

Fondamenti della Programmazione: Metodi Evoluti

Prof. Enrico Nardelli

Lezione 5: Logica

Reminder: contracts

Associated with an individual feature:

- Pre-conditions (must be true BEFORE feature execution)
- Post-conditions (must be true AFTER feature execution)

Associated with a class:

 Class invariants (expresses consistency requirements between queries of a class)

Logic

How to express conditions in contracts?

We need a mathematical notation since conditions have to be automatically checked

Logic is the answer!

Reasoning and programming

Logic is the basis of

 Mathematics: proofs are only valid if they follow the rules of logic.

- Software development:
 - Conditions in program actions: "If m is positive, then execute this instruction"

Conditions in contracts:

"x must not be zero, so that we can calculate $\frac{x+7}{x}$ "

Boolean expressions

A condition is expressed as a boolean expression.

It consists of

- Boolean variables (identifiers denoting boolean values)
- Boolean operators (not, and, or, implies, =)

and represents possible

Boolean values (truth values, either True or False)

Examples

Examples of boolean expressions (with *rain_today* and *cuckoo_sang_last_night* as boolean variables):

- rain_today
 (a boolean variable is a boolean expression)
- not rain_today
- (not cuckoo_sang_last_night) implies rain_today

(Parentheses group sub-expressions)

Negation (not)

а	not a
True	False
False	True

For any boolean expression *e* and any values of variables:

- Exactly one of e and not e has value True
- Exactly one of e and not e has value False
- One of e and not e has value True (Principle of the Excluded Middle)
- Not both of e and not e have value True (Principle of Non-Contradiction)

Conjunction (and)

а	Ь	a and b
True	True	True
True	False	False
False	True	False
False	False	False

and operator is commutative
and operator is associative

a and (b and c) = (a and b) and c

Conjunction principle:

An and conjunction has value False except if both operands have value True

Disjunction (or)

а	Ь	a or b
True	True	True
True	False	True
False	True	True
False	False	False

or operator is commutative

or operator is associative:

a or (b or c) = (a or b) or c

Disjunction principle:

An or disjunction has value True except if both operands have value False

NB: differently from 'or' in common language or is non-exclusive

Truth assignment and truth table

Truth assignment for a set of variables: particular choice of values (True or False), for every variable

A truth assignment satisfies an expression if the value for the expression is **True**

A truth table for an expression with *n* variables has

- n + 1 columns
- 2^n rows

Combined truth table for basic operators

а	b	not a	a or b	a and b
True	True	False	True	True
True	False		True	False
False	True	True	True	False
False	False		False	False

Tautologies

Tautology: a boolean expression that has value **True** for every possible truth assignment

Examples:

- a or (not a)
- not (a and (not a))
- (*a* and *b*) or ((not *a*) or (not *b*))

Contradictions

Contradiction: a boolean expression that has value False for every possible truth assignment

Examples:

- a and (not a)
- **not** (*a* **or** (**not** *a*))

Satisfiable: for at least one truth assignment the expression yields **True**

- Any tautology is satisfiable
- No contradiction is satisfiable.

Equivalence (=)

а	Ь	a = b
True	True	True
True	False	False
False	True	False
False	False	True

- = operator is commutative (a = b has same value as b = a)
- = operator is reflexive (a = a is a tautology for any a)

Substitution:

For any expressions u, v and any expression e containing u, if u = v is a tautology and e is the expression obtained from e by replacing every occurrence of u by v, then e = e is a tautology

Types of propositions (boolean expressions)

Tautology

- True for all truth assignments
 - P or (not P)
 - **not** (P **and** (**not** P))
 - (P and Q) or ((not P) or (not Q))

Contradiction

- False for all truth assignments
 - P and (not P)

Satisfiable

True for at least one truth assignment

Equivalent

• ϕ and χ are equivalent if they are satisfied under exactly the same truth assignments, or if $\phi = \chi$ is a tautology

De Morgan's laws

They show the duality between **and** and **or**: negating an expression is equivalent to negating variables and swapping **and** and **or**

They are tautologies

- not (a or b) = (not a) and (not b)
- not (a and b) = (not a) or (not b)
- a or b = not ((not a) and (not b))
- a and b = not ((not a) or (not b))

More tautologies (distributivity):

- (a and (b or c)) = ((a and b) or (a and c))
- (a or (b and c)) = ((a or b) and (a or c))

Syntax convention: binding of operators

Order of binding (starting with tightest binding) or precedence among operators:

not, and, or, implies, =

Style rules:

When writing a boolean expression, drop the parentheses:

- Around the expressions of each side of "=" if whole expression is an equivalence.
- Around successive elementary terms if they are separated by the same associative operators.

Implication (implies)

а	Ь	a implies b
True	True	True
True	False	False
False	True	True
False	False	True

a implies *b*, for any *a* and *b*, is the value of (**not** *a*) or *b* In *a* implies *b*: *a* is antecedent, *b* consequent Implication principle:

- An implication has value True except if its antecedent has value True and its consequent has value False
- In particular, always True if antecedent is False

Implication in ordinary language

implies in ordinary language often means **causation**, as in "if ... then ..."

- "If the weather stays like this, skiing will be great this weekend"
- "If you put this stuff in your hand luggage, they won't let you through."

Misunderstanding implication

Whenever *a* is **False**, the expression "*a* **implies** *b*" is **True**, regardless of *b*

- "Today is Sunday implies 2+2=5."
- "2+2=5 *implies* today is Sunday."

Both of the above expressions are **True**

Cases in which *a* is **False** tell us nothing about the truth of the consequent

Reversing implications (1)

It is not generally true that

$$a \text{ implies } b = (\text{not } a) \text{ implies } (\text{not } b)$$

Example (wrong!):

"All the people in Rome who live near Spanish Steps are rich."
I do not live near Spanish Steps, so I am not rich."

```
live_near_spanish_steps implies rich [1]
```


Reversing implications (2)

Correct:

a implies b = (not b) implies (not a)

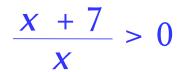
Example:

• "All the people who live near Spanish Steps are rich. She is not rich, so she can't be living near Spanish Steps"

```
live_near_spanish_steps implies rich =
     (not rich) implies (not live_near_spanish_steps)
```


Semistrict boolean operators (1)

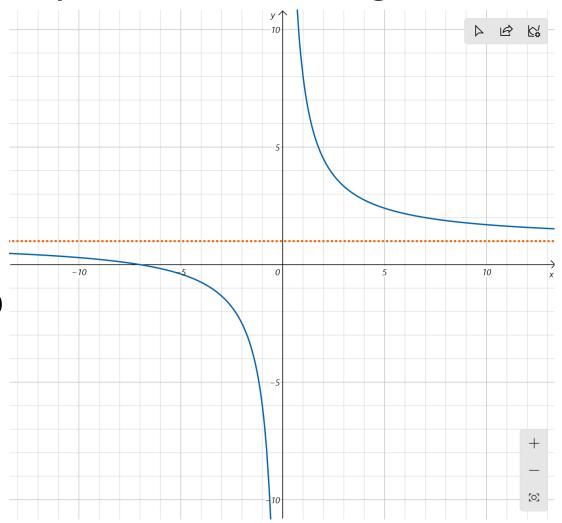
Example boolean-valued expression (x is an integer):



True for x < -7 or x > 0

False for $x \ge -7$ and x < 0

Undefined for x = 0



Semistrict boolean operators (2)

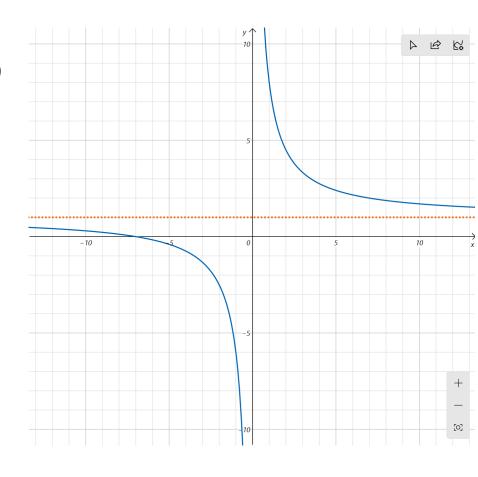
Avoid division by zero through a logic condition:

$$(x \neq 0)$$
 and $(((x + 7) / x) > 0)$

True for x < -7 or x > 0

False for $x \ge -7$ and $x \le 0$

Is always defined!



Semistrict boolean operators (3)

BUT:

- What happens when evaluating it?
- Program could crash during evaluation of

$$(x/=0)$$
 and $(((x+7)/x)>0)$

We need a non-commutative version of and (and or):

Semistrict boolean operators

Semistrict operators (and then, or else)

a and then b: has same value as a and b if a and b are both defined, and has False whenever a has value False even if b is undefined

a or else b: has same value as a or b if a and b are both defined, and has True whenever a has value True even if b is undefined

$$(x \neq 0)$$
 and then $(((x + 7) / x) > 0)$

Semistrict operators allow us to define an order of expression evaluation (left to right).

Important for programming when undefined objects may cause program crashes

Ordinary vs. Semistrict boolean operators

Use

- Ordinary boolean operators (and and or) if you can guarantee that both operands are defined
- and then if an additional condition only makes sense when the previous one(s) are true
- or else if an additional condition only makes sense when the previous one(s) are false

Example:

"If you are not single, then your spouse must sign the contract"

```
not is_single and then spouse_must_sign
is_single or else spouse_must_sign
```


Semistrict implication

Example with implies:

"If you are not single, then your spouse must sign the contract."

(not is_single) implies spouse_must_sign

Definition of implies: in our case, always semistrict!

• a implies b = (not a) or else b

Strict or semi-strict?

$$> a /= 0$$
 and $> b // a /= 0$

$$\triangleright a /= Void and b /= Void$$

$$> a < 0$$
 or > 2

$$(a = b \text{ and } b / = \text{Void}) \text{ and } a.age = 0$$

Programming language notation for boolean operators

Eiffel keyword	Common mathematical symbol
not	~ or ¬
or	\
and	\land
=	\Leftrightarrow
implies	\Rightarrow

Propositional and predicate calculus

Propositional calculus:

property *p* holds for a single object

Predicate calculus:

property *p* holds for several objects

Generalizing or

```
G : group of objects, p : property
```

Generalization of **or**:

Does *at least one* of the objects in *G* satisfy *p*?

Is at least one station of Line 8 an exchange?

```
Station_Balard.is_exchange or Station_Lourmel.is_exchange or Station_Boucicaut.is_exchange or ... (all stations of Line 8)
```

Existential quantifier: exists, or 3

```
∃ s : Stations_8 | s.is_exchange
```

"There exists an *s* in *Stations_8* such that *s.is_exchange* is true"

Generalizing and

Generalization of and:

Does *every* object in *G* satisfy p?

Are all stations of Tram 8 exchanges?

Station_Balard.is_exchange and Station_Lourmel.is_exchange and Station_Boucicaut.is_exchange and ...

(all stations of Line 8)

Universal quantifier: *for_all*, or ∀ *s: Stations_8* | *s.is_exchange*

"For all s in Stations8 | s.is_exchange is true"

Existentially quantified expression

Boolean expression:

$$\exists s: SOME_SET \mid s.some_property$$

True if and only if at least one member of SOME_SET satisfies property some_property

Proving

- True: Find one element of SOME_SET that satisfies the property
- False: Prove that no element of SOME_SET satisfies the property (test all elements)

Universally quantified expression

Boolean expression:

 True if and only if every member of SOME_SET satisfies property some_property

Proving

- True: Prove that every element of SOME_SET satisfies the property (test all elements)
- False: Find one element of SOME_SET that does not satisfies the property

Duality

Generalization of DeMorgan's laws:

$$not (\exists s : SOME_SET | P) = \forall s : SOME_SET | not P$$

 $not (\forall s : SOME_SET | P) = \exists s : SOME_SET | not P$

Empty sets

• \exists s: SOME_SET | some_property

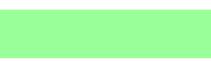
If SOME_SET is empty: always **False**(there is no element in SOME_SET therefore there is none able to satisfy some_property)

Then, by duality we have

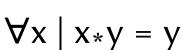
▼ s : SOME_SET | some_property
 If SOME_SET is empty: always True

Let the range of variables be INTEGER

$$x < 0$$
 or $x >= 0$



$$\forall x \mid x > 0 \text{ implies } x > 1$$



$$\exists y \mid \forall x \mid x_*y = y$$

