1, 2 above).4

Indeed, given an action f of G on X and an algebra A of functions on X such
that, for all a ∈ A and g ∈ G, b(·) := a(f(g, ·)) ∈ A, it is natural to define
f̃(g, a)(x) := a(f(g, x)) for all g ∈ G, a ∈ A and x ∈ X. It is then easy to
verify that f̃ satisfies conditions 1–4 above.

We will call discrete time Dynamical System the ones in which G ∈ {N,Z}
and continuous time Dynamical Systems the ones in which G ∈ {R+,R}.
Note that, in the first case, f(n, x) = f(n−1+1, x) = f(1, f(n−1, x)), hence
defining T : X → X as T (x) = f(1, x), holds f(n, x) = Tn(x).5 Thus in such a
case we can (and will) specify the Dynamical System by writing only (X,T ).
In the case of continuos Dynamical Systems we will write ϕt(x) := f(t, x)
and call ϕt a flow (if the group is R) or a semi-flow (if the group is R+)
and will specify the Dynamical System by writing (X,ϕt). In fact, in this
notes we will be interested only in Dynamical Systems with more structure
i.e. topological, measurable or smooth Dynamical Systems. By topological
Dynamical Systems we mean a triplet (X, T , T ), where T is a topology and T
is continuos (if B ∈ T , then T−1B ∈ T ). By smooth we consider the case in
which X has a differentiable structure and T is r-times differentiable for some
r ∈ N. Finally, a measurable Dynamical Systems is a quadruple (X,Σ, T, µ)
where Σ is a σ-algebra, T is measurable (if B ∈ Σ, then T−1B ∈ Σ) and µ is
an invariant measure (for all B ∈ Σ, µ(T−1B) = µ(B)).6

So far for general definitions that, to be honest, are not very inspiring.
Indeed, what characterizes the modern Dynamical Systems is not so much
the setting but rather the type of questions that are asked, first and foremost:

• Which behaviors are visible in nature? (stability and bifurcation
theory).

• What happens for very long times? (statistics and asymptotic
theory)

The rest of this book will deal in various ways with such questions.
The original motivation for the above setting and for these questions comes

from the study of the motion which, after Newton, typically appears as so-

3Again other possibilities are relevant, e.g. the case of Quantum Mechanics (in the so
called Heisenberg picture) where the algebra of the observable is non commutative and
consists of the bounded operators over some Hilbert space.

4Again relevant cases are not included, for example all Markov Process where the evo-
lution is given by the action of some semigroup.

5Obviously T 2(x) = T ◦T (x) = T (T (x)), T 3(x) = T ◦T ◦T (x) = T (T (T (x))) and so on.
6The definitions for continuos Dynamical Systems are the same with {ϕt} taking the

place of T .
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lution of an ordinary differential equation (ODE). It is then natural to start
with a brief reminder of basic ODE theory.7

In section 1.1 I will recall the theorem of existence and uniqueness of the
solutions of an ODE. In addition, I will state the Gronwall inequality, a very
useful inequality for estimating the growth rate of the solution of an ODE.
Finally, a theorem yielding the smooth dependence of the solutions of an ODE
from an external parameter or from the initial conditions is provided.

In section 1.2 is given a very brief account of linear equations with constant
coefficients (by discussing the exponential of a matrix) and of Floquet theory.
That is the study of the solutions of a linear equation with coefficients varying
periodically in time. The basic result being that the asymptotic properties of
the solutions can be understood by looking at the solutions after one period.

Finally, section 1.3 discusses the possibility of qualitative understanding
the behavior of the solutions of ODE that cannot be solved explicitly (essen-
tially all the ODEs). The arguments are very naive and are intended only to
convince the reader that a) something can be done; b) a more sophisticated
theory needs to be developed in order to have a satisfactory picture.

1.1 Few basic facts about ODE: a reminder

Our starting point is the initial Cauchy problem for ODE. That is, given a
separable Banach space B,8 V ∈ C0

loc(B × R,B),9 and x0 ∈ B, find an open
interval 0 ∋ I ⊂ R and x ∈ C1(I,B) such that

ẋ(t) = V (x(t), t)

x(0) = x0.
(1.1.1)

Remark 1.1.1 I will be mainly interested in the case B = Rd, for some d ∈
N. Thus, the reader uncomfortable with Banach spaces can safely substitute

7In fact, also the solutions of a partial differential equation (PDE) may give rise to a
Dynamical System, yet the corresponding theory is typically harder to investigate.

8A Banach spaces is a complete normed vector spaces. This means that a Banach space
is a vector space V , over R or C, equipped with a norm ∥·∥ such that every Cauchy sequence
in V has a limit in V . By separable we mean that there exists a countable dense set. Check
[RS80, Kat66] for more details or [DS88] for a lot more details.

9Given two Banach spaces B1,B2, an open set U ⊂ B1, and q ∈ N by Cq(U,B2) we mean
the continuous functions from U to B2 that are q time (Fréchet) differentiable and the q-th
differentials are continuous (see Problem 1.18 for a very quick discussion of differentiation
in Banach spaces). Such a vector space can be equipped with the norm ∥ · ∥Cq given by
the sup of all its derivatives till the order q included. If we then consider the subset for
which such a norm is finte, then we have again a vector space which is, in fact, a Banach
space. We will call such a Banach space Cq(U,B2, ∥ · ∥Cq ), yet, when no confusion can
arise, we will abuse of notation and call it simply Cq(U,B2). By Cq

loc(U,B2) we mean the
vector space of the functions f : U → B2 such that, for each u ∈ U and R > 0 such that
B(u,R) = {v ∈ B1 : ∥v− u∥ ≤ R} ⊂ U , f ∈ Cq(B(u,R),B2, ∥ · ∥Cq ). Note that, in general,
Cq
loc is not a Banach space (in fact, it is a Fréchet space).
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Rd to B in all the subsequent arguments. Yet, it is interesting that the theory
can be developed for general Banach spaces at no extra cost. For simplicity, in
the following we will always assume that all the Banach spaces are separable
even if not explicitly mentioned. In essence, this is just a fancy way of saying
that much of the following depends only on the Banach structure of Rd, that is
on the fact that Rd is a complete vector space with a norm (e.g. the euclidean
norm) and, for example, nowhere is used the fact that Rd has a finite basis.

I will also briefly consider ODE on (finite dimensional) manifolds. Not
much extra theory is needed in order to do this, since ODE on manifolds can
always be reduced to the case Rd case, see section 1.1.5.

The first problem that comes to mind is

Question 1 Does the Chauchy problem (1.1.1) always admit a solution? If
there exists a solution is it unique?

To address such an issue it is convenient to consider the equation10

x(t) = x0 +

∫ t

0

V (x(s), s)ds (1.1.2)

Problem 1.1 Show that for each finite open interval 0 ∈ I ⊂ R, if x ∈
C1(I,B) is a solution of (1.1.1), then it is a solution of (1.1.2). Show that if
x ∈ C0(I,B) is a solution of (1.1.2) then x ∈ C1(I,B) and solves (1.1.1).

1.1.1 Existence and uniqueness

The issue of existence and uniqueness of the solutions of (1.1.1) can be solved
by applying the clasical Banach fixed point Theorem (see A.1.1), provided we
make a stronger assumption on V .

Theorem 1.1.2 (Existence and Uniqueness theorem for ODE) For each
V ∈ C1

loc(B × R,B) and x0 ∈ B there exists δ ∈ R+ such that there exists a
unique solution of (1.1.1) in C1((−δ, δ),B).11

Proof. Let δ ∈ (0, 1). The reader can verify that the vector space
C0([−δ, δ],B), equipped with the norm ∥u∥∞ := supt∈[−δ,δ] ∥u(t)∥B is a Ba-

nach space.12 By definition there exist δ0, R0 ≥ 0 such that, for all δ ≤ δ0 and

10The most convenient meaning of the integral of a function with values in a Banach space
is the Bochner sense, which reduces to the usual Lebesgue integral in the case B = Rd, see
[Yos95] for definition and properties. Yet, for our purposes the equivalent of the Riemannian
integral suffices and it is defined in the obvious manner. See Problem 1.20 for details.

11We equip B×R with the norm ∥(x, t)∥ ≤ sup{∥x∥B, |t|}, where ∥ · ∥B is the norm of B.
12The uniform limit of continuous functions is a continuos function.
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R ≤ R0, V ∈ C1(DR,B), where DR = {y ∈ C0([−δ, δ],B) : ∥y − x0∥∞ ≤ R}.
We can then define the operator K : DR → C0([−δ, δ],B) by13

K(u)(t) := x0 +

∫ t

0

V (u(s), s)ds.

Let Mδ = sup|t|≤δ supu∈DR
{∥V (u, t)∥ + ∥∂uV (u, t)∥}, note that Mδ is a de-

creasing function of δ. Then, for each u ∈ DR and |t| ≤ δ, (recall Problem
1.22)

∥K(u(t))− x0∥ ≤ δMδ ≤ R

provided we chose δMδ ≤ R. Thus K maps DR into DR. In addition, for
each u, v ∈ DR,

∥K(u)−K(v)∥∞ ≤ δMδ∥u− v∥∞ ≤ 1

2
∥u− v∥∞,

provided we chose 2δMδ ≤ 1. We can then apply Theorem A.1.1 and obtain
a unique solution of the equation Ku = u in DR. This shows the existence
and uniqueness of the solution of (1.1.2). The Theorem follows then by re-
membering Problem 1.1. □

Remark 1.1.3 Note that in the proof of Theorem A.1.1 one can chose the
same δ for an open set of initial condition.

Remark 1.1.4 The hypotheses of the above Theorem can be easily weakened
to the case of V locally Lipschitz in x and continuous in t, yet only continuity
does not suffice for uniqueness as shown by the example

ẋ =
√
x

x(0) = 0.

which has the infinitely many solutions xa(t) = 0 for t ≤ a and xa(t) =
1
4 (t− a)2 for t ≥ a, a ∈ R.14

Remark 1.1.5 The restriction to an interval of size δ in Theorem A.1.1
cannot be avoided as shown by the example

ẋ = x2

x(0) = 1.

Its solution x(t) = (1− t)−1 is not continuous, nor bounded, for t = 1.

13The meaning of C0(K,B2) where K is a closed set of B1 is the usual one.
14If B is finite dimensional, then V ∈ C0 suffices for the existence of a solution. This

follows by a direct application of Schauder fixed point Theorem to (1.1.2). For informations
on such a fixed point theorem and fixed point theorems in general see [Zei86].
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We have seen a mechanism whereby the solution cannot be defined for all
times, the next Lemma shows that, for C1 vector fields, the above is the only
mechanism.15

Lemma 1.1.6 In the hypotheses of Theorem 1.1.2, if x ∈ C1
loc((−δ, δ),B) is

a solution of (1.1.1) for some δ, δ > 0, and if there exists M > 0 such that
supt∈[0,δ) ∥x(t)∥ ≤ M , then there exists δ̄ > δ and x̄ ∈ C1((−δ, δ̄),B) that
solves (1.1.1) (i.e. the solution can be extended for longer times).

Proof. Let {tn} be any sequence that converges to δ, then

∥x(tn)− x(tm)∥ ≤
∫ tm

tn

∥V (x(s), s)∥ds ≤ |tn − tm| sup
∥z∥≤M

sup
s∈[0,δ)

∥V (z, s)∥.

Thus {x(tn)} is a Cauchy sequence and admits a limit x∗ ∈ B such that

x∗ = lim
n→∞

x(tn) = lim
t→δ

x(t) = x0 +

∫ δ

0

V (x(s), s)ds.

We can then consider the equation

y(t) = x∗ +

∫ t

0

V (y(s), s+ δ)ds.

By Theorem 1.1.2 there exists δ1 and y ∈ C1((−δ1, δ1),B) which satisfy the
above equation. Let then δ̄ = δ + δ1 and define

x̄(t) :=

{
x(t) fot all t ∈ (−δ, δ)
y(t− δ) fot all t ∈ [δ, δ̄).

Clearly x̄ ∈ C0((−δ, δ̄),B) and, for t ∈ [δ, δ̄) holds true

x̄(t) = x∗ +

∫ t

δ

V (x̄(s), s)ds = x0 +

∫ δ

0

V (x̄(s), s)ds+

∫ t

δ

V (x̄(s), s)ds

= x0 +

∫ t

0

V (x̄(s), s)ds.

Thus, again remembering Problem 1.1, the Lemma follows. □

Remark 1.1.7 Applying repeatedly Lemma 1.1.6 it follows that there exists
a maximal open interval J ⊂ R such that the Cauchy problem (1.1.1) has a
unique solution belonging to C1

loc(J,B).
15I state the result for positive times, for negative times it is the same.
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1.1.2 Growald inequality

We have seen that the escape (growth) to infinity is the only obstruction to
enlarging the domain of the solution.16 The question remains: how large the
maximal interval J in Remark 1.1.7 can be?

To understand better how the solution of an ODE can grow we need a
technical but extremely useful Lemma.

Lemma 1.1.8 (Integral Gronwald inequality) Let L, T ∈ R+ and ξ, f ∈
C0([0, T ],R). If, for all t ∈ [0, T ],

ξ(t) ≤ L

∫ t

0

ξ(s) ds+ f(t),

then

ξ(t) ≤ f(t) + L

∫ t

0

eL(t−s)f(s) ds.

Proof. Let us first consider the case in which f ≡ 0. In this case the
Lemma asserts ξ(t) ≤ 0. Indeed, since ξ is a continuos function there exists
t∗ ∈ [0, (2L)−1] ∩ [0, T ] =: I1 such that ξ(t∗) = supt∈I1 ξ(t). But then,

ξ(t∗) ≤ L

∫ t∗

0

ξ(s) ds ≤ ξ(t∗)Lt∗ ≤ 1

2
ξ(t∗)

which implies ξ(t∗) ≤ 0 and hence ξ(t) ≤ 0 for each t ∈ I1. If I1 = [0, T ], then
we are done, otherwise letting t1 := (2L)−1 we have

ξ(t) ≤ L

∫ t

t1

ξ(s) ds

and we can make the same argument as before in the interval [t1, 2t1]. Iter-
ating we have ξ(t) ≤ 0 for all t ∈ [0, T ].

To treat the general case we reduce it to the previous one. Let

ζ(t) := ξ(t)− f(t)− L

∫ t

0

eL(t−s)f(s) ds.

Then

ζ(t) ≤ L

∫ t

0

ξ(s) ds−
∫ t

0

LeL(t−s)f(s) ds

= L

∫ t

0

ζ(s) ds+ L

∫ t

0

{
f(s)ds+ L

∫ s

0

eL(s−τ)f(τ)dτ

}
−
∫ t

0

LeL(t−s)f(s) ds.

16Of course, this is the case only for regular vector fields. For other possibilities think of
the case of collisions among planets.
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Next, notice that∫ t

0

dsL

∫ s

0

eL(s−τ)f(τ) dτ = L

∫ t

0

dτf(τ)

∫ t

τ

dseL(s−τ)

=

∫ t

0

f(s){eL(t−s) − 1}ds.

Thus,

ζ(t) ≤ L

∫ t

0

ζ(s) ds.

We have then reduced the problem to the previous case which implies that it
must be ζ(t) ≤ 0 from which the Lemma follows. □

Let us see the usefulness of the above Lemma in a concrete example. Let
L(B,B) be the Banach space of the linear bounded operators from B to B.17

Lemma 1.1.9 For each A ∈ C1
loc(R, L(B,B)), consider the Cauchy problem

ẋ(t) = A(t)x(t)

x(0) = x0.

If ∥A(t)∥ ≤ L for all t ∈ R, then ∥x(t)∥ ≤ eLt∥x0∥ for all t ∈ R. In particular,
the solution is defined on all R.

Proof. If we write the equation in the equivalent integral form we have

∥x(t)∥ ≤ ∥x0∥+
∫ t

0

∥A(s)x(s)∥ ds ≤ ∥x0∥+ L

∫ t

0

∥x(s)∥ ds.

Let ξ(t) := ∥x(t)∥, apply Lemma 1.1.8 for any T ∈ R+, the Lemma follows.
□

Problem 1.2 Explain why Lemma 1.1.9 does not apply to the following set-
ting: B = C1(Rn,R) and

ẋ(t, z) = α(z, t)∂zx(t, z),

for some α ∈ C1(Rn,R), α(z, T + t) = α(z, t), T > 0. Compare with Problem
1.24.

17The norm of L ∈ L(B,B) is given by ∥L∥ := sup v∈B
∥v∥=1

∥Lv∥. If B = Rd, then L(B,B)

is just the vector space of the d× d matrices.
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1.1.3 Flows

In this section we analyze the case in which the vector field is time independent
and grows at most linearly.

Lemma 1.1.10 Given V ∈ C1
loc(B,B), if there exists L,M ≥ 0 such that

∥V (x)∥ ≤ L∥x∥+M , then the solution of (1.1.1) exists for all times and for
all initial conditions.

Proof. We argue by contradiction. Choose any initial condition x0 ∈ B
and let I(x0) = (−δ−(x0), δ+(x0)) be the maximal interval on which the
solution is defined. If δ+(x0) <∞, then for each t ≤ δ+(x0)

∥x(t)∥ ≤ ∥x0∥+ L

∫ t

0

∥x(s)∥ds+Mt.

Thus Gronwald inequality implies

∥x(t)∥ ≤ eLt
{
∥x0∥+ML−1

}
for t ∈ [0, δ+(x0)). Then, by Lemma 1.1.6, the solution can be extended,
contrary to the assumption that (−δ−(x0), δ+(x0)) was the maximal interval.
A similar argument holds for negative t. □

For each x0 ∈ B and t ∈ R let x(t, x0) be the solution of (1.1.1) at time t.

Lemma 1.1.11 For each V as in Lemma 1.1.10, setting ϕt(x0) := x(t, x0),
ϕ−t = ϕ−1

t for t ≥ 0, we have that (B, ϕt), t ∈ R, is a Dynamical System.

Proof. All we need to prove is that ϕt is an action of R on B. First
of all note that ϕt is indeed invertible. If not then there would be x, x′ ∈ B
such that ϕt(x) = ϕt(x

′). But then the uniqueness of the solutions of the
ODE implies x = x′. Moreover it is easy to check that ϕ−t(x0) = x(−t, x0).
Finally, ϕt(ϕs(x)) = ϕt+s(x). □

Remark 1.1.12 We have thus proved that a large class of vector fields gives
rise to flows.

1.1.4 Dependence on a parameter

Having established the existence and uniqueness of the solution, the next
natural questions present itself.

Question 2 How do the solutions depend on the initial condition? How do
the solutions depend on a change of the vector field?



10 CHAPTER 1. THE ORIGINS: DIFFERENTIAL EQUATIONS

To discuss such issues it is convenient to analyze first the second question.
More precisely, given V ∈ C2

loc(B×R×Rd,B) we consider the Chauchy problem

ẋ(t) = V (x(t), t, λ)

x(0) = x0.
(1.1.3)

Clearly the solution will depend on the parameter λ. The question is then:
calling x(t, λ) the solution of (1.1.3), for a given t ∈ R what can we say about
the function x(t, ·)?

For simplicity let us consider the case V ∈ C2(B × R × B1,B), the more
general case V ∈ C2

loc(B × R× B1,B) is similar and is left to the reader.

Theorem 1.1.13 (Smooth dependence on a parameter) Given two Ba-
nach spaces B,B1, let V ∈ C2(B × R × B1,B). Let X(t, x0, λ) be the unique
solution of (1.1.3), then X(t, x0, ·) ∈ C1

loc(B1,B).

Proof. For each x0 ∈ B consider the ODE for ξ ∈ C1
loc(R×B1, L(B1,B))

ξ̇(t, λ) = ∂xV (X(t, x0, λ), t, λ) · ξ(t, λ) + ∂λV (X(t, x0, λ), t, λ)

ξ(0, λ) = 0.
(1.1.4)

We claim that ξ(t) = ∂λX(t, x0, λ).
18 To verify the claim it suffices to prove

that there exists C > 0 such that, for h ∈ B1 small enough, if ζ(t, h, λ) :=
X(t, x0, λ+h)−X(t, x0, λ)−ξ(t)h, then ∥ζ(t, h)∥ ≤ C∥h∥2. By Taylor formula
we have19

ζ̇(t, h) = V (X(t, x0, λ+ h), t, λ+ h)− V (X(t, x0, λ), t, λ)

− ∂xV (X(t, x0, λ), t) · ξ(t)h− ∂λV (X(t, x0, λ), t, λ)h

= ∂xV (X(t, x0, λ), t) · ζ(t, h) +R(t)

(1.1.5)

where, in the last line, we have used

V (X(t, x0, λ+ h), t, λ)− V (X(t, x0, λ), t, λ)

= ∂xV (X(t, x0, λ), t, λ) · (X(t, x0, λ+ h), t, λ)−X(t, x0, λ))

+O(∥X(t, x0, λ+ h), t, λ)−X(t, x0, λ)∥2),

and

∥R(t)∥ ≤ C
(
∥X(t, x0, λ+ h)−X(t, x0, λ)∥2 + ∥h∥2

)
≤ 2C(∥ζ(t, h)∥2 + (1 + ∥ξ(t)∥2)∥h∥2).

18If B = Rd e B1 = Rm then ξ is just a d×m matrix.
19Note that we cannot Taylor expand X(t, x0, λ+ h) with respect to h, since we do not

know yet that X is differentiable with respect to λ.



1.1. FEW BASIC FACTS ABOUT ODE: A REMINDER 11

with C = ∥V ∥C2 . Note that ζ(0) = 0. We can then conclude by using Lemma
1.1.8. Indeed such a Lemma applied to (1.1.4) implies ∥ξ(t)∥ ≤ eC1t, for some
C1 > 0. Next, let T > 0 be the maximal time such that ∥ζ(t, h)∥ ≤ 1/2 and
e2C1T ≤ 2. Then, for t ≤ T , (1.1.5) yields

∥ζ(t, h)∥ ≤
∫ t

0

2C∥ζ(s)∥ds+ 3∥h∥2

and Lemma 1.1.8, again, implies the announced estimate. □

Problem 1.3 Prove the analogous of Theorem 1.1.13 when V ∈ C1
loc.

The above theorem allow to easily prove the following fundamental result on
the smooth dependence on parameters of an ODE.

Theorem 1.1.14 (Smooth dependence on initial conditions) Let V ∈
Cr(B×R,B), r ≥ 1. For x0 ∈ B let X(t, x0) be the unique solution of (1.1.1).
Then, for each t ∈ R, X(t, ·) ∈ Cr

loc(B,B). Moreover, ξ = ∂x0
X solves

ξ̇(t) = ∂xV (X(t, x0), t) · ξ(t)
ξ(0) = 1.

(1.1.6)

Proof. Set z = x− x0 and consider the resulting equation

ż = V (z + x0, t) =: V̄ (z, t, x0)

z(0) = 0.

One can then consider x0 as an external parameter, applying Theorem 1.1.13
yields the result for r = 1. On the other hand, (1.1.6) is itself a differential
equation depending on a parameter with a C1 vector field and a C1 dependence
on the parameter x0 , provided r ≥ 2. So we can apply Theorem 1.1.13 again,
and so on for r times, which proves the theorem. □

1.1.5 ODE on Manifolds–few words

Let us remind that a topological manifold is a second countable Hausdorff
space which is locally homeomorphic to Euclidean space. A chart over a
topological manifold M is a pair (U, ϕ) such that U ⊂ M is an open set and
ϕ : U → Rn, for some n ∈ N, is an homeomorphism between U and the
open set Φ(U). An atlas on a topological manifold is a countable collection
of charts {(Uα, ϕα)}. We say that an atlas is Ck if ϕα ◦ ϕ−1

β is Ck when is

defined. We say that two Ck atlas are equivalent if their union is a Ck atlas.
A Ck manifold is a topological manifold equipped with an equivalence class
of Ck atlas (often called a differentiable structure).

Although most often we will be concerned with manifolds embedded in
some Rd, also other possibilities will be relevant. Let us consider two exam-
ples.
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Problem 1.4 Show that Rd is a C∞ manifold.20

Problem 1.5 Let f ∈ Ck(Rd,R), and consider M = {(x, y) ∈ Rd × R : y =
f(x)}. Consider the atlas consisting of the chart (M,ϕ) where ϕ(x, y) = x.
This is a C∞ manifold.

Problem 1.6 Check that Td = Rd/Zd is a C∞ manifold.

Given two differentiable manifolds (Ck manifolds with k ≥ 1) M1,M2 and
a map f : M1 → M2 we say that f ∈ Cr(M1,M2), r ≤ k, if for each atlas
{(Uα, ϕα)} of M1 and atlas {(Vβ , ψβ)} of M2, holds true ψβ ◦ f ◦ ϕ−1

α ∈ Cr on
their domains of definition.

Given a differentiable manifold M and x ∈ M , we say that two curves
γ1, γ2 ∈ C1((−1, 1),M), such that γ1(0) = γ1(0) = x, are equivalent at x if
for each chart (U, ϕ) such that x ∈ U holds true (ϕ ◦ γ1)′(0) = (ϕ ◦ γ2)′(0). A
tangent vector at x is an equivalence class of curves.

Problem 1.7 Show that if M is localy homeorphic to Rd, then the set of
tangent vectors at any x ∈M form canonically a d dimensional vector space.21

We will use TxM to designate the tangent space at x, that is the set of the
tangent vectors at x. The tangent bundle is the disjoint union of the tangent
spaces, i.e. TM = ∪x∈M{x} × TxM . Finally, a vector field is a section of the
tangent bundle, i.e. Ṽ :M → TM such that Ṽ (x) = (x, V (x)), V (x) ∈ TxM .
Form now on, with a slight abuse of notation, we will identify Ṽ with V . Also,
given f ∈ C1(M1,M2), since the image of a C1 curve is a C1 curve, ve have
naturally defined a map f∗ : TM1 → TM2.

Problem 1.8 If f ∈ C1(Rd,Rn) discuss the relation between f∗ and the
derivative Df .

We have finally the language to define O.D.E. on manifolds, in fact the Cauchy
problem is exactly given again by (1.1.1), only now V is a, possibly time
dependent, C1 vector field.

Problem 1.9 Suppose that x0 belongs to some chart (U, ϕ), show that the
solution of

ẋ = V (x, t)

x(0) = x0

for a sufficiently small time can be obtained by the solution of an appropriate
O.D.E. in ϕ(U).

20Note that, contrary to Ck, C∞ is not a Banach space (there is no good norm). It is
possible to give to it the structure of a Fréchet space [RS80], but we will refrain from such
subtleties. We just consider C∞ = ∩n∈NCn as a vector space.

21If (U, ϕ) is a chart containing x, and γ1, γ2 two curves, think of the curves γλ(t) = γ1(λt)
and ϕ−1(ϕ(γ1(t)) + ϕ(γ2(t))− ϕ(x)).
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Problem 1.10 Given a finite atlas {(Uα, ϕα)}, show that there exists a smooth
partition of unity subordinated to the atlas, that is a collections {φα} ∈
C∞(M,R) such that

∑
α φα = 1 and suppφα ⊂ Uα.

Problem 1.11 Given a smooth vector field V consider

ẋ = V (x)

x(0) = x0
(1.1.7)

with x0 ∈ Uα for some element of an atlas {(Uαϕα)}. Let zα(t) be the solution
of

żα = (ϕα)∗V (zα)

zα(0) = ϕα(x0)

and suppose that ϕ−1
α (z(1)) ∈ Uβ. Consider then the solution of

żβ = (ϕβ)∗V (zβ)

zβ(1) = ϕβ(ϕ
−1
α (zα(1))).

Show that there exists t1 > 1 such that

x(t) = ϕ−1
α (zα(t)) for t ∈ [0, 1]

x(t) = ϕ−1
β (zβ(t)) for t ∈ (1, t1)

is a solution of (1.1.7) in the time interval [0, t1).

Remark 1.1.15 We have seen that the theory of ODE on manifolds can be
reduced locally to the case of Rd. Yet, the reader should be aware that the
global properties of the solutions can be very different. We will comment at
length on this issue later on.

1.2 Linear ODE and Floquet theory

Let us briefly discuss the simplest possible differential equation: the affine
ones. For simplicity, we restrict ourselves to the case B = Rd for some d ∈ N.

1.2.1 Linear equations

Consider

ẋ = Ax

x(0) = x0.
(1.2.8)
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Problem 1.12 Show, by induction, that for each n ∈ N the solution of
(1.2.8) satisfies

x(t) =

n∑
k=0

1

k!
Aktkx0 +

∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ tn−1

0

dtnA
n+1x(tn).

Taking the limit for n → ∞ in the above expression one readily obtains
x(t) =

∑∞
n=0

1
n!A

ntnx0. That this is a solution can be verified directly insert-
ing this formula in (1.2.8) (and noticing that the series and the series obtained
by deviating term by term are uniformly convergent). By the standard ana-
lytic functional calculus for matrices (and operators, see Appendix C) we can
thus write x(t) = eAtx0. The above discussion provides a general solution for
all equations of the type (1.2.8).

In reality life it is not that simple: if one has a concrete matrix A and
wants to compute eAt, this may be quite unpleasant. A general strategy,
although not necessarily the simplest one, is to perform a linear change of
variables x = Uz. Then ż = U−1AUz, and U is chosen so that Λ = U−1AU
is in Jordan normal form. Then

x(t) = Uz(t) = UeΛtz0 = UeΛtU−1x0.

It suffices then to know how to take exponentials of Jordan blocks, and this
can be computed by using the defining series.

Problem 1.13 Compute eΛt for

Λ =

(
a 0
0 a

)
; Λ =

(
a 1
0 a

)
; Λ =

a 1 0
0 a 1
0 0 a

 .

Another, equivalent, point of view is to look for solutions of the type
x(t) = eatv, substituting in the first of (1.2.8) one obtains av = Av. Thus, as
we know already, each eigenvalue of A provides a solution of (1.2.8) (ignoring
the initial condition). If there exists real eigenvectors {vi}di=1 which span all
Rd then one can write the general solution, depending on d parameters αi, as
x(t) =

∑d
i=1 αivie

ait, where ai is he eigenvalue associated to the eigenvector

vi. One can then satisfy the initial condition by solving x0 =
∑d

i=1 αivi.
The same can be done is the eigenvectors are complex, by working in Cd

instead then Rd. If Jordan blocks are present one can look for solutions of
the form x(t) =

∑p
k=0

1
(p−k)! t

keatvk, compare this formula with your solution

of Problem 1.13.

Remark 1.2.1 Note that if the matrix A does not have eigenvalues with zero
real part, then (by spectral decomposition) one can write Rd = V−⊕V+, where
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AV± = V± and A restricted to V− has eigenvalues with negative real part while
on V+ has eigenvalues with positive real part. Hence if x0 ∈ V− it will hold
limn→∞ x(t) = 0, and if x0 ∈ V+ it will hold limn→∞ ∥x(t)∥ = ∞. If x0 ̸∈ V−
we can write it as x0 = x− +x+, where x± ∈ V±. Hence limn→∞ ∥x(t)∥ = ∞
and the trajectory will escape to infinity while getting exponentially close to
the subspace V+. This is our first long time result.

A slightly more complex situation is given by

ẋ = Ax+ b(t)

x(0) = x0,
(1.2.9)

where b ∈ C0(R,Rd). The solution of (1.2.9) is given by22

x(t) = eAtx0 +

∫ t

0

eA(t−s)b(s)ds. (1.2.10)

1.2.2 Floquet theory

Let us consider the simplest case of a linear time dependent equation: there
exists a continuous function A ∈ C0

loc(R, L(Rd,Rd)) and T ∈ R+ such that,
for all t ∈ R, A(t + T ) = A(t). More precisely, let Φ(x0, s, t) be the solution
of the Cauchy problem23

ẋ(t) = A(t)x(t)

x(s) = x0.
(1.2.11)

Problem 1.14 Verify the following facts for each x0, y0 ∈ B and for each
a, b, t, s, τ ∈ R

• Φ(ax0 + by0, s, t) = aΦ(x0, s, t) + bΦ(y0, s, t),

• Φ(x0, s, t) = Φ(Φ(x0, s, τ), τ, t),

• Φ(x0, s+ T, t+ T ) = Φ(x0, s, t).

By the first property of Problem 1.14 there existsK ∈ C1
loc(R2, L(Rd,Rd)) such

that Φ(x0, s, t) = K(s, t)x0, the second property implies thatK(τ, t)K(s, τ) =
K(s, t), the third that K(s + T, t + T ) = K(s, t). The next step is the first
occurrence in this book of a very simply but very powerful idea to analyze
dynamical systems: a Poincaré section. Essentially the idea consist in look-
ing at the system only at specially selected moments in time. In this case
it is convenient to look at t ∈ {nT}n∈Z. That is, we want to investigate
Φ(x0, 0, nT ) =: F (x0, n).

22Look for a solution of the form x(t) = eAtz(t) and find the differential equation for z.
23The solution is well defined for all times by Lemma 1.1.10.
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Lemma 1.2.2 The couple (Rd, F ) is a discrete Dynamical System.

Proof. We have to show that F is an action of Z on Rd. Let f(x0) :=
F (x0, 1).

F (x0, n) = Φ(x0, 0, nT ) = Φ(Φ(x0, 0, (n− 1)T ), (n− 1)T, nT ))

= Φ(Φ(x0, 0, (n− 1)T ), 0, T )) = f(Φ(x0, 0, (n− 1)T )) = fn(x0).

In addition, note that the uniqueness of the solutions of the ODE implies that
if f(x0) = 0, then x0 = 0. Now, by construction, f(x0) = K(0, T )x0, thus
K(0, T ) is an invertible matrix. Hence F (x0,−n) = f−n(x0) for all n ∈ N. □

By using the functional calculus (see Problem C.19) one can define B :=
T−1 lnK(0, T ), so eBT = K(0, T ). Let us now consider P (t) := K(0, t)e−Bt.

P (t+ T ) = K(0, t+ T )e−B(t+T ) = K(T, t+ T )K(0, T )K(0, T )−1e−Bt

= K(0, t)e−Bt = P (t).

We have just proven the following result.

Theorem 1.2.3 (Floquet theorem) The solutions of the equation (1.2.11)
can be written as x(t) = P (t)eBtK(s, 0)x0 where P (t+ T ) = P (t) is periodic.

Note that the matrix B can be complex valued. This can be avoided at a
little extra cost.

Problem 1.15 Prove that the solutions of the equation (1.2.11) can be writ-
ten as x(t) = P (t)eBtx0 where B is real and P (t+ 2T ) = P (t) is periodic of
period 2T .

Note that Theorem 1.2.3 implies that the long time behavior is completely
contained in the eigenvalues of the matrix B often called floquet exponents.

Problem 1.16 Find the solutions of

ẋ = a(t)Ax

where a ∈ C0(R,R) is periodic of period T and A is a fixed matrix.

Problem 1.17 Given a fixed matrix A and a function at matrix values B(t)
of period T , consider the equation ẋ = (A + εB(t))x, ε ∈ R. Show that, for
ε small enough, calling νi the Floquet exponents and setting λi = eνi (often
called Floquet multiplier), the λi are ε-close to the eigenvalues of A.
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1.3 Qualitative study of ODE

The previous discussion has shed some light on the behavior of linear ODE,
unfortunately the interesting ODE are typically non linear. Although some
nonlinear ODE can be solved explicitly (see any ODE book for examples)
typically this is not possible, hence the need of a qualitative theory. As
for the qualitative study of functions this can be done quite naively in one
dimension, while higher dimensions requires some non trivial theory. Let us
see such a naive qualitative theory for ODE via few examples.

1.3.1 The one dimensional case

This situation is very similar to the study of the graph of a function of one
variable. Indeed to draw the graph one studies the first derivative and here
the first derivative is specified by the equation. Let us consider a couple of
simple examples. Consider

ẋ = e−x2

+ x− 2 = V (x)

x0 = 0.

One cannot integrate the function V (x)−1 (which would yield an explicit
solution of the ODE), yet from the equation follows that there exists a close
to 2 such that ẋ is negative if x ≤ a and positive otherwise. This implies that
the solution starts to be decreasing and keeps decreasing forever.

Next, consider

ẋ = 1− 2tx

x0 = a.

Such an equation cannot be solved by separation of variables, yet the above
arguments still apply. In particular, for t ≥ 0, we have ẋ(t) < 0 iff x(t) > 1

2t .
On the other hand if x(t) > 1

2t it will be so forever. In fact, consider g(t) =
x(t) − 1

2t , then g
′(t) = ẋ(t) + 1

2t2 . So if g(t∗) = 0, then g′(t∗) > 0 hence for
t < t∗ one has g(t) < 0. Thus the solution will increase until it will intersect
the curve 1

2t and then it will start decreasing but always staying above such

a curve. Accordingly, for t ≥ t∗ we can write x(t) = 1+α(t)
2t with α ≥ 0. Then

ẋ(t) = −α(t), that is

1

2t
≤ x(t) =

1

2t∗
−
∫ t

t∗

α(s)ds (1.3.12)

moreover − 1+α(t)
2t2 + α̇(t)

2t = −α(t)

α̇(t) = −(2t− 1

t
)α(t) +

1

t
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which means that either α(t) ≤ 1
2t2−1 or it is decreasing. But if it is de-

creasing it must decrease to zero otherwise (1.3.12) would be false for large t.
Accordingly it must be limt→∞ α(t) = 0.

1.3.2 Autonomous equations in two dimensions

In this case the basic idea is to consider one component as a function of the
other and in this way reduce to the previous case. Let us see some examples.

Van Der Pol equation

Consider the equation

ẋ = y

ẏ = (1− 3x2)y − x.
(1.3.13)

Clearly (0, 0) is the unique zero of the vector field. If we linearise (1.3.13)
around zero we have

d

dt
(x, y) =

(
0 1
−1 1

)(
x
y

)
.

The matrix has eigenvalues λ± = 1±
√
3i

2 hence the fixed point is repelling and
the solutions spiral away from it.

The next question is if a similar motion takes place also far away from the
origin. To this end we want to forget the time dependence and concentrate
only on the shape of the trajectories. Thus we can represent trajectories on
the xy plane. Indeed, apart from the point (0, 0), either ẋ or ẏ are different
from zero. In the first case one can locally invert x(t) and write y(x) = y(t(x)).
When this is possible one obtains

dy

dx
= 1− 3x2 − x

y
,

which can be studied as in the previous examples. With a bit of work one can
see that the trajectory spirals around zero, but exactly how?

To better understand the behaviour of the solution we introduce a “Lya-
punov” like function.

L(x, y) = 2(x− x3 − y)2 + (x− y)2 + 3x2.

If (x(t), y(t))is a solution of (1.3.13), then a direct computation yields

d

dt
L(x(t), y(t)) = x2

[
6− x2 − 3(x− y)2 − 3y2

]
.
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Accordingly, L is decreasing outside an ellipse. Since 2ab ≤ a2 + b2,24

L(x, y) = 3(x− y)2 − 4(x− y)x3 + 2x6 + 3x2 ≥ (x− y)2 + 3x2

= 4x2 − 2xy + y2 ≥ 2x2 +
1

2
y2.

Hence, the level sets Kα = {(x, y) ∈ R2 : L(x, y) ≤ α} are contained in the
ellipses {(x, y) ∈ R2 : 2x2 + 1

2y
2 ≤ α} and hence are compact.

Thus, far away from the origin the trajectory spirals inwardly. It follows,
by the continuity with respect to the initial data, that there exists an a∗ ≥ 0
such that the corresponding solution is a periodic orbit.

Lotka-Volterra equation

ẋ = ax−Ax2 − λxy

ẏ = −dy + λxy.

This equation is meant to describe the evolution of two populations one feed-
ing on the other (predator-prey). It also has periodic solutions, try to prove
it using qualitative methods.

Second order in one dimension

Consider the equation

ẍ = −γẋ+
x2

1 + x4

x(0) = 0; ẋ(0) = v.

Setting (z, w) = (x, ẋ), we can write it as

ż = w

ẇ = −γw +
z2

1 + z4

which is the type discussed above.

Clearly if we consider still higher dimensional cases the above naive ap-
proach cannot help us very much, hence the need of a more sophisticated
theory.

24It follows from (a− b)2 ≥ 0.
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Problems

1.18. Given two Banach spaces B1,B2 and a functionf : B1 → B2 we can
define the partial derivative at x ∈ B1 in the direction v ∈ B1 (Gâteaux
derivative) by

∂vf(x) = lim
h→0

h−1 [f(x+ hv)− f(x)] ,

if the limit exists. On the other hand we say that f is Fréchet differ-
entiable at x if there exists A ∈ L(B1,B2) (the space of the continous
linear operators from B1 to B2) such that

lim
h→0

∥f(x+ h)− f(x)−Ah∥
∥h∥

= 0,

and A is called the Fréchet differential at of f at x (often writtenDf(x)).
Show that if f is Fréchet differentiable at zero, then it is continuous and
Gâteaux differentiable.

1.19. Let f ∈ C0(B0,B1) and g ∈ C0(B1,B2) such that f is Fréchet dif-
ferentiable at x ∈ B0 and g is Fréchet differentaible at f(x) ∈ B1.
Show that g ◦ f ∈ C0(B0,B2) is Fréchet differentaible at x and that
D(g ◦ f)(x) = Dg(f(x)) ·Df(x) ∈ L(B0,B2). Of course, this is nothing
else than a glorified version of the chain rule.

1.20. Given a compact interval I ⊂ R, a Banach space B, and a continuous
function f ∈ C0(I,B), shows that one can define the equivalent of the
Riemannian integral.

1.21. Prove the fundamental theorem of calculus in this setting. That is,
for f ∈ C1(B1,B2) let Df(x) ∈ L(B1,B2) be the Fréchet differential at
x ∈ B1, then for each x, y ∈ B1

f(y) = f(x) +

∫ 1

0

Df(x+ t(y − x)) · (x− y)dt.

1.22. Show that, for all f ∈ C0([a, b],B),∥∥∥∥∥
∫ b

a

f(t)dt

∥∥∥∥∥ ≤
∫ b

a

∥f(t)∥dt.

1.23. Study the solutions of the following equations for all possible initial
conditions and p ∈ N

ẋ = |x|p

ẋ = x(ln |x|)p
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1.24. Let K ∈ C1(R× [0, 1]). Show that the equation

∂tu(t, s) =

∫ 1

0

K(t+ s, τ)u(t, τ)2dτ

u(0, s) = s2.

has a unique continuos solution for t small enough.

1.25. Under the same hypotheses of Problem 1.17 show that if
∫ T

0
B(s)ds = 0

and the eigenvalues of A have all multiplicity one, then the Floquet
multiplier differ from the eigenvalues of eAT only of order ε2.

1.26. Study the equation

(1 + x)yẏ + (x+ y2) = 0.

1.27. Study the equation (Bernoulli)

ẏ + p(x)y = q(x)yn.

1.28. Study the equation
ẍ = −γẋ− x3.

Hints to solving the Problems

In this section, and in the parallel sections in later chapters, I give hints for
the solution of some of the Problems.

It is a very good idea to try very hard to solve the problems before looking
at the hints: it is impossible to appreciate the solution if one has no feeling
for the difficulties in the problem. The only way I know to get such a feeling
is to seriously try to solve it.

Also, keep in mind that I suggest one way to proceed, often other ways
are possible and maybe better.

1.1 The proof is the same as the standard proof for the case B = Rd. How-
ever to see this you have to do Problems 1.18 and 1.20 to understand
exactly what the derivate and integral mean in this more general case.

1.12 For n = 0 it is just (1.1.2). To verify it for any n it suffices to show that∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ tn−1

0

dtn1 =
tn

(n+ 1)!
.

This follows since the domain of integration is D = {x ∈ [0, t]n+1 :
tn+1 ≤ tn ≤ · · · ≤ t}. On the other hand, for each permutation σ of the
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set {1, . . . , n+ 1} the sets Dσ = {x ∈ [0, t]n+1 : tσn+1 ≤ tσn ≤ · · · ≤ t}
have the same measure, all the Dσ are disjoint and the union of all of
them gives [0, t]n+1.

1.15 First notice that if a matrix has no eigenvalues on the negative axis
then the contour γ in C.3.2 can be taken symmetric around the real
axis and, by using C.3.2 with the standard definition of ln with a cut
on the negative real axis, this defines lnK(0, T ) with real entries (since
the formula for his complex conjugate is the same). In general use the
spectral decomposition to write K(0, T ) = C +D where σ(C)∩R− = ∅
and σ(D) ⊂ R−. Then σ(D2) ⊂ R+, hence B = 1

T lnC + 1
2T lnD2 is

real and e2BT = C2 + D2 = K(0, T )2. The rest of the argument is as
before.

1.17 Show that the solution satisfies

x(t) = eAtx0 + ε

∫ t

0

eA(t−s)B(s)x(s)ds.

and apply the perturbation theory in Appendix C.

1.20 Let I = [a, b]. Since the function is continuos, it is uniformly con-
tinuous, hence for ε > 0 there exists δ > 0 such that, for each par-
tition ξ = {[x0, x1], . . . , [xn−1, xn]}, x0 = a, xn = b, xn+1 − xn ≤ δ,
holds supz,y∈[xn+1,xn] ∥f(z)− f(y)∥ ≤ ε. Accordingly, for each choice of
zn, yn ∈ [xn+1, xn] we have∥∥∥∥∥

n−1∑
k=0

f(zk)(xk+1 − xk)−
n−1∑
k=0

f(yk)(xk+1 − xk)

∥∥∥∥∥ ≤ ε.

By similar arguments one can compare the sum defined on one partition
with the sum defined on a finer partition. Finally sum on different
partitions can be compared with the sum on the coarser partition finer
of both. This shows that all sufficiently fine partitions yield the same
approximate value, hence one can consider the partitions ξn = {[a +
i b−a

n , a+ (i+ 1) b−a
n ]}n−1

i=0 and define

∫
I

f(t)dt := lim
n→∞

n−1∑
i=0

f(a+ i
b− a

n
)
b− a

n
.

By the above discussion this is equivalent to the same limit taken along
any other partition the diameter of which elements tend uniformly to
zero.
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1.24 Consider the Banach space B = C0([0, 1],R). Then u(t, ·) ∈ B and one
can apply Theorem 1.1.2.

1.25 By Problem 1.17 we know that the solution at time T is given by the

matrix D(ε) := eAT
[
1+ ε

∫ T

0
e−AsB(s)eAsds

]
. By the results in Ap-

pendix C it follows that, for ε small enough, the eigenvalues of D(ε) are
still simple and analytic on ε. Thus, let λ(ε) one of such eigenvalues
and Π(ε) the associated eigenprojector. We have D(ε)Π(ε) = λ(ε)Π(ε).
Differentiating yields Ḋ(ε)Π(ε)+D(ε)Π̇(ε) = λ̇(ε)Π(ε)+λ(ε)Π̇(ε). Mul-
tiplying on the right by Π(ε), since Π(ε)D(ε) = D(ε)Π(ε), we have

Π(ε)Ḋ(ε)Π(ε) = λ̇(ε)Π(ε).

Since Π(ε)v = ⟨a(ε), v⟩b(ε) for some vectors a, b analytic in ε, λ̇(ε) =
⟨a(ε), Ḋ(ε)b(ε)⟩. We can now apply such a general formula to our spe-
cific case:

⟨a(0), Ḋ(0)b(0)⟩ = ⟨a(0), eAT

∫ T

0

e−AsB(s)eAsb(0)ds⟩

= ⟨a(0), eAT

∫ T

0

e−AsB(s)eAsb(0)ds⟩

= λ(0)

∫ T

0

⟨a(0), B(s)b(0)⟩ds = 0.

Notes

This chapter is super condensed and has no pretension to exhaust the theory of
ODE. If one wants to have a better understanding of the field and some ideas of
how an ODE can be solved in special cases better consult [HS74, Arn92, CL55].
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Appendix A

Fixed Points Theorems
(an idiosincratic selection)

In this appendix, I provide some standard and less standard fixed-point theo-
rems. These constitute a very partial introduction to the subject. The choice
of the topics is motivated by the needs of the previous chapters.

A.1 Banach Fixed Point Theorem

Theorem A.1.1 (Fixed point contraction) Given a Banach space B, a
bounded closed set A ⊂ B and a map K : A→ B if

i) K(A) ⊂ A,

ii) there exists σ ∈ (0, 1) such that ∥K(v) − K(w)∥ ≤ σ∥v − w∥ for each
v, w ∈ A,

then there exists a unique v∗ ∈ A such that Kv∗ = v∗.

Proof. Since A is bounded supx,y∈A ∥x−y∥ = L <∞, i.e. it has a finite
diameter. Let a0 ∈ A and consider the sequence of points defined recursively
by an+1 = K(an) and the sequence of sets A0 = A and An+1 = K(An) ⊂ A.
Let dn := supx,y∈An

∥x − y∥ be the diameter of An. Then if x, y ∈ An, we
have

∥K(y)−K(x)∥ ≤ σ∥x− y∥ ≤ σdn.

That is dn+1 ≤ σdn ≤ σnL. This means that, for each n,m ∈ N, an, a0 ∈ A
and am, an+m ∈ Am, hence ∥an+m − am∥ ≤ σmL. That is, {an} ⊂ A is a
Cauchy sequence and, being B a Banach space, it must have an accumulation

25
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point v∗ ∈ B. Moreover, since A is closed, it must be v∗ ∈ A. Clearly

∥Kv∗ − v∗∥ = lim
n→∞

∥Kv∗ − an∥ = lim
n→∞

∥Kv∗ −Kan−1∥

≤ lim
n→∞

σ∥v∗ − an−1∥ = 0.

Hence, v∗ is a fixed point. Next, suppose there exists u ∈ A such thatKu = u.
Then

∥u− v∗∥ = ∥K(u− v∗)∥ ≤ σ∥u− v ∗ ∥

implies u = v∗. □

Corollary A.1.2 Given a Banach space B and a map K : B → B with the
property that there exists σ ∈ (0, 1) such that ∥K(v)−K(w)∥ ≤ σ∥v−w∥ for
each v, w ∈ B, then there exists a unique v∗ ∈ B such that Kv∗ = v∗.

Proof. To prove the theorem, for each L ∈ R+ consider the sets BL :=
{v ∈ B : ∥v∥ ≤ L}. Then ∥K(v)∥ ≤ ∥K(v) − K(0)∥ + ∥K(0)∥ ≤ σ∥v∥ +
∥K(0)∥ ≤ σL + ∥K(0)∥. Thus, for each L ≥ (1 − σ)−1∥K(0)∥ we have
that K(BL) ⊂ BL. The existence follows by applying Theorem A.1.1. The
uniqueness follows from the same argument used at the end of the proof of
Theorem A.1.1. □

A.2 Brouwer’s Fixed Point Theorems

The next result is interesting since it relates the geometrical properties of the
domain to the existence of a fixed point. However, one should note that the
fixed point may not be unique. In the following, I provide an elementary
proof. Other proofs based on algebraic topology exist, but are outside the
scope of this book.
Before stating the Theorem, we need a combinatoric lemma about simplices
that will be fundamental in the proof. First, recall the definition of simplex.

Definition A.2.1 (Geometric n-simplex) Let v0, v1, . . . , vn be affinely in-
dependent points in Rm, m ≥ n.1 The n-simplex spanned by these points is

∆n(v1, . . . , vn+1) =
{
x ∈ Rm : x =

n+1∑
i=1

λivi, λi ≥ 0,

n+1∑
i=1

λi = 1
}
.

The standard n-simplex in Rn+1 is

∆n := ∆n(e1, . . . , en+1) =
{
(x1, . . . , xn+1) ∈ Rn+1 : xi ≥ 0,

n+1∑
i=1

xi = 1
}
.
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∆0 v0 v1∆1 v0 v1

v2

∆2 v0 v1

v2

v3

∆3

Figure A.1: Low-dimensional examples

Definition A.2.2 (Coloring) Let ∆n be the standard n–simplex, and let
T be a simplicial subdivision (triangulation) of ∆n. We call V(T ) the set
of vertices of the simplices in T . A s-coloring of T is a function ℓ : V(T ) →
{1, . . . , n+1} such that if v lies on the face of ∆n opposite ei (that is, vi = 0),
then ℓ(v) ̸= i. A simplex with vertices in V(T ) is fully colored if, calling V
the set of its vertices, f |V is invertible on its image.

Lemma A.2.3 (Sperner’s Lemma) Let ∆n be the standard n–simplex. Let
T be a simplicial subdivision (triangulation) of ∆n. Any s-colouring of T con-
tains at least one fully colored simplex.

Proof. The proof is by induction on n.
Let us start with n = 1. Here ∆1 is the interval with endpoints e0, e1. The
labeling rule forces e0 to have label 0 and e1 to have label 1. If all the
subdivisions have vertices with the same color, then e0 and e1 would have the
same color, contrary to the assumption.
Assume the lemma is true for dimension n−1. Consider ∆n. By assumption,
there is at least one fully colored (n − 1)–simplex ∆(v1, . . . vn), vi ∈ V(T ),
lying on the boundary ∂∆n. Let ∆1 := ∆(v1, . . . vn+1) ∈ T be the n-simplex
containing ∆(v1, . . . , vn). If ℓ(vn+1) ̸= ℓ(vi) for all i ≤ n, then we have a
fully colored simplex and we are done. Otherwise, there is a unique j such
that vn+1 = vj . We then consider the simplex ∆(v1, . . . , vj−1, vj+1, . . . , vn+1),
which is fully colored by construction. Note that each face of an element of
T belongs to two elements of T , unless it belongs to ∂∆n in which case it
belongs to a unique element of T . So there exists a unique vn+2 ∈ V(T ) such
that vn+2 ̸= vj and ∆2 := ∆(v1, . . . , vj−1, vj+1, . . . , vn+1, vn+2) ∈ T . Again,
either is fully colored, or we can erase the vertex with the same color as vn+2

and obtain another fully covered n− 1-simplex. In this way, we can construct
a sequence of simplices {∆k} ∈ T .
Next, we show that ∆k = ∆j =⇒ k = j. Suppose the contrary, and let k be
the smallest integer for which there exists j < k such that ∆k = ∆j . Let w

+
l ∈

1A set of points v0, v1, . . . , vn ∈ Rm is called affinely independent if the collection of
vectors v1 − v0, v2 − v0, . . . , vn − v0 are linearly independent.
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V(T ) be the last vertex added to obtain ∆l and w
−
l ∈ V(T ) the unique vertex

in ∆l such that ℓ(w+
l ) = ℓ(w−

l ). Consequently, if V (∆) are the verteces of ∆,
we have V (∆k) = [V (∆k−1)\{w−

k−1}]∪{w
+
k } and V (∆j+1) = [V (∆j)\{w−

j }]∪
{w+

j+1}. By contruction ∆(V (∆k) \ {w+
k }), ∆(V (∆k) \ {w−

k }), ∆(V (∆j) \
{w−

j }), and ∆(V (∆j) \ {w+
j }) are all fully coloured. Since, by hypothesis,

V (∆k) = V (∆j), it must be w±
k ∈ {w−

j , w
+
j }, otherwise ∆(V (∆k) \ {w±

k })
could not be fully colored. So, either w±

k = w±
j , or w±

k = w∓
j . If w+

k =

w+
j , and j > 1, then it must be ∆k−1 = ∆j−1 contradicting the hypothesis

that k is the smaller integer for which this happens. If j = 1, then note
that w+

1 ̸∈ ∂∆n while w+
k ∈ ∂∆n since otherwise ∆k−1 would have a vertex

outiside ∆n. It remains the possibility w+
k = w−

j , this implies ∆k−1 = ∆j+1

again contradicting the hypothesis unless k = j + 2. But this would imply
∆j = ∆j+2 which is impossible, as one can check directly.
The above implies that all the ∆k are different, but they are only finitely many,
so the construction must eventually stop, and the only possibility to stop is
when a fully colored simplex appears, whereby concluding the proof. □

Theorem A.2.4 (Fixed Point Theorem for simplices) Every continuous
map f : ∆n → ∆n has a fixed point.

Proof. Let x ∈ ∆n such that fi(x) ≥ xi for each i ∈ {1, . . . , n+1}, then

0 = 1− 1 =

d+1∑
i=1

(fi(x)− xi), (A.2.1)

which implies f(x) = x. It thus suffices to show that such a point exists.
We argue by contradiction, assume that for every x there exists some i with
fi(x) < xi.
For each k ∈ N, consider a triangulation Tk of ∆n with simplices of size
smaller than 2−k. For each vertex v of Tk, we set ℓ(v) = argmaxi{vi−fi(v)}.
By our assumption, we have vℓ(v) > fℓ(v)(v). If v lies on the face {xj = 0},
then clearly fj(v) ≥ 0 = vj , so ℓ(v) ̸= j. Thus, we have defined an s-
coloring of Tk. It follows that there exists a simplex ∆k ∈ Tk which is fully
colored. Let xk ∈ ∆k =: ∆(vk,1, . . . vk,n+1), by compactness the sequence
{xk} admits a convergent subsequence {xkj}. Let x̄ = limj→∞ xkj . It follows
that x̄ = limj→∞ vkj ,l, for each l ∈ {1, . . . , n + 1}. Since the ∆k are fully
colored, for each i and j there exists lj,i such that f(vkj ,li,j )i < (vkj ,li,j )i. By
the continuity of f , it follows

x̄i ≤ f(x̄)i

for each i ∈ {1, . . . , n+ 1}, hence the contradiciton. The lemma follows. □
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To obtain a more general result, we need to recall a useful characterization of
convex sets.

Lemma A.2.5 Let K ⊂ Rn be a non-empty compact convex set with nonempty
interior. Then K is homeomorphic to the standard n–simplex ∆n.

Proof. Choose x0 ∈ int(K) and z0 = ( 1
n+1 , . . . ,

1
n+1 ) ∈ Rn+1. Let R

be a rotation that sends ed+1 into the vector [n + 1]−
1
2 (1, . . . , 1). Consider

the map Φ0(x) = z0 + R(x − x0, 0) and let K̃ = Φ0(K). By construction,
K̃ belongs to the same hyperplane containing ∆n. For each z ∈ K̃, the half
line {z0 + t(z − z0) : t ≥ 0} intersects the boundary ∂K at a unique point
a(z) and the boundary ∂∆n at a unique point b(z). Define a continuous map
ϕ1 : K̃ → ∆n by

ϕ1(x) = z0 +
∥b(z)∥
∥a(z)∥

(z − z0).

Clearly, ϕ = ϕ1 ◦ ϕ0 is the wanted homeomorphism. □

Theorem A.2.6 (Brouwer Fixed Point Theorem) For every non-empty
compact convex set K ⊂ Rn and continuous map f : K → K, f has a fixed
point.

Proof. By Lemma A.2.5, there exists a homeomorphism ϕ : K → ∆n.
Define F = ϕ ◦ f ◦ ϕ−1 : ∆n → ∆n. Theorem A.2.4 implies that there
exist x̄ ∈ ∆n such that F (n̄) = x̄. Hence, setting x∗ = ϕ−1(x̄) we have
f(x∗) = x∗. □

To conclude this section, we show how Brouwer’s result can be extended to
the infinite-dimensional setting by an approximation procedure.

Theorem A.2.7 (Schauder Fixed-Point Theorem) Let B be a Banach
space and K ⊂ B a nonempty, compact, convex subset. Let f : K → K be
continuous. Then f has a fixed point.

Proof. Since K is compact, for each ε > 0 there exists a finite set
{x1, . . . , xN} ⊂ K̊ such that

K ⊂
N⋃
i=1

Bε(xi),

where Bε(xi) denotes the open ball of radius ε around xi. Let

Kε := conv{x1, . . . , xN} ⊂ K



30 APPENDIX A. FIXED POINTS THEOREMS

be the convex hull of the points {xi}. Then Kε is a compact, convex, and
finite-dimensional set since it is contained in span{x1, . . . , xN}. Next, define

ϕi(x) =

{
ε− ∥x− xi∥ for∥x− xi∥ ≤ ε

0 otherwise.

and

Pε(x) =

[
N∑
i=1

ϕi(x)

]−1 N∑
i=1

ϕi(x)xi.

Note that Pε(B) = Kε, Pε is continuos and, for all x ∈ K

∥Pε(x)− x∥ =

∥∥∥∥∥∥
[

N∑
i=1

ϕi(x)

]−1 N∑
i=1

ϕi(x)(xi − x)

∥∥∥∥∥∥ ≤ ε. (A.2.2)

We can then define the continuous function

fε := Pε ◦ f : Kε → Kε.

By Brouwer’s fixed-point theorem, there exists

xε ∈ Kε such that fε(xε) = xε.

Since K is compact, there exists a convergent subsequence {xεj}, let x∗ be
the limit. Consequently, reacalling (A.2.2), we have

∥f(xεj )− xεj∥ = ∥f(xεj )− fεj (xεj )∥ = ∥f(xεj )− Pεj (f(xεj ))∥ ≤ εj .

Taking the limit j → ∞, by the continuity of f , we have the wanted fixed
point f(x∗) = x∗. □

A.3 Hilbert metric and Birkhoff theorem

One may wonder if there are cases in which the fixed point provided by the
Brower and Shauder theory is unique. In general, the answer is negative,
but much more can be said for linear maps. In particular, we will see that
the Banach fixed-point theorem can produce unexpected results if used with
respect to an appropriate metric. We thus start with a short digression on
projective metrics.
Projective metrics are widely used in geometry, not to mention the importance
of their generalizations (e.g. Kobayashi metrics) for the study of complex
manifolds [IK00]. It is quite surprising that they play a major rôle also in our
situation, [Liv95].

Here we limit ourselves to a few words on the Hilbert metric, a quite
important tool in hyperbolic geometry.
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A.3.1 Projective metrics

Let C ⊂ Rn be a strictly convex compact set. For each two point x, y ∈ C
consider the line ℓ = {λx + (1 − λy) | λ ∈ R} passing through x and y. Let
{u, v} = ∂C ∩ ℓ and define2

Θ(x, y) =

∣∣∣∣ln ∥x− u∥∥y − v∥
∥x− v∥∥y − v∥

∣∣∣∣
(the logarithm of the cross ratio). By remembering that the cross ratio is a
projective invariant and looking at Figure A.2, it is easy to check that Θ is
indeed a metric. Moreover, the distance of an inner point from the boundary
is always infinite. One can also check that if the convex set is a disc, then the
disc with the Hilbert metric is nothing but the Poincaré disc.
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Figure A.2: Hilbert metric

The objects that we will use in our subsequent discussion are not convex
sets but rather convex cones, yet their projectivization is a convex set, and one
can define the Hilbert metric on it (whereby obtaining a semi-metric for the
original cone). It turns out that there exists a more algebraic way of defining

2Remark that u, v can also be ∞.
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such a metric, which is easier to use in our context. Moreover, there exists
a simple connection between vector spaces with a convex cone and vector
lattices (in a vector lattice one can always consider the positive cone). This
justifies the next digression in lattice theory.3

Consider a topological vector space V with a partial ordering “⪯,” that is
a vector lattice.4 We require the partial order to be “continuous,” i.e. given
{fn} ∈ V lim

n→∞
fn = f , if fn ⪰ g for each n, then f ⪰ g. We call such vector

lattices “integrally closed.” 5

We define the closed convex cone 6 C = {f ∈ V | f ̸= 0, f ⪰ 0} (hereafter,
the term “closed cone” C will mean that C∪{0} is closed), and the equivalence

relation “∼”: f ∼ g iff there exists λ ∈ R+\{0} such that f = λg. If we call C̃
the quotient of C with respect to ∼, then C̃ is a closed convex set. Conversely,
given a closed convex cone C ⊂ V, enjoying the property C ∩ −C = ∅, we can
define an order relation by

f ⪯ g ⇐⇒ g − f ∈ C ∪ {0}.

Henceforth, each time that we specify a convex cone, we will assume the
corresponding order relation and vice versa. The reader must therefore be
advised that “⪯” will mean different things in different contexts.

It is then possible to define a projective metric Θ (Hilbert metric),7 in C,
by the construction:

α(f, g) = sup{λ ∈ R+ | λf ⪯ g}
β(f, g) = inf{µ ∈ R+ | g ⪯ µf}

Θ(f, g) = log

[
β(f, g)

α(f, g)

]
where we take α = 0 and β = ∞ if the corresponding sets are empty.

The relevance of the above metric in our context is due to the following
Theorem by Garrett Birkhoff.

3For more details, see [Bir57], and [Nus88] for an overview of the field.
4We are assuming the partial order to be well-behaved with respect to the algebraic

structure: for each f, g ∈ V f ⪰ g ⇐⇒ f − g ⪰ 0; for each f ∈ V, λ ∈ R+\{0} f ⪰ 0 =⇒
λf ⪰ 0; for each f ∈ V f ⪰ 0 and f ⪯ 0 imply f = 0 (antisymmetry of the order relation).

5To be precise, in the literature “integrally closed” is used in a weaker sense. First, V
does not need a topology. Second, it suffices that for {αn} ∈ R, αn → α; f, g ∈ V, if
αnf ⪰ g, then αf ⪰ g. Here we will ignore these and other subtleties: our task is limited
to a brief account of the results relevant to the present context.

6Here, by “cone,” we mean any set such that, if f belongs to the set, then λf belongs
to it as well, for each λ > 0.

7In fact, we define a semi–metric, since f ∼ g ⇒ Θ(f, g) = 0. The metric that we

describe corresponds to the conventional Hilbert metric on C̃.
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Theorem A.3.1 Let V1, and V2 be two integrally closed vector lattices; L :
V1 → V2 a linear map such that L(C1) ⊂ C2, for two closed convex cones
C1 ⊂ V1 and C2 ⊂ V2 with Ci ∩ −Ci = ∅. Let Θi be the Hilbert metric
corresponding to the cone Ci. Setting ∆ = sup

f, g∈L(C1)

Θ2(f, g) we have

Θ2(Lf, Lg) ≤ tanh

(
∆

4

)
Θ1(f, g) ∀f, g ∈ C1

(tanh(∞) ≡ 1).

Proof. The proof is provided for the reader’s convenience.
Let f, g ∈ C1, on the one hand if α = 0 or β = ∞, then the inequality is

obviously satisfied. On the other hand, if α ̸= 0 and β ̸= ∞, then

Θ1(f, g) = ln
β

α

where αf ⪯ g and βf ⪰ g, since V1 is integrally closed. Notice that α ≥ 0,
and β ≥ 0 since f ⪰ 0, g ⪰ 0. If ∆ = ∞, then the result follows from
αLf ⪯ Lg and βLf ⪰ Lg. If ∆ <∞, then, by hypothesis,

Θ2 (L(g − αf), L(βf − g)) ≤ ∆

which means that there exist λ, µ ≥ 0 such that

λL(g − αf) ⪯ L(βf − g)

µL(g − αf) ⪰ L(βf − g)

with ln µ
λ ≤ ∆. The previous inequalities imply

β + λα

1 + λ
Lf ⪰ Lg

µα+ β

1 + µ
Lf ⪯ Lg.

Accordingly,

Θ2(Lf, Lg) ≤ ln
(β + λα)(1 + µ)

(1 + λ)(µα+ β)
= ln

eΘ1(f, g) + λ

eΘ1(f, g) + µ
− ln

1 + λ

1 + µ

=

∫ Θ1(f, g)

0

(µ− λ)eξ

(eξ + λ)(eξ + µ)
dξ ≤ Θ1(f, g)

1− λ
µ(

1 +
√

λ
µ

)2

≤ tanh

(
∆

4

)
Θ1(f, g).

□
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Remark A.3.2 If L(C1) ⊂ C2, then it follows that Θ2(Lf, Lg) ≤ Θ1(f, g).
However, a uniform rate of contraction depends on the diameter of the image
being finite.

In particular, if an operator maps a convex cone strictly inside itself (in
the sense that the diameter of the image is finite), then it is a contraction in
the Hilbert metric. This implies the existence of a “positive” eigenfunction
(provided the cone is complete with respect to the Hilbert metric), and, with
some additional work, the existence of a gap in the spectrum of L (see [Bir79]
for details). The relevance of this theorem for the study of invariant measures
and their ergodic properties is obvious.

It is natural to wonder about the strength of the Hilbert metric compared
to other, more usual, metrics. While, in general, the answer depends on the
cone, it is nevertheless possible to state an interesting result.

Lemma A.3.3 Let ∥ · ∥ be a norm on the vector lattice V, and suppose that,
for each f, g ∈ V,

−f ⪯ g ⪯ f =⇒ ∥f∥ ≥ ∥g∥.

Then, given f, g ∈ C ⊂ V for which ∥f∥ = ∥g∥,

∥f − g∥ ≤
(
eΘ(f, g) − 1

)
∥f∥.

Proof. We know that Θ(f, g) = ln β
α , where αf ⪯ g, βf ⪰ g. This

implies that −g ⪯ 0 ⪯ αf ⪯ g, i.e. ∥g∥ ≥ α∥f∥, or α ≤ 1. In the same
manner, it follows that β ≥ 1. Hence,

g − f ⪯(β − 1)f ⪯ (β − α)f

g − f ⪰(α− 1)f ⪰ −(β − α)f

which implies

∥g − f∥ ≤ (β − α)∥f∥ ≤ β − α

α
∥f∥ =

(
eΘ(f, g) − 1

)
∥f∥.

□

Many normed vector lattices satisfy the hypothesis of Lemma 1.3 (e.g.
Banach lattices8); nevertheless, we will see that some important examples
treated in this paper do not.

8A Banach lattice V is a vector lattice equipped with a norm satisfying the property
∥ |f | ∥ = ∥f∥ for each f ∈ V, where |f | is the least upper bound of f and −f . For this
definition to make sense it is necessary to require that V is “directed,” i.e. any two elements
have an upper bound.
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A.3.2 An application: Perron-Frobenius

Consider a matrix L : Rn → Rn of all strictly positive elements: Lij ≥ γ > 0.
The Perron-Frobenius theorem states that there exists a unique eigenvector
v+ such that v+i > 0, in addition, the corresponding eigenvalue λ is simple,
maximal and positive. There are quite a few proofs of this theorem; one is
based on Birkhoff’s theorem. Consider the cone C+ = {v ∈ R2 | vi ≥ 0}, then
obviously LC+ ⊂ C+. Moreover an explicit computation (see

Problem A.1 shows that

Θ(v, w) = ln sup
ij

viwj

vjwi
. (A.3.3)

Then, setting M = maxij Lij , it follows that

Θ(Lv, Lw) ≤ 2 ln
M

γ
:= ∆ <∞.

We then have a contraction in the Hilbert metric, and the result follows from
the usual fixed points theorems. Note that, since Θ(v, λv) = 0, for all λ ∈ R+,
the fixed point v+ ∈ Rn is only projective, that is Lv+ = λv+ for some λ ∈ R;
in other words, we have an eigenvalue.

Remark that L∗ satisfies the same conditions as L, thus there exists w+ ∈
C+, µ ∈ R+, such that L∗w+ = µw+. Next, define ρ1(v) = |⟨w+, v⟩| and
ρ2(v) = ∥v∥. It is easy to check that there are two homogeneous forms of
degree one adapted to the cone.

In addition, if ρ1(v) = ρ2(v), then ρ1(L
nv) = ρ1(L

nw). Hence, by Lemma
A.3.3

∥Lnv − Lnw∥ ≤
(
eΘ(Lnv,Lnw) − 1

)
min{∥Lnv∥, ∥Lnw∥}

≤ KΛn min{∥Lnv∥, ∥Lnw∥},
(A.3.4)

for some constant K depending only on v, w. The estimate A.3.4 means that
all the vectors in the cone grow at the same rate. In fact, for all v ∈ intC,

∥λ−nLnv − λ−nLnw∥ ≤ KΛn.

Hence, limn→∞ λ−nLnv = v+.
Finally, consider V1 = {v ∈ V | ⟨w+, v⟩ = 0}. Clearly LV1 ⊂ V1 and

V1 ⊕ span{v+} = V. Let w ∈ V1, clearly there exists α ∈ R+ such that
αv+ + w ∈ C,9 thus

∥Lnw∥ ≤ ∥Ln(αv+ + w)− αLnv+∥ ≤ LΛnλn.

9this is a special case of the general fact that any vector can be written as the linear
combination of two vectors belonging to the cone.
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This immediately implies that L restricted to the subspace V1 has spectral
radius less than λΛ. In other words, λ is the maximal eigenvalue; it is simple,
and any other eigenvalue must be smaller than λΛ. We have thus obtained
an estimate of the spectral gap between the first and the second eigenvalue.

Notes

For more details on Hilbert metrics see [Bir79], and [Nus88] for an overview
of the field.



Appendix B

Implicit function theorem
(a quantitative version)

In this appendix we recall the implicit function Theorem. We provide an
explicit proof because we use in the text a quantitative version of the theorem
so it is important to keep track of the various constants.

B.1 The theorem

Let n,m ∈ N and F ∈ C1(Rm+n,Rm) and let (x0, λ0) ∈ Rn × Rm such that
F (x0, λ0) = 0. For each δ > 0 let Vδ = {(x, λ) ∈ Rn+m : ∥x − x0∥ ≤
δ, ∥λ− λ0∥ ≤ δ}.

Theorem B.1.1 Assume that ∂xF (x0, λ0) is invertible and choose δ > 0 such
that sup(x,λ)∈Vδ

∥1−[∂xF (x0, λ0)]
−1∂xF (x, λ)∥ ≤ 1

2}. Let Bδ = sup(x,λ)∈Vδ
∥∂λF (x, λ)∥

and M = ∥∂xF (x0, λ0)−1∥. Set δ1 = (2MBδ)
−1δ and Λδ1 := {λ ∈ Rm : ∥λ−

λ∥ < δ1}. Then there exists g ∈ C1(Λδ1 ,Rm) such that all the solutions of the
equation F (x, λ) = 0 in the set {(x, λ) ∈ B1×B2 : ∥λ−λ0∥ < δ1, ∥x−x0∥ < δ}
are given by (g(λ), λ). In addition,

∂λg(λ) = −(∂xF (g(λ), λ))
−1∂λF (g(λ), λ).

We will do the proof in several steps.

B.1.1 Existence of the solution

Let A(x, λ) = ∂xF (x, λ), M = ∥A(x0, λ0)−1∥.
We want to solve the equation F (x, λ) = 0, various approaches are possi-

ble. Here we will use a simplification of Newton method, made possible by the

37
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fact that we already know a good approximation of the zero we are looking for.
Let λ be such that ∥λ−λ0∥ < δ1 ≤ δ. Consider Uδ = {x ∈ Rn : ∥x−x0∥ ≤ δ}
and the function Θλ : Uδ → Rn defined by1

Θλ(x) = x−A(x0, λ0)
−1F (x, λ). (B.1.1)

Problem B.1 Prove that, for x ∈ U(λ), F (x, λ) = 0 is equivalent to x =
Θλ(x).

Next,

∥Θλ(x0)−Θλ0
(x0)∥ ≤M∥F (x0, λ)∥ ≤MBδδ1.

In addition, ∥∂xΘλ∥ = ∥1−A(x0, λ0)
−1A(x, λ)∥ ≤ 1

2 . Thus,

∥Θλ(x)− x0∥ ≤ 1

2
∥x− x0∥+ ∥Θλ(x0)− x0∥ ≤ 1

2
∥x− x0∥+MBδδ1 ≤ δ.

The existence of x ∈ Uδ such that Θλ(x) = x follows then by the standard
fixed point Theorem A.1.1. We have so obtained a function g : {λ : ∥λ −
λ0∥ ≤ δ1} = Λδ1 → Rn such that F (g(λ), λ) = 0. it remains the question of
the regularity.

B.1.2 Lipschitz continuity and Differentiability

Let λ, λ′ ∈ Λδ1 . By (B.1.1)

∥g(λ)− g(λ′)∥ ≤ 1

2
∥g(λ)− g(λ′)∥+MBδ|λ− λ′|

This yields the Lipschitz continuity of the function g. To obtain the differ-
entiability we note that, by the differentiability of F and the above Lipschitz
continuity of g, for h ∈ Rm small enough,

∥F (g(λ+ h), λ+ h)− F (g(λ), λ) + ∂xF [g(λ+ h)− g(λ)] + ∂λFh∥ = o(∥h∥).

Since F (g(λ+ h), λ+ h) = F (g(λ), λ) = 0, we have that

lim
h→0

∥h∥−1∥g(λ+ h)− g(λ) + [∂xF ]
−1∂λFh∥ = 0

which concludes the proof of the Theorem, the continuity of the derivative
being obvious be the obtained explicit formula.

1The Newton method would consist in finding a fixed point for the function x −
A(x, λ)−1F (x, λ). This gives a much faster convergence and hence is preferable in ap-
plications, yet here it would make the estimates a bit more complicated.
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B.2 Generalization

First of all note that the above theorem implies the inverse function theorem.
Indeed if f : Rn → Rn is a function such that ∂xf is invertible at some point
x0, then one can consider the function F (x, y) = f(x) − y. Applying the
implicit function theorem to the equation F (x, y) = 0 it follows that y = f(x)
are the only solution, hence the function is locally invertible.

The above theorem can be generalized in several ways.

Problem B.2 Show that if F in Theorem B.1.1 is Cr, then also g is Cr.

Problem B.3 Verify that if B1,B2 are two Banach spaces and in Theorem
B.1.1 we have B1 instead of Rn and B2 instead of Rm the Theorem remains
true and the proof remains exactly the same.

As I mentioned the statement of Theorem B.1.1 is suitable for quantitative
applications.

Problem B.4 Suppose that in Theorem B.1.1 we have F ∈ C2, then show
that we can chose

δ = [2∥D∂xF∥∞]
−1
.



Appendix C

Perturbation Theory
(a super-fast introduction)

The following is really super condensate (although self-consistent). If you
want more details see [RS80, Kat66] in which you probably can find more
than you are looking for.

C.1 Bounded operators

In the following we will consider only separable Banach spaces, i.e. Banach
spaces that have a countable dense set.1

Given a Banch space B we can consider the set L(B,B) of the linear
bounded operators from B to itself. We can then introduce the norm ∥B∥ =
sup∥v∥≤1 ∥Bv∥.

Problem C.1 Show that (L(B,B), ∥ · ∥) is a Banach space. That is that ∥ · ∥
is really a norm and that the space is complete with respect to such a norm.

Problem C.2 Show that the n× n matrices form a Banach Algebra.2

Problem C.3 Show that L(B,B) form a Banach algebra.3

1Recall that a Banach space is a complete normed vector space (in the following we will
consider vector spaces on the field of complex numbers), that is a normed vector space in
which all the Cauchy sequences have a limit in the space. Again, if you are uncomfortable
with Banach spaces, in the following read Rd instead of B and matrices instead of operators,
but be aware that we have to develop the theory without the use of the determinant that,
in general, is not defined for operators on Banach spaces.

2A Banach Algebra A is a Banach space where it is defined the multiplications between
element with the usual properties of an algebra and, in addition, for each a, b ∈ A holds
∥ab∥ ≤ ∥a∥ · ∥b∥.

3The multiplication is given by the composition.

40
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To each A ∈ L(B,B) are associated two important subspaces: the range
R(A) = {v ∈ B : ∃ w ∈ B such that v = Aw} and the kernel N(A) = {v ∈
B : Av = 0}.

Problem C.4 Prove, for each A ∈ L(B,B), that N(A) is a closed linear
subspaces of B. Show that this is not necessarily the case for R(A) if B is not
finite dimensional.

An very special, but very important, class of operators are the projectors.

Definition C.1.1 An operator Π ∈ L(B,B) is called a projector iff Π2 = Π.

Note that if Π is a projector, so is 1 − Π. We have the following interesting
fact.

Lemma C.1.2 If Π ∈ L(B,B) is a projector, then N(Π)⊕R(Π) = B.

Proof. If v ∈ B, then v = Πv+(1−Π)v. Notice that R(1−Π) = N(Π)
and R(Π) = N(1 − Π). Finally, if v ∈ N(Π) ∩ R(Π), then v = 0, which
concludes the proof. □

Another, more general, very important class of operators are the compact
ones.

Definition C.1.3 An operator K ∈ L(B,B) is called compact iff for any
bounded set B the closure of K(B) is compact.

Remark C.1.4 Note that not all the linear operator on a Banach space are
bounded. For example consider the derivative acting on C1((0, 1),R).

C.2 Functional calculus

First of all recall that all the Riemannian theory of integration works verbatim
for function f ∈ C0(R,B), where B is a Banach space. We can thus talk of

integrals of the type
∫ b

a
f(t)dt.4 Next, we can talk of analytic functions for

functions in C0(C,B): a function is analytic in an open region U ⊂ C iff at
each point z0 ∈ U there exists a neighborhood B ∋ z0 and elements {an} ⊂ B
such that

f(z) =

∞∑
n=0

an(z − z0)
n ∀z ∈ B. (C.2.1)

4This is special case of the so called Bochner integral [Yos95].
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Problem C.5 Show that if f ∈ C0(C,B) is analytic in U ⊂ C, then given
any smooth closed curve γ, contained in a sufficiently small disk in U , holds5∫

γ

f(z)dz = 0 (C.2.2)

Then show that the same hold for any piecewise smooth closed curve with
interior contained in U , provided U is simply connected.

Problem C.6 Show that if f ∈ C0(C,B) is analytic in a simply connected
U ⊂ C, then given any smooth closed curve γ, with interior contained con-
tained in U and having in its interior a point z, hods the formula

f(z) =
1

2πi

∫
γ

(ξ − z)−1f(ξ)dξ. (C.2.3)

Problem C.7 Show that if f ∈ C0(C,B) satisfies (C.2.3) for each smooth
closed curve in a simply connected open set U , then f is analytic in U .

C.3 Spectrum and resolvent

Given A ∈ L(B,B) we define the resolvent, called ρ(A), as the set of the
z ∈ C such that (z1−A) is invertible and the inverse belongs to L(B,B). The
spectrum of A, called σ(A) is the complement of ρ(A) in C.

Problem C.8 Prove that, for each Banach space B and operator A ∈ L(B,B),
if z ∈ ρ(A), then there exists a neighborhood U of z such that (z1 − A)−1 is
analytic in U .

From the above exercise follows that ρ(A) is open, hence σ(A) is closed.

Problem C.9 Show that, for each A ∈ L(B,B), σ(A) ̸= ∅.

Problem C.10 Show that if Π ∈ L(B,B) is a projector, then σ(Π) = {0, 1}.

Up to now the theory for operators seems very similar to the one for
matrices. Yet, the spectrum for matrices is always given by a finite number
of points while the situation for operators can be very dfferenct.

5Of course, by
∫
γ f(z)dz we mean that we have to consider any smooth parametrization

g : [a, b] → C of γ, g(a) = g(b), and then
∫
γ f(z)dz :=

∫ b
a f ◦ g(t)g′(t)dt. Show that the

definition does not depend on the parametrization and that one can use piecewise smooth
parametrizations as well.
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Problem C.11 Consider the operator L : C0([0, 1],C) → C0([0, 1],C) defined
by

(Lf)(x) = 1

2
f(x/2) +

1

2
f(x/2 + 1/2).

Show that σ(L) = {z ∈ C : |z| ≤ 1}.

Problem C.12 Show that, if A ∈ L(B,B) and p is any polynomial, then for
each n ∈ N and smooth curve γ ⊂ C, with σ(A) in its interior,

p(A) =
1

2πi

∫
γ

p(z)(z1−A)−1dz.

Problem C.13 Show that, for each A ∈ L(B,B) the limit

r(A) = lim
n→∞

∥An∥ 1
n

exists.

The above limit is called the spectral radius of A.

Lemma C.3.1 For each A ∈ L(B,B) holds true supz∈σ(A) |z| = r(A).

Proof. Since we can write

(z1−A)−1 = z−1(1− z−1A)−1 = z−1
∞∑

n=0

z−nAn,

and since the series converges if it converges in norm, from the usual criteria
for the convergence of a series follows supz∈σ(A) |z| ≤ r(A). Suppose now
that the inequality is strict, then there exists 0 < η < r(A) and a curve
γ ⊂ {z ∈ C : |z| ≤ η} which contains σ(A) in its interior. Then applying
Problem C.12 yields ∥An∥ ≤ Cηn, which contradicts η < r(A). □

Note that if f(z) =
∑∞

n=0 fnz
n is an analytic function in all C (entire), then

we can define

f(A) =

∞∑
n=0

fnA
n.

Problem C.14 Show that, if A ∈ L(B,B) and f is an entire function, then
for each smooth curve γ ⊂ C, with σ(A) in its interior,

f(A) =
1

2πi

∫
γ

f(z)(z1−A)−1dz.

In view of the above fact, the following definition is natural:
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Definition C.3.2 For each A ∈ L(B,B), f analytic in a region U containing
σ(A), then for each smooth curve γ ⊂ U , with σ(A) in its interior, define

f(A) =
1

2πi

∫
γ

f(z)(z1−A)−1dz. (C.3.4)

Problem C.15 Show that the above definition does not depend on the curve
γ.

Problem C.16 For each A ∈ L(B,B) and functions f, g analytic on a do-
main D ⊃ σ(A), show that f(A) + g(A) = (f + g)(A) and f(A)g(A) =
(f · g)(A).

Problem C.17 In the hypotheses of the Definition C.3.2 show that f(σ(A)) =
σ(f(A)) and [f(A), A] = 0.

Problem C.18 Consider f : C → C entire and A ∈ L(B,B). Suppose that
{z ∈ C : f(z) = 0} ∩ σ(A) = ∅. Show that f(A) is invertible and f(A)−1 =
f−1(A).

Problem C.19 Let A ∈ L(B,B). Suppose there exists a semi-line ℓ, starting
from the origin, such that ℓ ∩ σ(A) = ∅. Prove that it is possible to define an
operator lnA such that elnA = A.

Remark C.3.3 Note that not all the interesting functions can be constructed

in such a way. In fact, A =

(
0 1
−1 0

)
is such that A2 = −1, thus it can

be interpreted as a square rooth of −1 but it cannot be obtained directly by a
formula of the type (C.3.4).

Problem C.20 Suppose that A ∈ L(B,B) and σ(A) = B ∪ C, B ∩ C = ∅,
suppose that the smooth closed curve γ ⊂ ρ(A) contains B, but not C, in its
interior, prove that

PB :=
1

2πi

∫
γ

(z1−A)−1dz

is a projector that does not depend on γ.

Note that by Problem C.17 easily follows that PBA = APB . Hence,
AR(PB) ⊂ R(PB) and AN(PB) ⊂ N(PB). Thus B = R(PB) ⊕ N(PB) pro-
vides an invariant decomposition for A.

Problem C.21 In the hypotheses of Problem C.20, prove that A = PBAPB+
(1− PB)A(1− PB).

Problem C.22 In the hypotheses of Problem C.20, prove that σ(PBAPB) =
B ∪ {0}. Moreover, if dim(R(PB)) = D < ∞, then the cardinality of B is
≤ D.
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C.4 Perturbations

Let us consider A,B ∈ L(B,B) and the family of operators Aν := A+ νB.

Lemma C.4.1 For each δ > 0 there exists νδ ∈ R such that, for all |ν| ≤ νδ,
ρ(Aν) ⊃ {z ∈ C : d(z, σ(A)) > δ}.

Proof. Let d(z, σ(A)) > δ, then

(z1−Aν) = (z1−A)
[
1− ν(z1−A)−1B

]
(C.4.5)

Now ∥(z1 − A)−1B∥ is a continuous function in z outside σ(A), moreover it
is bounded outside a ball of large enough radius, hence there exists Mδ > 0
such that

∑
d(z,σ(A))>δ ∥(z1−A)−1B∥ ≤Mδ. Choosing νδ = (2Mδ)

−1 yields
the result. □

Suppose that z̄ ∈ C is an isolated point of σ(A), that is there exists δ > 0 such
that {z ∈ C : |z − z̄| ≤ δ} ∩ (σ(A) \ {z̄}) = ∅, then the above Lemma shows
that, for ν small enough, {z ∈ C : |z − z̄| ≤ δ} still contains an isolated part
of the spectrum of σ(Aν), let us call it Bν , clearly B0 = {z̄}.

Problem C.23 Let PBν
be defined as in Problem C.20. Prove that, for ν

small enough, it is an analytic function of ν.

Problem C.24 If P,Q are two projectors and ∥P−Q∥ < 1, then dim(R(P )) =
dim(R(Q)).

The above two exercises imply that the dimension of the eigenspace R(PBν
)

is constant.
Next, we consider the case in whichB0 consist of one point and dim(R(PB0)) =

1, it follows that also Bν must consist of only one point, let us set Pν := PBν
.

Lemma C.4.2 If dim(R(P0)) = 1, then Aν has a unique eigenvalue zν in a
neighborhood of z̄, z0 = z̄. In addition zν is an analytic function of ν.

Proof. From the previous exercises it follows that Pν is a rank one
operator which depend analytically on ν. In addition, since Pν is a rank
one projector it must have the form Pνw = vνℓν(w), where ℓν ∈ B′.6 Then
zνPν = PνAνPν . Next, setting a(ν) := ℓ0(Pνv0) = ℓν(v0)ℓ0(vν), we have
that a is analytic and a(0) = 1. Thus a ̸= 0 in a neighborhood of zero and
zν = a(ν)−1ℓ0(PνAνPνv0) is analytic in such a neighborhood. □

Problem C.25 If dim(R(P0)) = 1, then there exists hν ∈ B and ℓν ∈ B′

such that Pνf = hνℓν(f) for each f ∈ B. Prove that hν , ℓν can be chosen to
be analytic functions of ν.

6By B′, the dual space, we mean the set of bounded linear functionals on B. Verify that

is a Banach space with the norm ∥ℓ∥ =
∑

w∈B
|ℓ(w)|
∥w∥ .
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Hence in the case of A ∈ L(B,B) with an isolated simple7 eigenvalue z̄
we have that the corresponding eigenvalue zν of Aν = A+ νB, B ∈ L(B,B),
for ν small enough, depend smoothly from ν. In addition, using the notation
of the previous Lemma, we can easily compute the derivative: differentiating
Aνvν = zνvν with respect to ν and then setting ν = 0, yields

Bv +Av′0 = z′0v + z̄v′0.

But, for all w ∈ B, Pw = vℓ(w), with ℓ(Aw) = z̄ℓ(w) and ℓ(v) = 1, thus
applying ℓ to both sides of the above equation yields

z′0 = ℓ(Bv).

Problem C.26 Compute v′0.

Problem C.27 What does it happen if the eigenspace associated to z̄ is finite
dimensional, but with dimension strictly larger than one?

Hints to solving the Problems

C.1. The triangle inequality follows trivially from the triangle inequality of
the norm of B. To verify the completeness suppose that {Bn} is a
Cauchy sequence in L(B,B). Then, for each v ∈ B, {Bnv} is a Cauchy
sequence in B, hence it has a limit, call it B(v). We have so defined
a function from B to teself. Show that such a function is linear and
bounded, hence it defines an element of L(B,B), which can easily be
verified to be the limit of {Bn}.

C.2. Use the norm ∥A∥ = supv∈Rn
∥Av∥
∥v∥ .

C.3. Use the same norm as in Problem C.2.

C.4. The first part is trivial. For the second one can consider the vector
space ℓ2 = {x ∈ RN :

∑∞
i=0 x

2
i < ∞}. Equipped with the norm

∥x∥ =
√∑∞

i=0 x
2
i it is a Banach (actually Hilbert) space. Consider now

the vectors ei ∈ ℓ2 defined by (ei) = δik and the operator (Ax)k = 1
kxk.

Then R(A) = {x ∈ ℓ2 :
∑∞

k=0 k
2x2k < ∞}, which is dense in ℓ2 but

strictly smaller.

C.5. Check that the same argument used in the well known case B = C works
also here.

7That is with the associated eigenprojector of rank one.
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C.6. Check that the same argument used in the well known case B = C works
also here.

C.7. Check that the same argument used in the well known case B = C works
also here.

C.8. Note that

(ζ1−A) = (z1−A− (z − ζ)1) = (z1−A)
[
1− (z − ζ)(z1−A)−1

]
and that if ∥(z− ζ)(z1−A)−1∥ < 1 then the inverse of 1− (z− ζ)(z1−
A)−1 is given by

∑∞
n=0(z− ζ)n[(z1−A)−1]n (the Von Neumann series–

which really is just the geometric series).

C.9. If σ(A) = ∅, then (z1 − A)−1 is an entire function, then the Von Neu-
mann series shows that (z1−A)−1 = z−1(1− z−1A)−1 goes to zero for
large z, and then (C.2.3) shows that (z1−A)−1 = 0 which is impossible.

C.10. Verify that (z1−Π)−1 = z−1
[
1− (z − 1)−1Π

]
.

C.11. The idea is to look for eigenvalues by using Fourier series. Let f =∑
k∈Z fke

2πikx and consider the equation Lf = zf ,

∑
k∈Z

fk
1

2

{
eπikx + eπikx+πik

}
= z

∑
k∈Z

fke
2πikx.

Let us then restrict to the case in which f2k+1 = 0, then∑
k∈Z

f2ke
2πikx = z

∑
k∈Z

fke
2πikx.

Thus we have a solution provided f2k = zfk, such conditions are satisfied
by any sequence of the type

fk =

{
zj if k = 2jm, j ∈ N
0 otherwise

form ∈ N. It remains to verify that
∑∞

j=0 z
je2πi2

jx belong to C0. This is
the case if the series is uniformly convergent, which happens for |z| < 1.
Thus all the points in {z ∈ C : |z| < 1} are point spectrum of infinite
multiplicity. Since the spectrum is closed the statement of the Problem
follows.
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C.12. Let p(z) = zn, then

1

2πi

∫
γ

zn(z1−A)−1dz = An +
1

2πi

∫
γ

(zn −An)(z1−A)−1dz

= An +

n−1∑
k=0

1

2πi

∫
γ

zkAn−kdz = An.

The statement for general polynomial follows trivially.

C.14. Approximate by polynomials.

C.17. For z ̸∈ f(σ(A)) it is well defined

K(z) :=
1

2πi

∫
γ

(z − f(ζ))−1(ζ1−A)−1 dζ,

with γ containing σ(A) in its interior. By direct computation, using def-
inition C.3.2, one can verify that (z1− f(A))K(z) = 1, thus σ(f(A)) ⊂
f(σ(A)). On the other hand if, if f is not constant, then for each z ∈ C
f(z)−f(ξ) = (z−ξ)g(ξ). Hence, applying Definition C.3.2 and Problem
C.16 it follows f(z)1−f(A) = (z−A)g(A) which shows that if z ∈ σ(A),
then f(z) ∈ σ(A) (otherwise (z −A)

[
g(A)(f(z)1− f(A))−1

]
= 1).

C.19. Since one can define the logarithm on C\ℓ, one can use Definition C.3.2
to define lnA. It suffices to prove that if f : U → C and g : V → C, with
σ(A) ⊂ U , f(U) ⊂ V , then g(f(A)) = g ◦ f(A). Whereby showing that
the definition C.3.2 is a reasonable one. Indeed, rememebring Problems
C.17, C.18,

g(f(A)) =
1

2πi

∫
γ

g(z)(z1− f(A))−1dz

=
1

(2πi)2

∫
γ1

∫
γ

g(z)

z − f(ξ)
(ξ1−A)−1dzdξ

=
1

2πi

∫
γ1

g(f(ξ))(ξ1−A)−1dξ = f ◦ g(A).

From this imediately follows elnA = A.

C.20. The non dependence on γ is obvious. A projector is characterized by
the property P 2 = P . Thus

P 2
B :=

1

(2πi)2

∫
γ1

∫
γ2

(z1−A)−1(ζ1−A)−1dzdζ

=
1

(2πi)2

∫
γ1

dz

∫
γ2

dζ(z − ζ)−1
[
(z1−A)−1 − (ζ1−A)−1

]
.
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If we have chosen γ1 in the interior of γ2, then (z − ζ)−1(ζ1 − A)−1

is analytic in the interior of γ1, hence the corresponding integral gives
zero. The other integral gives PB , as announced.

C.21. Use the above decomposition and the fact that (1− PB) is a projector.

C.22. The first part follows from the previous decomposition. Indeed, for z
large (by Neumann series)

(z1−A)−1 = (z1− PBAPB)
−1 + (z1− (1− PB)A(1− PB))

−1.

Since the above functions are analytic in the respective resolvent sets
it follows that σ(A) ⊂ σ(PBAPB) ∪ σ((1 − PB)A(1 − PB)). Next, for
z ̸∈ B, define the operator

K(z) :=
1

2πi

∫
γ

(z − ξ)−1(ξ1−A)−1 dξ,

where γ contains B, but no other part of the spectrum, in its interior. By
direct computation (using Fubini and the standard facts about residues
and integration of analytic functions) verify that

(z1− PBAPB)K(z) = PB .

This implies that, for z ̸= 0, (z1− PBAPB)(K(z) + z−1(1− PB)) = 1,
that is (z1 − PBAPB)

−1 = K(z) + z−1(1 − PB). Hence σ(PBAPB) ⊂
B ∪ {0}. Since PB has a kernel, zero must be in the spectrum. On the
other hand the same argument applied to 1−PB yields σ((1−PB)A)1−
PB)) ⊂ C ∪ {0}, hence σ(PBAPB) = B ∪ {0}.
The second property follows from the fact that PBAPB , when restricted
to the space R(PB) is described by a D×D matrix AB and the equation
det(z1−AB) = 0 is a polynomial of degree D in z and hence has exactly
D solutions (counted with multiplicity).8

C.23. Use the representation in Problem C.20 and formula (C.4.5).

8This is the real reason why spectral theory is done over the complex rather than the
real. You should be well aquatinted with the fact that a polynomial p of degree D has
D root over C but, in case you have forgotten, consider the following: first a polynomial
of degree larger than zero must have at least a root, otherwise 1

p(z)
would be an entire

function and hence
1

p(z)
= lim

r→∞

1

2π

∫ 2π

0
dθ

1

p(z + reiθ)
= 0.

Let z1 be a root. By the Taylor expansion in z1 follows the decomposition p(z) = (z −
z1)p1(z) where p1 has degree D − 1. The result follows by induction.
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C.24. Note that Q(1 + P − Q) = QP , then Q = QP (1 − (Q − P ))−1, hence
dim(R(P )) ≥ dim(R(Q)), exchanging the role of P and Q the result
follows.

C.25. Note that ℓν(hν) = 1 since Pν is a projector, hence they are unique
apart from a noralization factor. Then we can chose the normalization
ℓν(h0) = 1 for all ν small enough. Thus Pνf = hν , that is hν is analytic.
Hence, for each g ∈ B and ν small, ℓν(g)ℓ0(hν) = ℓ0(Pνg), which implies
ℓν analytic for ν small.

C.27 Think hard.9

9A good idea is to start by considering concrete examples, for instance(
1 0
0 1

)
+ µ

(
0 1
1 0

)
;

(
1 1
0 1

)
+ µ

(
0 1
1 0

)
.



Appendix D

Analytic Fredholm Theorem
(fine rank)

Here we give a proof of the Analytic Fredholm alternative in a special case.

Theorem D.0.1 (Analytic Fredholm theorem–finite rank)1 Let D be
an open connected subset of C. Let F : C → L(B,B) be an analytic operator-
valued function such that F (z) is finite rank for each z ∈ D. Then, one of
the following two alternatives holds true

• (1− F (z))−1 exists for no z ∈ D

• (1 − F (z))−1 exists for all z ∈ D\S where S is a discrete subset of D
(i.e. S has no limit points in D). In addition, if z ∈ S, then 1 is an
eigenvalue for F (z) and the associated eigenspace has finite multiplicity.

Proof. First of all notice that, for each z0 ∈ D there exists r > 0 such
that Dr(z0)(z0) := {z ∈ C : |z − z0| < r(z0)} ⊂ D, and

sup
z∈Dr(z0)(z0)

∥F (z)− F (z0)∥ ≤ 1

2
.

Clearly if we can prove the theorem in each such disk we are done.2 Note that

1− F (z) =
(
1− F (z0)(1− [F (z)− F (z0)])

−1
)
(1− [F (z)− F (z0)]).

1The present proof is patterned after the proof of the Analytic Fredholm alternative for
compact operators (in Hilbert spaces) given in [RS80, Theorem VI.14]. There it is used the
fact that compact operators in Hilbert spaces can always be approximated by finite rank
ones. In fact the theorem holds also for compact operators in Banach spaces but the proof
is a bit more involved.

2In fact, consider any connected compact set K contained in D. Let us suppose that for
each z0 ∈ K we have a disk Dr(z0)(z0) in the theorem holds. Since the disks Dr(z0)/2(z0)
form a covering for K we can extract a finite cover. If the first alternative holds in one such

51
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Thus the invertibility of 1−F (z) in Dr(z0) depends on the invertibility of 1−
F (z0)(1− [F (z)−F (z0)])−1. Let us set F0(z) := F (z0)(1− [F (z)−F (z0)])−1.

Let us start by looking at the equation

(1− F0(z))h = 0. (D.0.1)

Clearly if a solution exists, then h ∈ Range(F0(z)) = Range(F (z0)) := V0.
Since V0 is finite dimensional there exists a basis {hi}Ni=1 such that h =∑

i αihi. On the other hand there exists an analytic matrix G(z) such that3

F0(z)h =
∑
ij

G(z)ijαjhi.

Thus (D.0.1) is equivalent to

(1−G(z))α = 0,

where α := (αi).
The above equation can be satisfied only if det(1 − G(z)) = 0 but the

determinant is analytic hence it is either always zero or zero only at isolated
points.4

Suppose the determinant different from zero, and consider the equation

(1− F0(z))h = g.

Let us look for a solution of the type h =
∑

i αihi + g. Substituting yields

α−G(z)α = β

where β := (βi) with F0(z)g =:
∑

i βihi. Since the above equation admits a
solution, we have Range(1−F0(z)) = B, Thus we have an everywhere defined
inverse, hence bounded by the open mapping theorem.

We are thus left with the analysis of the situation z ∈ S in the second
alternative. In such a case, there exists h such that (1 − F (z))h = 0, thus

disk then, by connectness, it must hold on all K. Otherwise each S ∩ Dr(z0)/2(z0), and
hence K ∩ S, contains only finitely many points. The Theorem follows by the arbitrariness
of K.

3To see the analyticity notice that we can construct linear functionals {ℓi} on V0 such
that ℓi(hj) = δij and then extend them to all B by the Hahn-Banach theorem. Accordingly,
G(z)ij := ℓj(F0(z)hi), which is obviously analytic.

4The attentive reader has certainly noticed that this is the turning point of the theorem:
the discreteness of S is reduced to the discreteness of the zeroes of an appropriate analytic
function: a determinant. A moment thought will immediately explain the effort made by
many mathematicians to extend the notion of determinant (that is to define an analytic
function whose zeroes coincide with the spectrum of the operator) beyond the realm of
matrices (the so called Fredholm determinants).
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one is an eigenvalue. On the other hand, if we apply the above facts to the
function Φ(ζ) := ζ−1F (z) analytic in the domain {ζ ̸= 0} we note that the first
alternative cannot take place since for |ζ| large enough 1− Φ(ζ) is obviously
invertible. Hence, the spectrum of F (z) is discrete and can accumulate only
at zero. This means that there is a small neighborhood around one in which
F (z) has no other eigenvalues, we can thus surround one with a small circle
γ and consider the projector

P :=
1

2πi

∫
γ

(ζ − F (z))−1dζ =
1

2πi

∫
γ

[
(ζ − F (z))−1 − ζ−1

]
dζ

=
1

2πi

∫
γ

F (z)ζ−1(ζ − F (z))−1dζ.

By standard functional calculus it follows that P is a projector and it clearly
projects on the eigenspace of the eigenvector one. But the last formula shows
that P must project on a subspace of the range of F (z), hence it must be
finite dimensional. □
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