
Efficient Searching for Multi–dimensional Data Made
Simple

(Extended Abstract)

Enrico Nardelli1, Maurizio Talamo2, and Paola Vocca3

1 Dipartimento di Matematica Pura ed Applicata, Universit`a di L’Aquila,
Via Vetoio, Coppito I-67010 L’Aquila, Italy,nardelli@univaq.it

2 Dipartimento di Informatica e Sistemistica, Universit`a di Roma “La Sapienza”,
Via Salaria 113, I–00198 Rome, Italy,talamo@dis.uniroma1.it
3 Dipartimento di Matematica Universit`a di Roma “Tor Vergata”,

Via della Ricerca Scientifica, I–00133 Rome, Italy,vocca@mat.uniroma2.it

Abstract. We introduce an innovative decomposition technique which reduces
a multi–dimensional searching problem to a sequence of one–dimensional pro-
blems, each one easily manageable in optimal time×space complexity using tra-
ditional searching strategies. The reduction has no additional storage requirement
and the time complexity to reconstruct the result of the original multi–dimensional
query is linear in the dimension.
More precisely, we show how to preprocess a set ofS ⊆ INd of multi–dimensional
objects into a data structure requiringO(m log n) space, wherem = |S| andn is
the maximum number of different values for each coordinate. The obtained data
structure isimplicit, i.e. does not use pointers, and is able to answer theexact
matchquery in7(d − 1) steps. Additionally, the model of computation required
for querying the data structure is very simple; the only arithmetic operation needed
is the addition and no shift operation is used.
The technique introduced, overcoming the multi–dimensional bottleneck, can be
also applied to non traditional models of computation as external memory, distribu-
ted, and hierarchical environments. Additionally, we will show how the proposed
technique permits the effective realizability of the well known perfect hashing
techniques on real data.
The algorithms for building the data structure are easy to implement and run in
polynomial time.

1 Introduction

The efficient representation of multi–dimensional points set plays a central role in
many large–scale computations, including, for instance, object management in distri-
buted environments (CORBA, DCOM); object–oriented and deductive databases ma-
nagement [2,5,25,10,19], and spatial and temporal data manipulation [20,24]. All these
applications manage very large amounts of multi–attribute data. Such data can be con-
sidered as points in ad–dimensional space. Hence, the key research issue, in order to
provide "good" implementations of these applications, is the design of an efficient data
structure for searching in thed–dimensional space. A fundamental search operation is
theexact matchquery, that is, test the presence of a point in the multi–dimensional set

J. Něsetˇril (Ed.): ESA’99, LNCS 1643, pp. 339–353, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

340 E. Nardelli, M. Talamo, and P. Vocca

when all its coordinates are specified. Another important operation is theprefix–partial
matchquery which looks for a set of points, possibly empty, for whom only the first
k ≤ d coordinates are specified.

We deal with the exact match query by using an innovative decomposition technique
which reduces a multi–dimensional searching problem to a sequence of one–dimensional
problems, each one easily manageable in optimal time×space complexity using tradi-
tional searching strategies. The reduction requires no additional storage besides that one
required for data and the time complexity to reconstruct the result of the original multi–
dimensional query is linear in the dimension. The technique introduced, overcoming the
multi–dimensional bottleneck, can be applied in more general contexts, such as distri-
buted and hierarchical environments. Additionally, it can be positively used, jointly with
perfect hashing techniques, when dealing with real data.

The technique is based on two main steps. In the first step, we reduce thed–
dimensional searching problem to a sequence ofd one–dimensional searching problems.
In the second step, the multi–dimensional data is reconstructed using a set of(d − 1)
2–place functions. Each function is represented using a new data structure derived from
a decomposition of the2–place functions into a set of “sparse"2–place functions easily
representable. The decomposition technique of2–place functions is an application of a
more general technique introduced in [22] and successively refined in [23] for testing re-
achability in general directed graphs. The same technique has been successfully applied
in [21] to the problem of implicitly representing a general graph.

The data structure we present has the following characteristics:
– general and deterministic: We represent any multi–dimensional point set and our

space and time bounds are worst-case deterministic;
– space and time efficient: Exact match query requires7(d−1) steps and prefix–partial

match7(k−1)+t steps, wheret is the number of points reported, usingO(m log n)
space, wherem is the size of the point set andn is the maximum number of values
a coordinate can receive;

– easy to implement: The algorithms used to build the data structure, although some-
what tricky to analyze, are very simple and run inO(n3) time; no operations are
needed for searching other than one–dimensional array accesses;

– simple computation model: The only arithmetic operation required for querying the
data structure is the addition and no shift operation is used.
Due to its relevance, the multi–dimensional searching problem has been deeply

investigated. In computational geometry and for spatial databases, the problem has been
solved only for small values of the dimension [18,20] and the solutions proposed grow
exponentially withd. The same problem has been studied for temporal databases [24].
In this case, we have empirical results, only, and the worst case is unbounded. In a
general setting, there are two major techniques for implementing the multi–dimensional
searching problem: trees and hashing. For the first, several data structure have been
developed asd-dimensional version of data structures for the one–dimensional problem
(e.g. B-trees [3], compacted tries [17], digital search trees [14]). In this case, even though
the space complexity is optimal exact match queries require a logarithmic number of
steps in the worst case. Hashing and perfect hashing techniques have the drawback
that, for each search performed, it may be required the evaluation of computationally
complex functions [8,7,6]. Hence, numerically robust implementations are required.

Multi–dimensional Data Searching 341

With our technique, each search only requires a constant number of table accesses, and
addresses to be accessed are computed with only a constant number of additions.

Concerning the comparison of our technique with the less powerful computational
models considered in the so–called word-RAM approach [9], namely the RISC model,
the are two issues to be considered. First, our technique does not need to use a shift
operation, which may require at leastlog m additions to be simulated, wherem is the
problem size. Second, the overall space needed for computations in the word-RAM
model isO(2w) bits, wherew is the word size, and for the model to be of interest this
quantity has to be considerably larger than the problem sizem, namely2w � m ([9],
pag. 371). Contrast this with the overall space needed in our approach that, expressed in
terms ofm, can be written asO(m log2 m).

The paper is structured as follows: In Section 2 we describe the representation of the
multi–dimensional problem by means of a sequence of2–place functions; In Section 3 we
give some definitions and notations, and present some decomposition theorems; Using
these theorems, in Section 4 we describe the data structure for representing a2–place
function and, hence, a multi–dimensional points set; then, in Section 5 we present some
application of our technique. Finally, in Section 6 we outline some open problems and
future research directions.

2 Problem Representation

In this section, we show first how to reduce a multi–dimensional problem to a set of
one–dimensional problems, and then how to reconstruct the original problem.

GivenS ⊆ INd, with m = |S|. Let x = x1, . . . , xd ∈ S, thenni
.= |{xi : x ∈ S}|.

The reduction is defined by the following set of functions:

gi : IN 7−→ {1, . . . ni} 1 ≤ i ≤ d. (1)

Each functiongi maps the values of a coordinate to a set of integers of bounded
size. This mapping can be easily represented with data structures for one–dimensional
searching, such as B-trees or perfect hashing tables. Without loss of generality, from
now on we assumeS ⊆ Ud, whereU = {1, . . . n}, beingn = maxi{ni}.

Hence, letx = x1, . . . , xd ∈ S ⊆ Ud be a generic key ofS, wherexi denotes the
value of thei-th coordinate. Leta = a1, a2, . . . , ad be a value inUd. We denote with
a(i) the subsequence of its firsti coordinates, namelya(i) = a1, a2, . . . , ai, called a
partial valueor theprefix (of lengthi) of a. We write b(j) ⊂ a(i) whenj < i and
bk = ak, for k = 1, 2, . . . , j. In the same way, we define the prefix for a key inS.

Let S(a(i)) be the subset ofS containing all keys that are coincident on the prefix
a(i). Note that|S(a(d−1))| ≤ nand|S(a(d))| ≤ 1. For anya(i)such that|S(a(i))| > 1
and 6 ∃b(j) ⊂ a(i) such thatS ⊇ S(b(j)) ⊃ S(a(i)) we say thata(i) is themaximal
shortest common prefixof S(a(i)) with respect toS. We assume that it does not exist
a maximal shortest common prefixa(i) such thatS(a(i)) = S, since otherwise we
can consider a reduced dimension universe, by simply deleting the maximal shortest
common prefix from every key.

342 E. Nardelli, M. Talamo, and P. Vocca

The representation mechanism we use for keys is based on a suitable coding of subsets
of keys with common prefixes of increasing length, starting from the maximal shortest
common prefixes. We denote withfi a 2-place function such thatfi : U i × U 7→ S. We
code keys using these functions in an incremental way.

Given a setT of keys, we denote withsT
l , 1 ≤ l ≤ kT , the l-th key in a fixed,

but arbitrarily chosen, total ordering of thekT keys inT . The choice of the order is
immaterial: we use it only to make the description clearer.

Let us now assumea(i) is a maximal shortest common prefix with respect toS. For
reasons that will be clearer in the following, we only take into account maximal shortest
common prefixes longer than 1. We then representS(a(i)), i > 1, with the following
technique.

First we represent thei − 1 smallest elements inS(a(i)) as it follows:


f1(a1, a2) = s
S(a(i))
1

. . .

fi−1(a1 . . . ai−1, ai) = s
S(a(i))
i−1

Now, if kS(a(i)) ≤ i − 1, we have represented all elements inS(a(i)) and we are
done. Otherwise we still have to represent thekS(a(i)) − (i − 1) remaining elements in

S′ = S(a(i)) \ ⋃i−1
l=1 s

S(a(i))
l .

All keys in S′ can then be partitioned in subsets, possibly just one, each containing
keys with a common prefixa(i + j) ⊃ a(i), and such that, for each subsetS′

r, a(i + jr)
is the maximal shortest common prefix ofS′

r = S(a(i + jr)) ∩ S′ with respect toS′.
We now represent thekS′

r
keys inS′

r by recursively applying the same approach.
Namely, we first represent thejr smallest keys inS′

r as it follows:


fi(a1 . . . ai, ai+1) = s
S′

r
1

. . .

fi+jr−1(a1 . . . ai+jr−1, ai+jr) = s
S′

r
jr

Now, if kS′
r

≤ jr−1, we have represented all elements inS′
r and we are done. Otherwise,

we still have to represent thekS′
r
−(i+jr−1) remaining elements inS′′

r = S′
r\

⋃jr

l=1 s
S′

r

l .
All keys in S′′

r can then be partitioned in subsets, possibly just one, each containing
keys with a common prefixa(i+jr +h) ⊃ a(i+jr), and such that, for each subsetS′′

r,q,
a(i+jr+hr,q) is the maximal shortest common prefix ofS′′

r,q = S(a(i+jr+hr,q))∩S′′
r

with respect toS′′
r . And now the representation process goes on recursively.

We now show an example of the application of the definitions introduced above.

Example 1.Assumed = 6 andn = 9. Consider a setS = {233121, 233133, 233135,
233146, 234566, 234577, 234621, 234622, 234623, 343456}. Then there are only two
maximal shortest common prefixes with respect toS, namely23 of length2 and343456
of length6.

We then setf1(2, 3) = 233121 andf1(3, 4) = 343456: sincekS(23) 6≤ 2 − 1 while
kS(343456) ≤ 6 − 1 thenS(343456) has been completely represented, while for keys
remaining inS′ = S(23) \ {233121} we have to recursively apply the same technique.

Multi–dimensional Data Searching 343

The maximal shortest common prefixes inS′ = {233133, 233135, 233146, 234566,
234577, 234621, 234622, 234623} are2331 of length2+2 and234 of length2+1. It is
S′

1 = S(2331) ∩ S′ = {233133, 233135, 233146} andS′
2 = S(234) ∩ S′ = {234566,

234577, 234621, 234622, 234623}.
We then setf2(23, 3) = 233133 andf3(233, 1) = 233135; we also setf2(23, 4) =

234566. SincekS′
1

6≤ 2 and kS′
2

6≤ 1 then both for keys remaining inS′′
1 = S′

1 \
{233133, 233135} and for those inS′′

2 = S′
2 \ {234566} we have to recursively apply

the same technique. We obtain the following sets:f4(2331, 4) = 233146, f3(234, 5) =
234577, f3(234, 6) = 234621, f4(2346, 2) = 234622, andf5(23462, 3) = 234623.

Given ad–dimensional set of pointsS ⊆ Ud a pointx = a1, a2, . . . , ad can be
searched by incrementally evaluating the2–place functionsfi. At each stepi, with
i = {1, . . . , d − 1}, two cases are possible:fi(a1 . . . ai, ai+1) = x and we are done.
Otherwise, the search continues with the evaluation offi+1. It is trivial to verify that
the search ends reportingx if and only if x ∈ S. In the next section we show how to
efficiently represent2–place functions so that the above search strategy can be executed
in a constant number of steps.

3 2–place Functions Representation

In order to state the main result of this section we need to recall some definitions and
give new notations.

3.1 Definitions

A bipartite graphG = (A∪B, E) is a graph withA∩B = ∅ and edge setE ⊆ A×B.
Given a2–place functionf : A × B 7−→ IN, a unique labeled bipartite graph

G = (A ∪ B, E) can be built, such that the label of(x, y) ∈ E is equal toz if and only
if x ∈ A, y ∈ B, andf(x, y) = z ∈ Z. Hence, the representation of a2–place function
is equivalent to test adjacency in the bipartite graph and lookup the label associated to
the edge, if it exists. For ease of exposition, in the following, we will deal with labeled
bipartite graphs instead of2–place functions. Moreover, from now on,nA andnB denote
the number of vertices inA andB, respectively, andm is the number of edges of the
bipartite graph.

Given a bipartite graphG = (A ∪ B, E), x ∈ A ∪ B is adjacentto y ∈ A ∪ B
if (x, y) ∈ E. Given a vertexx, the set of its adjacent vertices is denoted byα(x);
δ(x) .= |α(x)| is thedegreex. The notation is extended to a setS of vertices asα(S) .=
∪x∈Sα(x)andδ(S) .=

∑
x∈S δ(x).The maximum degree among vertices inS is denoted

by ∆S . In particular,∆A and∆B denote the maximum degree among vertices inA
andB, respectively. A bipartite graph isregular if all vertices have the same degree
∆ = ∆A = ∆B . A bipartite graphG = (A ∪ B, E) is bi-regular if all vertices inA
have the same degree∆A and all vertices inB have the same degree∆B .

Given a set of verticesS ∈ A or S ∈ B, δS(x) .= |α(x) ∩ S| denotes the number
of vertices inS adjacent tox. Furthermore,αj(S) .= {x ∈ α(S) : δS(x) = j} denotes
the set of vertices inα(S) incident toS with exactlyj edges. Given a set of vertices
S ∈ A ∪ B, the sub-bipartite induced byS is the sub-bipartiteG′ .= (S, ES), with
ES = E ∩ (S × S).

344 E. Nardelli, M. Talamo, and P. Vocca

A h-clusterS is a set of vertices, either inA or in B, s.t.δS(x) ≤ h, x ∈ α(S). A
1-cluster is simply calledcluster.

3.2 Partitioning into h-Clusters

We present an algorithm which, given a bipartite graphG = (A ∪ B, E), computes a
h-clusterC ⊂ A, with h = dlog nBe; hence, the sub-bipartite induced byC ∪ B has
the property∆α(C) ≤ h. Of course, this can be done trivially ifC consists of at most
h vertices. Somewhat surprisingly, it turns out that a clever selection of vertices of the

h-cluster, we can find ah-cluster ofΩ
(

nA

∆B

)
vertices, hence a significant fraction of all

vertices inA.
The idea behind the algorithm derives from the following observation: when we add

a new vertexx to theh-cluster, then for each vertexy in α(x), its degreeδC(y) with
respect toC increases by one. A trivial approach would be to just check that for each
vertexy ∈ α(C) ∩ α(x), δC(y) ≤ h − 1 holds; this guarantees∆α(C) ≤ h after the
insertion. Unfortunately, on the long run this strategy does not work. A smarter strategy
must look forward, to guarantee that not only the current choice is correct, but that it
does not restrict too much successive choices. A new vertexx is added to the cluster in
h successive steps, at each stepj observing howx increases the number|αj−1(C)| of
vertices adjacent toC having degreej − 1 with respect toC. At each step the selection
is passed by those vertices which do not increase too much the number|αj−1(C)| of
vertices adjacent toC having degreej − 1 with respect toC, where “too much” means
no more thant times the average value over all candidates at stepj, for some suitable
choice oft.

We will prove that this strategy causes the number|αh(C)| of vertices adjacent toC
having degreeh with respect toC to increase very slowly, thus ensuring that this number
is less than 1 until at leastnA

β∆B
vertices have been chosen, for a fixed constantβ.

The algorithm is presented in Figure 1; from now on,Ci denotes theh-cluster at the
end of stepi, andSi,j the set of vertices, to be added toCi−1, that passed the selection
stepj. Furthermore, the notationα0(Ci) is extended to denote the setB − α(Ci) of all
vertices inB not adjacent toCi.

Lemma 2. |Si,j | ≥ (nA − i + 1)
(
1 − 1

t

)j
.

Proof. At each stepj we select those verticesx ∈ Si,j−1 such that|αj−1(Ci−1)∩α(x)|
is no more thant times the average valueµi,j−1 over all vertices inSi,j−1. If a set
of n non-negative integers with average valueµ then at mostn/t elements have value
greater thantµ and, hence, at leastn(1 − 1/t) elements have value at mosttµ, thus
|Si,j | ≥ (1 − 1/t)|Si,j−1|, with |Si,0| = nA − i + 1; the Lemma follows.

Lemma 3. Letni,j
.= |αj(Ci)|, that is the number of verticesy in α(Ci) s.t.δCi(y) = j.

Then

ni,j ≤

 t∆B(i − 1)

(nA − i + 1)
(
1 − 1

t

) j−1
2




j

nB

j!

Multi–dimensional Data Searching 345

C0 ← ∅;
i← 0;
repeat

i← i + 1;
Si,0 ← A− Ci−1;
for j ← 1 to h do begin

µi,j−1 =

∑
x∈Si,j−1

|αj−1(Ci−1)∩α(x)|
|Si,j−1| ;

Si,j ← {x ∈ Si,j−1 : |αj−1(Ci−1) ∩ α(x)| ≤ tµi,j−1};
end ;
pick a vertexx ∈ Si,j ;
Ci ← Ci−1 ∪ {x};

until Si,j = ∅;
end .

Fig. 1.Algorithm Select.

Proof. The proof is by induction on the stepj.

Base step:j = 1. At step(i, 1), µi,0 is the average degree of thenA − i + 1 vertices in
A−Ci−1 with respect to vertices not connected toα(Ci−1). Thus,µi,0 ≤ m

nA−i+1 , and
a vertexx that is added toSi,1 verifiesδα0(Ci−1)(x) ≤ tm

nA−i+1 .

If x is added toCi−1, ni−1,1 is increased by at most tm
nA−i+1 new vertices. Hence,

ni,1 ≤ ni−1,1 +
tm

nA − i + 1
≤

i−1∑
k=1

tm

nA − k
≤ tm(i − 1)

nA − i + 1
.

Sincem ≤ ∆BnB , ni,1 ≤ t∆BnB(i−1)
nA−i+1 , and the base step is proved.

Induction step:j − 1 → j. At step (i, j), µi,j−1 is the average degree of candidate
vertices inSi,j−1 with respect to vertices inαj−1(Ci−1). By Lemma 2 and since the
total number of edges outgoing fromαj−1(Ci−1) is at most∆Bni−1,j−1, we have
µi,j−1 ≤ ∆Bni−1,j−1

(nA−i+1)(1− 1
t)

j−1 .

346 E. Nardelli, M. Talamo, and P. Vocca

A vertexx is added toSi,j−1 if it verifies δαj−1(Ci−1)(x) ≤ tµi,j−1. Hence, ifx is
added toCi−1, ni−1,j is increased by at mosttµi,j−1 new vertices. Thus,

ni,j ≤ ni−1,j +
t∆Bni−1,j−1

(nA − i + 1)
(
1 − 1

t

)j−1 ≤
i−1∑
k=1

t∆Bnk,j−1

(nA − k)
(
1 − 1

t

)j−1

≤ t∆B

(nA − i + 1)
(
1 − 1

t

)j−1

i−1∑
k=1

nk,j−1

≤ t∆B

(nA − i + 1)
(
1 − 1

t

)j−1

i−1∑
k=1


 t∆B(k − 1)

(nA − k + 1)
(
1 − 1

t

) j−2
2




j−1

nB

(j − 1)!

≤

 t∆B

(n − i + 1)
(
1 − 1

t

) j−1
2




j

nB

(j − 1)!

i−1∑
k=1

(k − 1)j−1

≤

 t∆B

(n − i + 1)
(
1 − 1

t

) j−1
2




j

nB

j!
(i − 1)j .

This concludes the induction step.

Theorem 4. Let G = (A ∪ B, E) be a bipartite graph. Forh ≥ blog nBc, Algorithm

Select finds ah-clusterC of

⌈
nA

(2e
3
2 +1)∆B

⌉
vertices in timeO(|C|nA∆A).

Proof. If t = h ≥ 2, then
(
1 − 1

t

)h−1
2 ≥ 1√

e
. Let imax be the value of indexi at the end

of the execution of Algorithm Select. Considering thath! ≥ (
h
e

)h
, Lemma 3 implies:

nimax,h+1 ≤
[

e
3
2 ∆B(imax − 1)
nA − imax + 1

]h+1

nB .

If imax <

⌈
nA

2e
3
2 ∆B+1

⌉
then e

3
2 ∆B(imax−1)
nA−imax+1 < 1

2 , hence,nimax,h+1 ≤ nB

2h+1 < 1 for

h ≥ blog nBc ≥ dlog nBe − 1, andCimax is ah-cluster.

From now onβ denotes the constant2e
3
2 +1 < 10. The following theorem will be used

to derive the space complexity of the proposed data structure.
Theorem 4 leads to the following

Corollary 5. Let G = (A ∪ B, E) be a bipartite graph. Forh ≥ blog nBc, A can be
partitioned intod2β∆Be · dlog nAe h-clusters. The time complexity isn2

A∆A.

Proof. The sequence of clusters is computed by repeatedly selecting ah-cluster and
removing its vertices fromA. Let us suppose that afterk iterations the numbern′

A of
vertices remained inA is greater thannA/2, but afterk+1 iterations is less than or equal

Multi–dimensional Data Searching 347

nA/2. By Theorems 4, during the firstk iterations, algorithm Select findsh-clusters of

at least
⌈

nA/2
β∆B

⌉
vertices. Hence, ink iterations at leastk

⌈
nA/2
β∆B

⌉
vertices have been

removed fromA, sok ≤ 2β∆B .
We can repeat the same argument to the remaining vertices, each time halving the

number of vertices still inA; this can obviously repeated no more thandlog nAe times.

3.3 Partitioning into Clusters

The following lemma characterizes the complexity of partitioning a bipartite graphG =
(A ∪ B, E) into clusters (1-clusters). Clusters will be used to build the ground data
structure upon which the others are based.

Lemma 6. Let G = (A ∪ B, E) be a bipartite graph.B can be partitioned in1 +
∆B(∆A − 1) clusters. The time required isO(nB∆A∆B)

Proof. Let B1, . . . , Bk be a partition ofB into clusters so thatBi is a maximal cluster
for B − ⋃i−1

j=1 Bj . Each vertexy ∈ Bi has at most∆B adjacent vertices, and each of
them has at most∆A − 1 adjacent vertices different fromy. Hence, a vertexy ∈ Bi

prevents at most∆B(∆A − 1) vertices to be included in the same cluster. Since the
cluster is maximal, each vertex inB either has been chosen inBi or has been excluded
from it, sonB ≤ |Bi|(1 + ∆B(∆A − 1)). Hence|Bi| ≥ nB

1+∆B(∆A−1) . The lemma
follows.

Note that the bound given by Lemma 6 is tight, since there exists an infinite class of
regular bipartite graphs that cannot be decomposed in less than1+∆(∆−1)clusters [11].

4 The Data Structure

In this Section we present the data structure for the multi–dimensional searching problem.
Based upon the decomposition theorems given in Section 3.2, we previously present

a data structure for labeled bipartite that allows us to represent a bipartite graphG =
(A ∪ B, E) in O(n + m log n) space, and to test if two vertices are adjacent with a
constant number of steps. For sake of clarity, we first describe a simpler data structure
that represent bi-regular bipartite graphs, then extend the result to represent all bipartite
graphs.

4.1 Representing Bi-Regular Bipartite Graphs

Given a bi-regular bipartite graphG = (A∪B, E), we partitionA inh-clusters according
to Corollary 5; hence, we obtain a sequence of at mostd2β∆Bhe bipartite graphsGi =
(Ai, B, Ei), whereAi is thei-th h-cluster andEi

.= E ∩ (Ai × B). Then we partition
the vertex setB of each bipartiteGi = (Ai ∪ B, Ei) into clusters. Lemma 6 ensures
that each bipartite graph is decomposed into at most1 + h(∆A − 1) clusters.

We define the following arrays:
– hclus of sizenA; i = hclus[x] is the index of the uniqueh-clusterAi to which

x ∈ A belongs;

348 E. Nardelli, M. Talamo, and P. Vocca

– clus of sizenB × d2β∆Bhe; j = clus[y, i] is the index of the unique clusterBi,j

in Gi to whichy ∈ B belongs;
– joini of sizenA × (1 + h(∆A − 1)); y = join[x, j] is the unique possible vertex

y ∈ B adjacent tox in the j-th cluster in the uniquei-th h-cluster to whichx
belongs.

Adjacency on the bipartite graph can be tested in3 steps since(x, y) ∈ E if and only if,
giveni

.= hclus[x] andj
.= clus[y, i], y = join[x, j] holds. The total space required

is
O(nA + nB d2β∆Bhe + nA(1 + h(∆A − 1))) = O((n + m) log n) .

Note that ifm ≤ n then isolated vertices can be trivially represented, so the space
complexity becomesO(n + m log n).

4.2 Representing Bipartite Graphs and2–place Functions

We now show how to obtain for general bipartite graphs the same results as for bi-
regular graphs. Given a bipartite graphG = (A ∪ B, E), we first partitionB into
maximal subsetsBi, s.t.∀y ∈ Bi, 2i ≤ δ(y) < 2i+1. We obtain a sequence of at most
h = dlog ne bipartite graphsGi = (A ∪ Bi, Ei), whereBi is thei-th subset ofB and
Ei

.= E ∩ (A × Bi).
Then, according to Corollary 5, for each such bipartite graphGi we partitionA

into h-clustersAi,j , obtaining a sequence of at most
⌈
2i+1β

⌉
h bipartite graphsGi,j ,

and further partition eachh-cluster into at mosth subsetsAi,j,k s.t.∀x ∈ Ai,j,k, 2k ≤
δBi(x) < 2k+1, obtaining a sequence of bipartite graphsGi,j,k.

Finally, for each bipartite graphGi,j,k, we partition the setBi into clusters; Lemma 6
ensures that each bipartite graphGi,j,k is decomposed into at most1 + h(∆Ai,j,k

− 1)
clusters.

We define the following arrays:
– range of sizenB ; i = range[y] is the index of the unique subsetBi to whichy

belongs;
– hclus of sizenA × h; j = hclus[x, i] is the index of the uniqueh-clusterAi,j to

whichx ∈ A belongs inGi.
– subs of sizenA × h; k = subs[x, i] is the index of the unique subsetAi,j,k in the

uniqueh-cluster to whichx ∈ A belongs inGi.
– For each vertexy ∈ Bi, we define an arrayrangesy of size

⌈
2i+1β

⌉
h; rangesy[j]

is a reference to the arrayclus, which contains the cluster indices ofy in all subsets
Ai,j,k; it is empty if y is not adjacent to any vertex inAi,j . The total space needed
for arrayrangesy[j] for all y ∈ B is

O(
∑
Bi

∑
y∈Bi

⌈
2i+1β

⌉
h) = O(

∑
Bi

∑
y∈Bi

δ(y)βh) = O(mh) .

Readingrangesy[j] requires2 steps, one to read the initial address of the array
giveny, and one to access itsj-th element.

– For each vertexy ∈ Bi, and eachh-clusterAi,j connected toy, we define an array
clus; clus[k] is the index of the unique cluster inGi,j,k to whichy ∈ Bi belongs;
it is empty ify is not adjacent to any vertex inAi,j,k. For each vertexy ∈ Bi, since

Multi–dimensional Data Searching 349

2i ≤ δ(y) < 2i+1, at most2i+1 such arrays are defined, each of them having size
h. Hence, the total space needed for all arraysclus is

O(
∑
Bi

∑
y∈Bi

2ih) = O(
∑
Bi

∑
y∈Bi

δ(y)h) = O(mh) .

– joins of sizenA × h; joins[x, i] is a reference to the arrayjoin, which contains
all vertices inBi adjacent tox. It is empty ifx is not adjacent to any vertex inBi.

– For each vertexx ∈ Ai,j,k, and each setBi connected tox, we define an arrayjoin
of size(1 + h(2k+1 − 1)); join[l] is the (unique) possible vertex adjacent tox in
thel-th cluster ofGi,j,k; it is empty ifx is not adjacent to any vertex thel-th cluster
of Gi,j,k. For each vertexx ∈ A, the space needed for all its related arraysjoin is
O(

∑
Bi

2δBi(x)) = O(hδ(x), so the total space for arraysjoin for all x ∈ A is
O(mh).

Adjacency on the bipartite graph can be tested in constant time since(x, y) ∈ E if and
only if, given i

.= range[y], j
.= hclus[x, i], k

.= subs[x, i], clus .= rangesy[j],
l

.= clus[k] andjoin
.= joins[x, i], y = join[l] holds. The test requires7 steps. The

total space required is

O(nB + nAh + mh) = O((n + m) log n) .

Also in this case, ifm ≤ n then isolated vertices can be trivially represented, so the
space complexity becomesO(n + m log n).

¿From the above discussion, we have the following theorem:

Theorem 7. There exists a data structure that represents a bipartite graph withn ver-
tices andm edges in spaceO(n + m log n). Vertex adjacency can be tested in7 steps.
Preprocessing time isO(n2∆), where∆ is the maximum vertex degree.

The representation of a2–place function and the lookup operation which given two
objects, return a value associated to the pair, is equivalent to the following: given a
bipartite graphG = (A ∪ B, E), and alabeling functionL : E → IN, andx ∈ A,
y ∈ B, if (x, y) ∈ E returnL(x, y). This can be easily accomplished with the previously
described data structure and, whenever(x, y) ∈ E, extendingjoin[l] to contain both
the (unique) possible vertexy adjacent tox in the l-th cluster ofGi,j,k and the value
L(x, y). This leads to the following theorem:

Theorem 8. There exists a data structure that represents a2–place function of sizem
between objects from a domain of sizen in spaceO(n+m log n). The lookup operation
requires7 steps. Preprocessing time isO(n3).

4.3 Representing Multi–dimensional Data

Given a point setS ⊆ Ud, with m = |S| andn = |U |. Let 〈f1, . . . , fd−1〉 be the
sequence of2–place functions representingS, as described in Section 2. Additionally,
let m = |S| andmi be the size of the2–place functionfi, for 1 ≤ i ≤ d − 1. By the
definition, we havem =

∑d−1
i=1 mi. Moreover, for anyi, ni ≤ mi, ni being the size of

the domain set offi. By Theorem 8, we can state the following theorem:

350 E. Nardelli, M. Talamo, and P. Vocca

Theorem 9. There exists an implicit data structure that represents a setS ⊆ Ud of
multi–dimensional points in spaceO(m log n).The exact match and prefix–partial match
queries can be performed in7(d− 1) and7(d− 1)+ t steps, respectively, wheret is the
number of points reported. The preprocessing time isO(dn3).

5 Extensions

5.1 External Memory Data Structure

Due to its nature, the above described data structure can be efficiently applied to secon-
dary storage. In this paper, we consider the standard two-level I/O model introduced by
Aggarwal and Vitter in [1]. In this case, we can devise a powerful compression technique
leading to a space optimal data structure.

In the data structure described in Section 4.2, the critical arrays areranges,clus, and
join, that is those requiring a total spaceO(mh), which in terms of external memory
storage impliesO(mh/B) blocks. The following lemma counts the number of non-
empty entries in these arrays:

Lemma 10. Letk′ be the total number of non-empty entries in arraysrangesy for all
y ∈ B; k′′ be the total number of non-empty entries in all arraysclus; andk′′′ be the
total number of non-empty entries in arraysjoin. Thenk′ ≤ m, k′′ ≤ m, k′′′ ≤ m.

Proof. If rangesy[j] is not empty, then some edge(x, y) belongs toGi,j ; on the other
hand, there is a unique bipartite graphGi,j containing such edge. Hence, the total number
of non-empty entries in arraysrangesy for all y ∈ B is at mostm.

If clus[k] is not empty for some vertexy ∈ Bi and someh-clusterAi,j connected
to y, then some edge(x, y) belongs toGi,j,k; since there is a unique bipartite graph
Gi,j,k containing such edge, the total number of non-empty entries in all arraysclus is
at mostm.

If join[l] is not empty, then some edge(x, y) belongs toGi,j,k; there is a unique
bipartite graphGi,j,k containing such edge; the total number of non-empty entries in
arraysjoin for all x ∈ A is at mostm.

Leta be an array of sizek. We partitiona into intervals ofB elements, and represent
each interval by a reference to the block containing the non empty entries in that interval.
It is easy to see that an arraya of sizek with k′ empty entries can be represented in
O(k

B + k′) space, thus inO(k
B2 + k′

B) blocks; furthermore, one access toa[i] maps to
2 memory accesses. hence the external memory version of Theorem 8 and Theorem 9
can be stated as follows:

Theorem 11. There exists an external–memory data structure that represents a2–place
function of sizem between objects from a domain of sizen with O(n log n+m

B) blocks.
The lookup operation requires10 I/Os.

Theorem 12. There exists an external memory implicit data structure that represents
a setS ⊆ INd of multi–dimensional points withO(m/B) blocks. The exact match and
prefix–partial match queries require10(d − 1) and10(d − 1) + t/B I/Os, respectively,
wheret is the number of points reported by the partial match query.

Multi–dimensional Data Searching 351

5.2 Incremental Exact Match Queries

The representation we propose for a multi–dimensional point setS allows to efficiently
perform the exact match operation in a more general context. In fact we can define the
incremental exact matchquery, where the coordinates are specified incrementally, that
is, the search starts when the first coordinate is given, and proceeds refining the searching
space as soon as the other coordinates are specified. This definition of exact search is
particularly useful in distributed environments where the request for a query is expressed
by sending messages along communication links [15,16,4,12,13] and not all coordinates
reside on the same machine.

Another field of application of the incremental exact match query is for theinteractive
exploratory searchon Web. In this case the user can specify the searching keys one by
one so as to obtain intermediate results.

Also, the incremental exact match query is particularly practical when dealing with a
point sets from a very high multi–dimensional space (order of thousands of keys). In this
case we can manage the query in a distributed environment by specifying onlyk � d
keys a time in order to prevent network congestion and to obtain a more reliable answer.

5.3 Improving Conventional Searching Data Structures

Our decomposition technique can be positively applied to one-dimensional hashing and
perfect hashing when dealing with real keys. Letw be the machine word length, and
K � w the key length. We can divide each key inK/w sub-keys, and reduce the original
one–dimensional searching problem to a multi–dimensional searching problem, which
can be solved with our technique with no additional storage and with a constant number
of I/Os.

Another important application it to the trie data structure. With a technique similar
to the one above described, we can consider larger node sizes.

6 Open Problems

One important open problem is that of dynamizing the data structure; even an incremental-
only version data structure would be a useful improvement. Another important research
direction is to extend the operation set to include other operations useful for the mana-
gement of a multi-dimensional data set (e.g. range queries, retrieve maximal elements,
orthogonal convex-hull,etc.)

We are currently carrying out an extensive experimentation on secondary memory,
based on a data sets derived from a business application. This experimentation activity
is still at its beginning, the main purpose being primarily to test the effective speedup
in the lookup operation and the overall size of the representation on these data sets.
Preliminary experimentation results show that the behavior of our data structure is very
fast and works very well in the average case.

352 E. Nardelli, M. Talamo, and P. Vocca

References

1. A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related problems.
Communications of the ACM, 31(9):1116–1127, September 1988.

2. R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient management of transitive relationship
in large data and knowledge bases. InProceedings of the International Conference on the
Management of Data, pages 253–262, Portland, OR, 1989.

3. R. Bayer and C. McCreight. Organization and maintenance of large ordered indexes.Acta
Informatica, 1(3):173–179, 1972.

4. R. Devine. Design and implementation of DDH: A distributed dynamic hashing algorithm.
In 4th Int. Conf. on Foundations of Data Organization and Algorithms (FODO), Chicago,
1993.

5. D.Mayer and B.Vance. A call to order. InProceedings of the International Conference on
Principle of Database Systems, 1993.

6. A. Fiat and M. Naor. ImplicitO(1) probe search. InProceedings of the Twenty First Annual
ACM Symposium on Theory of Computing, pages 336–344, Seattle, Washington, 1989.

7. A. Fiat, M. Naor, J. P. Schmidt, and A. Siegel. Non-oblivious hashing. InProceedings of
the Twentieth Annual ACM Symposium on Theory of Computing: Chicago, Illinois, May 2–4,
1988, pages 367–376, New York, NY 10036, USA, 1988. ACM Press.

8. M. L. Fredman, J. Koml´os, and E. Szemeredi. Sorting a sparse table withO(1) worst case
access time. InProc. 23rd Ann. IEEE Symp. on Foundations of Computer Science, pages
165–169, 1982.

9. T. Hagerup. Sorting and searching on the word RAM. In M. Morvan, C. Meinel, and D. Krob,
editors,STACS: Annual Symposium on Theoretical Aspects of Computer Science, pages 366–
398. LNCS 1373, Springer-Verlag, 1998.

10. P. C. Kanellakis, S. Ramaswamy, D. E. Vengroff, and J. S. Vitter. Indexing for data models
with constraints and classes.Journal of Computer and System Science, 52:589–612, 1996.

11. D. J. Kleitman and K. J. Winston. The asymptotic number of lattices.Annuals of Discrete
Matemathics, 6:243–249, 1980.

12. B. Kröll and P. Widmayer. Distributing a search tree among a growing number of processors.
In ACM SIGMOD Int. Conf. on Management of Data, pages 265–276, Minneapolis,MN,
1994.

13. B. Kröll and P.Widmayer. Balanced distributed search trees do not exists. In S.Akl et al., editor,
4th Int. Workshop on Algorithms and Data Structures (WADS’95), pages 50–61, Kingston,
Canada, 1995. LNCS 955, Springer-Verlag.

14. Douglas Lea. Digital and HilbertK-D trees.Information Processing Letters, 27(1):35–41,
1988.

15. W. Litwin, M. A. Neimat, and D. A. Schneider.LH∗–linear hashing for distributed files. In
ACM SIGMOD Int. Conf. on Management of Data, Washington, D.C., 1993.

16. W. Litwin, M. A. Neimat, and D. A. Schneider.LH∗–a scalable distributed data structure.
ACM Trans. Database Systems, 21(4):480–525, 1996.

17. D. Morrison and R. Patricia. Practical algorithm to retrieve information coded in alphanu-
meric. Journal of the ACM, 15:514–534, 1968.

18. F. P. Preparata and M. I. Shamos.Computational Geometry. Springer-Verlag, Berlin, New
York, 1985.

19. S. Ramaswamy and S. Subramanian. Path caching:A technique for optimal external searching.
In Proc. ACM Symp. Principles of Database System, pages 25–35, 1994.

20. H. Samet.The Design and Analysis of Spatial Data Structures. Addison-Wesley, Reading,
MA, 1990.

Multi–dimensional Data Searching 353

21. M. Talamo and P.Vocca. Compact implicit representation of graphs. In J. Hromkoviˇc and
O. Sýkora, editors,Proceedings of24th InternationalWorkshop on Graph–Theoretic Concepts
in Computer Science WG’98, pages 164–176. LNCS 1517, Springer-Verlag, 1998.

22. M. Talamo and P. Vocca. A data structure for lattice representation.Theoretical Computer
Science, 175(2):373–392, April 1997.

23. M. Talamo and P. Vocca. A time optimal digraph browsing on a sparse representation. Tech-
nical Report 8, Matemathics Department, University of Rome “Tor Vergata”, 1997.

24. A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass, editors.Temporal
Databases: Theory, Design, and Implementation. Benjamin/Cummings, Redwood City, CA,
1993.

25. M. Yannakakis. Graph-theoretic methods in database theory. In ACM, editor,PODS ’90.
Proceedings of the Ninth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Da-
tabase Systems: April 2–4, 1990, Nashville, Tennessee, volume 51(1), New York, NY 10036,
USA, 1990. ACM Press.

	Introduction
	Problem Representation
	2--place Functions Representation
	Definitions
	Partitioning into h-Clusters
	Partitioning into Clusters

	The Data Structure
	Representing Bi-Regular Bipartite Graphs
	Representing Bipartite Graphs and 2--place Functions
	Representing Multi--dimensional Data

	Extensions
	External Memory Data Structure
	Incremental Exact Match Queries
	Improving Conventional Searching Data Structures

	Open Problems

