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Summary. In this paper we introduce and analyze two new  Given a network and a set of connections to be established,
cost measures related to the communication overhead arid order to provide the performance required by B-ISDN appli-
the space requirements associated with virtual path layoutsations it is important that routing is performed in a hardware
in ATM networks, that ishe edge congestioand thenode  fashion in most of the nodes a cell traverses, at the same time
congestioninformally, the edge congestion of a given edge limiting the number of virtual paths sharing a same physical
atanincident node is defined as the number of VPs terminat- link [16,3,17,1,11].
ing at or starting fromx and using:, while the node congestion A graph theoretical model related to this ATM design prob-
of a nodev is defined as the number of VPs havings an  lem has been first proposed in [11,4]. In such a framework,
endpoint. We investigate the problem of constructing virtualthe VP layouts determined by the VPs constructed on the net-
path layouts allowing to connect a specified root node to allwork are evaluated mainly with respect to two different cost
the others in at most hops and with maximum edge or node measures: thieop countthat is the maximum number of VPs
congestion, for two given integeré andc. We first give tight  belongingto aVC, which represents the number of VP changes
results concerning the time complexity of the construction ofof cells along their route to the destination, andltaal, given
such layouts for both the two congestion measures, that is wby the maximum number of virtual paths sharing an edge, that
exactly determine all the tractable and intractable cases. Thedgetermines the size of the VP routing tables (see, e.g., [5]).
we provide some combinatorial bounds for arbitrary networks Another relevant parameter is thgetch factori.e., the ratio
together with optimal layouts for specific topologies such asbetween the length of the path that a VC takes in the physical
chains, rings and grids. graph and the shortest possible path between its endpoints.
This parameter controls the efficiency of the utilization of the
Key words: Routing —ATM networks — Computational com- network. For further details and technical justifications of the
plexity — Edge and node congestion model for ATM networks see for instance [1,11].

While the problem of determining VP layouts with bounded
hop countandloadis NP-hard under differentassumptions[11,
6], many optimal and nearly optimal constructions have been
given for various interconnection networks such as chain,
trees, grids and so forth [4,14,9,10,18,2]. A more detailed
1 Introduction list of these results can be found in [19].

In this paper we introduce and analyze two new cost mea-

TheAsynchronous Transfer Mod&TM for short) is the most ~ Sures associated to virtual path layouts: ¢dge congestign
popular networking paradigm for Broadband ISDN [13,12, Which is given by the maximum number of VPs terminating
15]. It transfers data in the form of small fixed-sizells, and ~ Or starting from a given edge at a given node, andrtbee

in order to achieve the stringent transfer rate requirements, igongestionthat is the maximum number of VPs having as an
based on two types of predetermined routes in the networkendpoint a given node. The main motivation behind these new
virtual pathsor VPs, constituted by a sequence of successivecost measures is due to the fact that while along a VP routing
edges or physical links, andrtual channelsor VCs, each is performed at hardware level with negligible delay, at the
given by the concatenation of a proper sequence of VPs. Rougnd of the VP a non hardware route selection must be taken at
ing in virtual paths can be performed very efficiently by ded- considerably higher cost. Even if in absence of resources con-
icated hardware, while a cell passing from one virtual path totention due to other cells delays are proportional to the number

another one requires more complex and slower elaboration. of hops or traversed VPs, under the assumption of moderate
till bursty traffic along each VP, the effect of non hardware

Work supported by the EU TMR Research Training GrantN. ERBFM-routing decisions can seriously affect the delivering time if
BICT960861 and by the IST Programme of the EU under contracthe number of cells at the terminals of the VPs is not kept low
number IST-1999-14186 (ALCOM-FT)
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or balanced. If an autonomous routing capability is given to2 Preliminaries
the input channels of ATM switches, this translates in a direct

way to devising VP layouts with a low edge congestion, whileWe model the network as an undirected graph= (V, E)

if each switch is in charge of routing in a centralized way all . :
L o where nodes iV represent switches and edge<irare the
the cells arriving from all its input channels, then the node oint-to-point physical communication links.

congestion becomes the relevant parameter to be minimize&

Another important effect of the edge and node congestionsis . .. ) ,

that they directly influence the dimension of VC tables, as anyP€finition 2.1 [11] A rooted virtual path layoutor simply

VP that increases the congestion of an edge or of a node causiy/OUt) ¥ is a collection of paths i, termedvirtual paths

a number of entries in the corresponding VC table equal to th&VPs for short), and a node < V/, termed theroot of the

number of VCs such a VP belongs to. Finally, the node congesayout-

tion allows to model the requirement of bounded degreeness

of the nodes, that is a real constraint in many practical casedPefinition 2.2 [11] Thehop count(v) of anodev € V ina
A|though the new Congestion measures are not Comp|ete|iﬂyouup is the minimum number of VPs whose concatenation

unrelated with the edge load of [11,4], there are fundamentaforms a shortest path it from v to r. If no such VPs exist,

differences that in general make the results provided for thélefine#(v) = oo. Themaximal hop coundf a layout¥ is

edge load not comparable to the ones for the edge and nodémax(¥) = max,ev{H(v)}.

congestions (see Sect. 3). For instance, while a layout with

edge load has also edge congestior< [, the reverse in gen- Givenv € V, let us denote a&(v) the set of the edges in

eral is not true and one can find layouts with small edge con4 incident tov.

gestion ¢ < 2) and edge load linear in the number of nodes

(I = N/2). Moreover, as will be shown in the sequel, fur- pefinition 2.3 Givenv € V ande € I(v), theedge conges-

ther differences hold when dealing with an unbounded stretchion £ (e, v) of the edge: with respect tov in a layout? is

factor, like in the results for grids provided in [14,2]. Simi- the number of VPg € ¥ that includee and havev as an

lar considerations apply also to the node congestion and aseéndpoint. Thenaximal edge congestiafy, . (¥) of a layout

consequence new layouts and methods are needed in orderyojs Max, ey e r(o) E(€, ).

achieve optimal solutions. ’

As in [11] and [6], in this paper we focus on layouts that A jayoutw with Hmax (W) < handEnax(¥) < cis called
enable the routing between all nodes and a single root nodg (h, ¢)-edge layout - -

(rather than between any pair of nodes), under the assumption” a;’a5ch node of the network, a more global congestion

of a stretch factor equal to one, that s all the physical routeqy,q 55 re can be considered which takes into account the total
paths are the shortest. In fact, this restricted case can be seggq; required at the node.

as a building block for more complex routing problems and
nevertheless its simplicity has not been fully understood yet_ .. .. . .
After a comparison with the existing performance measure?(aflnltlon 2'4. Givenv € V, thenode congesﬂoN(v) of v
and some general properties and results, we give tight results 3 Iayoutfw IS ;he ”“mbelf Of(;/P$ cv S.l::;:; thaw is fan
on the time complexity of constructing optimal rooted virtual Fn point okp. T er‘r)\e[mma node congestiaNmax(¥) of a
path layouts. We then provide some optimal layouts for spe 2YOULY IS maxyey (v).
cific networks, such as chains, rings and grids. ) )

As a comparison with the previous edge load results for A layout¥ with . (¥) < handNmax(¥) < ciscalled

. . . . h a(h, c)-node layout
grids, while our layouts yield an edge congestior @ ; :
whereN is the number of nodes, in [2] it has been shown that Clearly, the hop count and the edge (or node) congestion

) . are conflicting parameters, as in general a low hop count re-
any layout with an unbounded stretch factor requires an edg‘auires an high congestion and a low congestion causes a high

loadl = 2( ﬁ), while itis possible to achieve< hV/N2. hop count. Thus, a very natural problem arises in which one
Therefore, under the reasonable assumption/that o( V), parameter is traded off for the other. Moreover, once fixed two
our edge congestianis below the lower bound in [2], even if bounds: andc respectively on the hop count and on the edge
the stretch factor is equal to one. In fact, our layouts in generafOr node) congestion, in a parametric family of graphs it makes
have an edge loddigher thare. Similar arguments apply also  Senseto cons@erthe problem of dgtermlnlng the highest order
to the node congestion, thus giving a more precise evidenc8raph that admits a layout respecting such bounds.
of how the different cost measures can be highly unrelated.
The paper is organized as follows. In Sect.2 we defineDefinition 2.5 LetG be a family of graphs. For any two posi-
the preliminary notation and definitions. In Sect. 3 we discusdive integersi ande, Eg (h, ¢) (resp.Ng (h, ¢)) is defined as the
the relationship between the new cost measures and the prgraximum integefV such that there exists aN-node graph
vious parameters, together with some basic results. In Sect.ih G with a (h, c)-edge layout (resp. &, c)-node layout).
we provide the above-mentioned time complexity results. In
Sect.5 we present the optimal layouts for specific topologies  For the sake of brevity, when clear from the context, we
and finally, in Sect. 6, we give some concluding remarks andyill denoteEg (h, ¢) andNg (h, c) respectively a&(h, c) and
list some open problems. N(h,c).
Notice that all the above definitions assume a stretch factor
equal to one, i.e., all the physical routed paths are the shortest.
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3 Comparisons and basic properties cd other nodes (for a total afd,.(cd) nodes), and this holds
] ] ] ] _ for every node with hop count at leakt since the physical
The congestion measures introduced in the previous sectiopgyyted paths have to be the shortest and thus each node can
and the edge load defined in [11] (maximum number of VPS,se at most outgoing edges to reach other nodes. Hence,
that share a physical edge) are not completely unrelated. I (1, ¢) < 1+ cd, + cd, (cd) + cd, (cd)? + . . . + cd, (cd)—?
fact, as it can be easily verified, an edge léatplies anedge  gnd the following fact is proved.
congestion at mogtand a node congestion at most equa),
whered is the maximum node degree. Fact 3.1 Let G a family of graphs with branch parameter
On the other hand, apart from this relationship, it seemsi and rootr of degree at mostl,.. ThenE(h,c) < 1 +
that there is no strong connection between these parametersg; (cd)"—1
For instance, small edge and node congestions do not neces-" ¢4~
sarily imply a small load, as one can easily find VP layouts  Similarly, in a layout with node congestienstarting from
with constant (edge or node) congestion and load linear in the it is possible to reach in one hop at maeshodes; each
number of nodes. As an example, consider a VP layofdr  node with hop count can then reach in another hop at most
achain ofN nodesl, ..., N withVPs(i,i+1),1 <i <N, ¢ — 1 other nodes, and this holds for every node with hop
and(i, N — i), 1 < i < N/2. Then¥ has&uax(¥) = 2,  countat least, since the VP through which a node is reached
Nmax(¥) = 3 and edge loadN/2|. contributesl to its node congestion. Therefor®,(h,¢) <
Another basic difference is that for the new costmeasuresii + ¢ + cle—=1)+c(c—1)%+... 4 c(c— 1)"1 and the
does not make sense to consider layouts with unbounded physollowing fact holds.
ical routed lengths. In fact, optimal layout constructions for
the node congestion case can always be determined when tigyct 3.2 For any family of graphs, N (h, ¢) < C(c;gh*?
physical routed length is unbounded as follows. Consider any “
ordering of the nodes, except the root. Then, the root reaches As we will see in Sect.5, nevertheless their conceptual
through a VP in one hop the firshodes, and iteratively in the simplicity, Facts 3.1 and 3.2 allow to establish tight upper
order each reached node is assigned a VP to all thd aiext) bounds in all the considered topologies.

unreached nodes. This always givégh, ¢) = C(Ci# ina
straightforward way. In the edge congestion case the construc- __ )
tion is slightly more complicated, because nodes have to b4 Time complexity results

ordered non increasingly with respect to their degrees. Since . , . . .
to the purpose of minimizing the edge congestion VPs havdn this section we show that constructing optimal layouts is in

not necessarily to correspond to simple physical paths, at e\deneral an NP-hard problem for both the two congestion mea-
ery node the incident VPs can be equally distributed amongUres: We first show that deciding the existence of/am)-
its incident edges. Thus an optimal layout can be easily detetf-’dge1 layout is an NP-complete problem, even/ior 3 and
mined. c=1

Optimal layouts can be easily found, still assuming UN-Theorem 4.1 Given a networks — (V, E)andaroot € V

bounded physical routed lengths, even in the all-to-all case "?jeciding the existence of(a, 1)-edge layout fox? with root

WhICh, by respecting the bounds on the edge or n(_)de CONges-ic an NP-complete problem.
tion, each node wants to reach every other node in at most a

given number of hops. Here the construction becomes a purproof First of all, observe that for ani andc the problem
combinatorial graph design problem. In fact, if the node con-of deciding the existence of @, ¢)-edge layout is in NP, as
gestion is bounded hy; there is a layout for a grapgh within given a layout? for G = (V, E) with a given rootr € V', one

a given hop count if and only if there exists a-bounded  can easily check whethéi(e, v) < ¢ for every nodev and
degree graph with diametérand the same number of nodes incident edge: € E and whethef,,.(¥) < h (see [6]).

of G. Any embedding of such a graph éhgives the desired We prove the claim by providing a polynomial time re-
layout. A similar argument holds for the edge congestion, buduction from3-SAT(known to be NP-complete; see [8]). An
here there is a layout respectihgndc if there exists a graph  instance of this problem is constituted by a boolean fornfula

with the same number of nodes, diamefteand such that, if  overy variableses, . . . , ., wheref is in conjunctive normal
we denote ag; the degree of nodein the initial graph(z, the  form, i.e., f is the conjunction o clauses:, . . ., ¢,, each of
i-th node of the graph has degree at most;. which is the disjunction of three literals. We want to determine

We conclude the section with a simple counting argumentyhether there exists a truth assignmentdor. . . , z,,, which
that allows to establish upper bounds on the number of nodes igatisfiesf.

networks admitting?, c)-edge layouts ofh, c)-node layouts. Starting from an instance 8£SAT, we construct a graph
Given a graplG with a specified root node, we say that ¢ that admits 43, 1)-edge layout if and only if is satisfiable.
a non root node: hasbranch parametet! if it has exactlyd LetG = (V, E),whereV = {r} UV, UV, UV3UV,, and

incident edgequ, v1}, ..., {u,va} suchthatforeach | <  p— g, UE,UFE;U E, U Es (see Fig. 1), with:

i < d, uis on a shortest path fromto v;. Let the branch = - _ _
. ; Vi ={tg,uq la=1,....mhVa={vg |a=1,...,m},

parameter of a family of graph% be the maximum branch Vi = {q la=1 mb, Vi = {2z | b=1 )

parameter of a non root node of a grap@irThen, ifd,. is the 37 WarQa 4= Hees My V=2 [ 0= 55 91

degree of the root, in any layout with edge congestioifirom and

r it is possible to reach in one hop at mestd, nodes; each E; = {{r,u,},{r,u.} |a=1,...,m},

node with hop count can then reach in another hop at most Ez = {{t,,v.}, {ta,va} |a =1,...,m},
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" " which is satisfied, i.e. such thé,, z,} (resp.{qa, 2}) is a
a _‘_,'--1-;,-'.\:: ------ g W ‘ u, VP andH(g,) =2 (resp.H(ga) = 2).
o e e Y Assume now that there is(8, 1)-edge layout? for G and
”a ela let us show thaf is satisfiable. Consider the truth assignment
' sl induced by on the variables:y, . .., z,,. For every clause
[ i . 4a [P o ¢p, by hypothesis node, has hop count at mo8t If a literal
L ® ® ® x4 Or T, belonging tag, is not satisfied, then it is not possible
z, false T, true to reachz;, in 3 hops through VPs coming from tleth truth

Fig. 2.Truth setting component and path layout{®y1)-edge layout
problem

E3 = {{/Ua7qa}7 {vau Qa} | a = 17 cee ,m},
E,={{q,,»}la=1,....om,b=1,...,9,Ts €},
Es={{qu,zp}|a=1,....om,b=1,...,9, x4 € &}

We call the subgraph @ induced by nodes, u,, u,, vq,
G, 9. the a-th truth setting component a@¥, as the restric-
tion of any (3, 1)-edge layout? on this subgraph can be as-
sociated in a very natural way to a truth assignmentzfpr
(see Fig.2). In fact, edgg-, u, } (resp.{r, u,}) must belong
to ¥, otherwiseH (u,) = oo (resp.H(u,) = o0), as we
have to route a physical shortest path fromo u, (resp.u,).
Since&na.x(¥) = 1, no other VP can start from through
edges{r,u,} and{r, u,}. Moreover, one of the two edges
{Tq,vq} OF {ug, v, }, say{ua, v, }, must form a VP (other-
wiseH (v,) = oo) and again, sincé,,..(¥) = 1, there is one
VP starting fromu, (if not we simply add it respecting the

setting component. Therefore, there must exist at least one
literal of ¢;, which is satisfied and since this is true for every
clause,f is satisfiable. O

Even if for the sake of brevity in this paper we do not give
any further complexity result for the edge-congestion case, by
using proof techniques similar to those in [6] it is possible
to give an exact characterization of all the tractable and in-
tractable cases. In fact, the problem is NP-complete forhany
andc, except for the casds = 1 (anyc), andh = 2,¢ = 1,
for which a solution can be obtained in polynomial time by
means of suitable flow constructions. A detailed proof can be
found in the technical report associated to this paper [7].

A result analogous to Theorem 4.1 holds also for the node
congestion case.

Theorem 4.2 Given a networkG = (V,E), arootr € V
and a positive integer, deciding the existence of @, ¢)-
node layout foiG with rootr is an NP-complete problem.

Proof We show that the problem is NP-complete by providing

bound on the edge congestion and without increasing the hog polynomial time transformation from tHeominating Set

count of the other nodes) which steps through or terminates
eitherg, or g,. In the first case the truth assignment associate

to z, is false, otherwise it is true. Notice that,f, is false
(resp. true), thekw,, q,) (resp.(vq, g,)) must be a VP, so that
H(qa) = 3 < oo (resp.H(q,) = 3 < o).

Assume first that there is a truth assignment satisfying
We show that there exist33, 1)-edge layou¥ for G. The VPs
of ¥ are constituted by all edges iy U £, U E5 plus for each
a, 1 < a < m,the VP(u,,v,), and if the truth assignment
satisfiest, (resp.x,), the VPS(u,, va,q,) and{ve, ga) (resp.
(Ug, Va, ga) @Nd{v,,q,)). Then, all nodes,, u, € V; have
hop countl, all verticesv, € V> hop count2, all vertices
g, € V3 such thatz, is false (resp. true) have hop count
(resp.3), and all verticegy, € V3 such thatz,, is false (resp.
true) hop couns (resp.2). Finally, each node, € V, has hop
count3, as there is at least one literaldp, sayz, (resp.x,),

iroblem (DS) (known to be NP-complete; see [8]). In DS we

ave auniverse st = {uy, ..., u,, } of melements, afamily

{A1,...,As}of f subsets o/ and anintegek < f;we want
to decide if there exist subsetsd;, , ..., A; which coverU,
i.e., such than:1 A =U.

Starting from an instanch, s of DS, we construct a graph
G that admits g2, ¢)-node layout withe = m if and only if
Ips admits a cover.

LetG = (V, E), whereV = {r}uV; UV, UV3UV, and
E = FE; U E> U E3 U Ey (see Fig. 3), with:
Vi={v,|a=1,....m—Ek},
Vo={g |b=1,....m—(f — k) —1},
Vs ={wq |d=1,..., f},
Vi={ze|le=1,...,m},
and
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2m

E,={{r,v.}|a=1,...,m—k},

Es :{{Uluqb} | b= 1,,m—(f—/€)—1},
Es = {{vi,wa} |d=1,.... [},

E, = {{wd,ze} | Ue € Ad}

Informally, in the reduction graph each subsgt corre-
sponds to the subgraph induced by nageand all nodesg.
suchthat,, € A4, which are all connected to;. The idea un-
derlying our construction is that, since at mésif the nodes
wg can be reached fromin one hop, if there ark dominating
sets inlpg, then all nodes ofy can be reached fromin at
most2 hops.

Assume that there akedominating sets!;, , ..., 4;, . We
show that there exists @, ¢)-node layout forG. The VPs of
¥ are constituted by all edges i, U E> U Ey, the edges

{vi,wq} € E3 such that4, is not one of the dominating sets,

i.e.d # ji, i =1,...,k, and finally the VPSr, vy, w;,) for
i =1,...,k (which correspond to the dominating sets). By
construction M/ (v) < m = ¢ for each node € V. In order
to check whethe®,,,.(¥) < 2, it suffices to observe that
all nodesv, € V; are reached in one hop, nodgs € V5
are reached in two hops, nodeg € V3 not corresponding to
dominating sets are reached in two hops, nadgs= V; cor-

responding to dominating sets are reached in one hop (throu@ndN(h, ¢) > l+cte(c—1)+.. Ac(c—1)"1 =

the VP(r, v1,w;,)), and as nodes;,, ..., w;, correspond to
the k dominating sets, all nodes € V, are reached in two
hops, since each of them is connected to at leasugne

It remains to show that if there are notlominating sets,
then no(2, ¢)-node layout? for G exists. Consider any layout
¥ for G. Notice first that each of the edgés, v, } must be-
long to¥, otherwiseH (v,) = co. Similarly, since each node

69

sets, then at least one nogeis not connected to any of the
nodesw;, , ..., w;,, and thereforé{(z.) > 3. O

Like for the edge-congestion case, also here it is possible
to give an exact characterization of all the tractable and in-
tractable cases. In particular, observe that in the node conges-
tion case, once fixetl andc, the problem of determining the
existence of g4, ¢)-node layout for any grap&' has a poly-
nomial time-complexity, since from Fact 3.2 we know that the

number of nodes i’ has to be (h, ¢) < <=2 je. it
is always bounded by a constant. Hence, in all the intractable
cases eithel or c or both are not constant, i.e. they are part of
the instance of the problem. Then, it is possible to show that
the node layout problem is NP-complete for any fixed 2

(c not constant) and for any > 3 (h not constant), while it
can be solved in polynomial time in all the remaining cases.

Again, for a detailed description see the technical report [7].

5 Results for specific topologies

Inthis section we give optimum layouts for specific topologies.
Let us consider first a chain or path of nodes with node set

V ={1,...N}andedge sef = {{i,i+ 1}|1 < i < N}.

In order to give worst case estimations on the longest chain

admitting &h, c)-edge oK h, ¢)-node layout, we assume= 1

as the root node.

Theorem 5.1 Let P be the family of chain (or path) graphs.

ThenE(h, ¢) = £2=L and N'(h, ¢) = <=1 =2,

Proof By Fact 3.1E(h,c) < 1 4 co=l = €

Fact 3.2N (h, ¢) < <c=1=2

The lower bound orE(h, ¢) (resp.N(h, ¢)) follows by
observing that from the root of any chain it is possible to reach
the nextnodes in one hop, and from each node with hop count
at least one again the first next unreacheddes (resp: — 1

=1 and by

. . h+1_
nodes), thusyielding(h, ¢) > 1+c+c?+...+ch = <1
clc—1)" —2
c—2
A ring graph consists of a node sét= {0,..., N — 1}

andanedgesét = {{i, (i+1)moan}|0 <i < N}.Asaring

is node-symmetric, without loss of generality it is possible to
choose any node as the root. By arguments similar to those
ones for chain graphs it is possible to prove the following

¢, must be reached through a shortest path, either the edggeorem.

{v1,qp} or the path(r, vy, q,) must be a VP off. Without
loss of generality we can assume that the first case holds,
otherwise insertingdvy, ¢, } in the set of the VPs of and
replacing another VP starting from with a longer one di-
rectly fromr, H(q,) = 2 and the hop count and node con-

Té'neorem 5.2 LetR be the family of ring graphs, thei(h, ¢)

—2¢ =1 _jandN(h,c) = W if ¢ is even, other-
WlseN(h c)=1+ %

gestion of all the other nodes can only be decreased. Themyroof Agaln by Fact 3.1, takind, = 2andd = 1, E(h, ¢) <

there aref nodeswy € V3 to be reached along shortest paths 14 2ce=1 o

and this can be done only through the remainfhyPs, of
which k can start from the root anfl — k from v, yielding
respectively hop courit and2. Hence, no node i, can be

reached in two hops without exploiting a VP starting from a ¢

nodewy € Vi. Letw;,, ..
’H(wh) =1,7= 1,...,

, wj, bethek nodes inlz such that
k. Since there are ndt dominating

— —— — 1 and such an upper bound can
always be attalned by observing that, similarly as for chains,
from the root it is possible to reach InhopSC +A 4.+

h+1
" = =1 — 1 nodes clockwise an% -1 nodes

anti-clockwise, thus forming &, ¢)-edge Iayout for aring of

2(¢221 1) 4 1=2¢"=1 _ 1 nodes.
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Concerning the node congestion case, we distinguish be-ayouts matching these upper bounds are explicitly shown in

tween the case in whichis even and the case in whichs
odd.

In the former, by Fact 3.2Y (h, ¢) < <<=1"=2 ‘and the
lower bound onN (h, ¢) follows by observing that from the
root it is possible to reach in one hop the closesbdes, of
which ¢/2 clockwise and the othet/2 anti-clockwise, and

Fig.4 forh < 4, together with the hop distance of each node
from the root. Note that foh = 4 we are able to build a lay-
out for a5 x 5 square grid such that at each nddes) (resp.
(5,1)), © < 5, belonging to the right (resp. bottom) border
of the grid it results£((4,5), {(¢,5), (i + 1,5)}) = 0 (resp.
E((5,4),{(5,4),(5,i 4+ 1)}) = 0). Therefore, we can build a

from each node reached clockwise (resp. anti-clockwise) in at5, 1)-edge layout for & x 6 square grids by using these edges
least one hop again the first next unreached clockwise (res@nd edgeg (i, 5), (,6)} and{(5,4), (6,4)}, still maintaining

anti-clockwise)y — 1 nodes, thus yieldingV (h,c) > 1 +c+
(e h
cle=1)4...+c(c—1)h=t = =D =2

C

) .
If ¢ is odd, then either clockwise or anti-clockwise, say
clockwise, itis possible to reach at mé’gﬂ nodes. From each

of these nodes again clockwise it is possible to reach at mos

otherc — 1 unreached nodes and so forth, till reaching within
hhops atotalofatmos;t (14 (c—1)+...+ (c—1)"71) =
e=1(e=D"~1

2 —
shortest paths and the last two nodes reached respectiv

nodes. Since all the nodes must be reached alor;%z
h,c

the same property at the nodes6) and (6,4) with i < 6
belonging to the right or bottom border of thiex 6 grid. In
general, this gives an inductive construction to obtain from a
(h — 1, 1)-edge layout for & x h square grid gh, 1)-edge
I?yout fora(h 4+ 1) x (h + 1) square grid, for any > 5. O

Theorem 5.4 Let P2 be the family of square grid graphs.
Then, forc > 4, E(h,c) = |\/Np,]?, where

(2¢)"*+1 -1
2¢c—1

clockwise and anti-clockwise must be adjacent, starting from

the root in the anti-clockwise direction it is possible to reach
h
at moste;1 =11 1 1 nodes. This yieldsV(h,c) < 1+
e—1)h_ _1\h_ _1\yh+1_
%( 01221+ 01221+1:1+(C 10)72 .1'
The lower bound oV (1, ¢) follows by observing that the

c—1 (C‘
2

above construction can always be done in a ring with such &
e

number of nodes. In fact, reaching from the rootin one hop th
closest; L nodes clockwise and the closégﬂ nodes anti-

h__

clockwise, similarly as for chaing;! “~2-~1 nodes can al-

. — h'7 . .
ways be reached clockwise afigh w anti-clockwise,

plus another one anti-clockwise thrc(iﬂgh the remaining avail
able VP from the root. O

We now turn our attention to thiedimensional extension
of chains, that is to grids.

Given a square grid?,, «,, of N = n? nodes, with node
setV = {(4,5)|]1 < i <mn,1 <j<n}andedge sefl =
{0,7), G+ 1)1 <i<n,1 <5 <npU{{(i,4), 65+
1 <4 <n,1 < j < n}, again in order to give worst
case estimations on the largest grid admittin@ a)-edge or
(h, c)-node layout, we assume= (1, 1) as the root node.

For the case of edge congestion= 1, as stated by the
following theorem the dimension of the largest grid admitting
a(h, c)-edge layout is dominated by the maximum number of
nodes reachable il hops along the first row or column.

Theorem 5.3 LetP? be the family of square grid graphs, then
E(h,1) = k% if h < 3, otherwiseE(h, 1) = (h + 1)2.

Proof Observe first thatZ(h,1) < |V N|?, where N =
2h+1 _ 1. In fact, by Fact 3.1, taking, = 2 andd = 2,
the maximum number of nodes reachable:ihops fromr
isN < % = 21 _ 1, and since every grid has a
quadratic number of nodes, thatisfor a givenintegen > 1,
n = [V/N | is the maximum integer such that < N. On the

Proof Again by Fact 3.1 witll,, = 2andd = 2, the maximum

number of nodes reachable inhops isNy, . < %
and since every grid has a quadratic number of nodes, the
upper bound onE(h, ¢) derives directly by observing that
= |/Nh.c) is the maximum integer such that < N, .

In order to provide an optimal layout, given a square grid
G with at leastV, . nodes, we define a gridoid¥;, as the

subgrid of G induced by nodegi, j) with i < |\/Np (]

andj < |\/Np.], i.e,, the|\/Ny.] x [\/Nn,] subgrid

induced by the first \/N; .| rows and columns, plus the

"Nie — |/Nn.|? nodes starting from nod€ /N1, 1),

going toward nodé[ /Ny, .1, [1/Nn.|) along rowf /Ny, .|
and then, iftN}, . — | \/Np.c]? > [\/Nn.c|, up along column
[\/Np.c|takingnodes$[ /Ny c1—1, [v/Nu.cl), ([v/Nh.c|—
2, [v/N.]), and so forth.

Let the order of7}, ben;, = |/ Ny, ], thatis the number
of rows or columns of the largest subgrid contained'jn We
now show an incremental construction for layouts with edge
congestion at mostsuch that, for any positive integér the
subgraph induced by all the nodes with hop count at most
is G, (see Fig.5). The theorem then follows by considering
the restriction of the layout on the, x n; subgrid ofGj,
containingn; = E(h, c) nodes.

Clearly Gy contains only the roafl, 1) and a(1, c)-edge
layout for G, can be easily constructed by putting a suitable
VP from the root to each node ;. Let us now show when
h > 1 how to construct from gh, c)-edge layout forG, a
(h + 1, c)-edge layout forG}, 1. Notice that, for any node
(i,4), all the nodeg’, /) with i/ < i andj’ < j belong to
a shortest path fronf, j) to the root(1,1). Then, we first
have a set ofxpanding/Ps that, for each row(resp. column
i) with 1 < i < ny, are between the nodes in rawresp.
column¢) with hop counth (that is belonging td@~;, but not
to G—1) and the nodes in row (resp. columri) belonging

other hand, the maximum number of nodes along the firstrowo G, ; — G}, so that each of them is reachedhir- 1 hops.

or column reachable fromin h hops ish + 1 (r included), so
that B(h, 1) < (h + 1)%. Since|VN|? = |2+ — 12 <

h? for h < 3, by combining the above constraints we obtain
E(h,1) < h*for h < 3andE(h,1) < (h+ 1)? for h > 3.

All the remaining available VPs from the nodesin — G,
are used to reach the remaining not considered n@dg¢sof
Gpy1 — G with ¢ > ny andj > ny, i.e. in the right-down
corner.
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Fig. 4. (a) (2, 1)-edge layout (dot-
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R : ;
————— - ‘
Bt |
L
h+2

Fig. 5. The incremental layout for grids

For any given row (resp. column) with 1 < ¢ < ny, let
dp, be the number of nodes in ravfresp. columrn) belonging

I
|
‘95 ‘
1 ted)fora2 x 2square grid graph; (b)
R (3,1)-edge layout for 8 x 3 grid;
n ' =785 (c) (4,1)-edge layout for al x 4
" S grid; (d) (4,1)-edge layout for a
¢ #4 ~ —'?5 5 x 5 grid with the inductive step to
: : ~ geta(s,1)-edge layout for & x 6
e - -9 - = grid
5 5 5

< (2c)ht+2 —1 (2c)h+1 —1 9
- 2c—1 2c—1

()

It is possible to verify that it < ¢ < 11, h > 2 or if
c>12,anyhitis

V2ec—1
cdp, > cy/(2c)htl [ —F——nn | — 2¢
g (2¢) <\/20 —1
Vv2e+1-1
V2e
A case analysis shows that the construction works also for

4 < c¢<11and0 < h < 2. This completes the proof of the
theorem. a

2 (26)h+2 ( ) + 2 Z dh+1.

Tighter results can be determined for the node congestion

t0 Gh11 — G- Since each edge can have congestion at most ¢ase- Notice first that ngh, c)-node layout withe < 2 can
in order to guarantee the correctness of the above increment§Kist for a grid larger tha x 2. In fact, forc = 1 it is

construction we have to prove thatd, > dj 4.
By construction,

dh S NMh+1 — Nhp +1= I_\/ N}L+1,c - I_\/ Nh,c_J +1
(2c)Mt2 —1 (2c)ht1 —1
< — 2
- \/ 2c—1 2c—1 +
(20)h+1 1 1
= 20— —— — /1 — ——— 2
2 —1 7 2o 2ot | T
h+1
oo (T
- 2c—1 2c 2c
[ (2e)h 1 \/(2c—1)(2c+ 1) _\/2c—1 Lo
SV 2c—1 2¢ 2¢

+2

=4/ (2¢)"+1 20\2—1_1) +2.

Similarly,

thnh+1—nh—1=L\/Wl,cJ_Lth,cJ_l

not possible to have a VP from the rodt 1) to one of its
two neighborg1, 2) and(2, 1), that in turn cannot be reached
through a shortest path. f = 2, as the edges frori, 1)
respectively td1, 2) and(2, 1) must form two VPs, one of the
3 nodes(1, 3), (3,1) and(2,2) cannot be reached through a
shortest path.

Forc > 3 the following theorem holds.

Theorem 5.5 Let P2 be the family of square grid graphs.

Then, forc > 3, N(h, ¢) = L\/@Jg

Proof By Fact 3.2 the maximum number of nodes reachable in

h hops isc(ci# and the| \/ <“=22=2 |2 ypper bound on
N (h, ¢) follows by observing that every grid has a quadratic
number of nodes.

In order to provide a matching lower bound, again we
apply the gridoid method of Theorem 5.4, and the proof pro-
ceeds exactly as in Theorem 5.4 by considering the new value

% for N,
c— ,C*

Clearly the gridoid&, contains only the roafl, 1) and a
(1, ¢)-node layout foxz; can be easily constructed by putting

a suitable VP from the root to each nodedn.
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grids. We are very close to the determination of these layouts,

number of rows or columns of the largest subgrid containedout they are not incremental, that is the subset of the nodes

in Gy, and for any given row (resp. column) with 1 < ¢ <
np, letd; be the number of nodes in roi(resp. column)

with hop count at most equal to a given integein general
does not form a gridoid. In fact, it is possible to see that in

belonging toG,+1 — Gj. Since each node has congestion atthese cases the incremental solution does not work, as there
mostc, in order to guarantee the correctness of the incrementeadre values of, such that from the gridoid of the nodes with

construction allowing to determine gridoids, for h > 1, we
have to prove that - dj, > dp, 1.
By construction,

dn <npyr —np+1=[\/Noy1e] = [/ Nl +1

R =
_fele=1)" 2
- uq<¢@—U—dp4w

2

Similarly,

dp > nppr —np —1=[\/Nuyre] = [vV/Niel =1

— 1)h+1 _ —1)h —
< c(c—1) 2 Jele=1h=2" 9
- c—2 c—2

_ 1)h+1 _ 1\~
S c(c—1) ~Jele=D) )

c—2 c—2

clc—1)h

— ﬁ(\/c—71—1)—2.

Itis possible to verify thati8 < ¢ < 6,h >6o0rifc>7,
anyh itis

cle—1)h
c—2

c(e—1)rtt 2
- c2<¢@_n_dclﬂﬂ

2

Z dh+1 .

cdp, > ¢

(Ve=1-1) —2¢

A case analysis shows that the construction works also for

3<c<6and0 < h < 6, hence the theorem. m|

6 Conclusion and open problems

In this paper we have introduced and analyzed two new cos}q
measures related to the communication overhead and the space
requirements associated to virtual path layouts in ATM net-

works, that is theedge congestioand thenode congestian

hop count at mosk it is not possible to build the successive
one corresponding to a hop count at most equél{o1.

An interesting issue to be pursued is the determination of
optimal path layouts for other network topologies. Moreover,
it would be interesting to extend all the results to all-to-all
layouts, where communication must be guaranteed between
any two pairs of nodes.

Besides the relationships discussed in Sect. 3, another open
guestion concerns the determination of further connections
between the new congestion measures and the load parameter
of [11,4].

Finally, while we have remarked that in this context it does
not make sense to consider an unbounded stretch factor, a case
worth to investigate is when the stretch factor is bounded by
a given real number greater than one.
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