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Abstract. We introduce an innovative decomposition technique which reduces
a multi-dimensional searching problem to a sequence of one—dimensional pro-
blems, each one easily manageable in optimal fisgace complexity using tra-
ditional searching strategies. The reduction has no additional storage requirement
and the time complexity to reconstruct the result of the original multi-dimensional
query is linear in the dimension.

More precisely, we show how to preprocess a sét 6f IN? of multi—-dimensional
objects into a data structure requiri@fm log n) space, wherex = |S| andn is

the maximum number of different values for each coordinate. The obtained data
structure isimplicit, i.e. does not use pointers, and is able to answeetaet
matchquery in7(d — 1) steps. Additionally, the model of computation required
for querying the data structure is very simple; the only arithmetic operation needed
is the addition and no shift operation is used.

The technique introduced, overcoming the multi-dimensional bottleneck, can be
also applied to non traditional models of computation as external memory, distribu-
ted, and hierarchical environments. Additionally, we will show how the proposed
technique permits the effective realizability of the well known perfect hashing
techniques on real data.

The algorithms for building the data structure are easy to implement and run in
polynomial time.

1 Introduction

The efficient representation of multi-dimensional points set plays a central role in
many large—scale computations, including, for instance, object management in distri-
buted environments (CORBA, DCOM); object—oriented and deductive databases ma-
nagement]2,5,25,10,19], and spatial and temporal data manipulationl[20,24]. All these
applications manage very large amounts of multi—attribute data. Such data can be con-
sidered as points in é&-dimensional space. Hence, the key research issue, in order to
provide "good" implementations of these applications, is the design of an efficient data
structure for searching in thé-dimensional space. A fundamental search operation is
theexact matchguery, that is, test the presence of a point in the multi-dimensional set
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when all its coordinates are specified. Another important operation réfie—partial
matchquery which looks for a set of points, possibly empty, for whom only the first
k < d coordinates are specified.

We deal with the exact match query by using an innovative decomposition technique
which reduces a multi-dimensional searching problem to a sequence of one—dimensional
problems, each one easily manageable in optimaltispace complexity using tradi-
tional searching strategies. The reduction requires no additional storage besides that one
required for data and the time complexity to reconstruct the result of the original multi—
dimensional query is linear in the dimension. The technique introduced, overcoming the
multi-dimensional bottleneck, can be applied in more general contexts, such as distri-
buted and hierarchical environments. Additionally, it can be positively used, jointly with
perfect hashing techniques, when dealing with real data.

The technique is based on two main steps. In the first step, we reducé-the
dimensional searching problem to a sequenckfe—dimensional searching problems.

In the second step, the multi—-dimensional data is reconstructed using a(det df)

2—place functions. Each function is represented using a new data structure derived from
a decomposition of the—place functions into a set of “sparsk“place functions easily
representable. The decomposition techniqug-gllace functions is an application of a
more general technique introduced(in/[22] and successively refined in [23] for testing re-
achability in general directed graphs. The same technique has been successfully applied
in [21] to the problem of implicitly representing a general graph.

The data structure we present has the following characteristics:

— general and deterministidVe represent any multi-dimensional point set and our
space and time bounds are worst-case deterministic;

— space and time efficierExact match query requir&éd — 1) steps and prefix—partial
match7(k— 1)+t steps, whereis the number of points reported, usi@gm log n)
space, wheren is the size of the point set andis the maximum number of values
a coordinate can receive;

— easy to implemenifhe algorithms used to build the data structure, although some-
what tricky to analyze, are very simple and run(rin?) time; no operations are
needed for searching other than one—dimensional array accesses;

— simple computation moderThe only arithmetic operation required for querying the

data structure is the addition and no shift operation is used.
Due to its relevance, the multi-dimensional searching problem has been deeply

investigated. In computational geometry and for spatial databases, the problem has been
solved only for small values of the dimension]18,20] and the solutions proposed grow
exponentially withd. The same problem has been studied for temporal databases [24].
In this case, we have empirical results, only, and the worst case is unbounded. In a
general setting, there are two major techniques for implementing the multi—-dimensional
searching problem: trees and hashing. For the first, several data structure have been
developed ag-dimensional version of data structures for the one—dimensional problem
(e.g. B-tree<]3], compacted triés[17], digital search tie€s [14]). In this case, even though
the space complexity is optimal exact match queries require a logarithmic number of
steps in the worst case. Hashing and perfect hashing techniques have the drawback
that, for each search performed, it may be required the evaluation of computationally
complex functions[[8,7|6]. Hence, numerically robust implementations are required.
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With our technique, each search only requires a constant number of table accesses, and
addresses to be accessed are computed with only a constant number of additions.

Concerning the comparison of our technique with the less powerful computational
models considered in the so—called word-RAM approach [9], namely the RISC model,
the are two issues to be considered. First, our technique does not need to use a shift
operation, which may require at ledsg m additions to be simulated, where is the
problem size. Second, the overall space needed for computations in the word-RAM
model isO(2v) bits, wherew is the word size, and for the model to be of interest this
quantity has to be considerably larger than the problemrsizeamely2® > m ([9],
pag. 371). Contrast this with the overall space needed in our approach that, expressed in
terms ofm, can be written a®(m log” m).

The paper is structured as follows: In Secfibn 2 we describe the representation of the
multi—-dimensional problem by means of a sequen@e-pface functions; In Sectidh 3 we
give some definitions and notations, and present some decomposition theorems; Using
these theorems, in Sectibh 4 we describe the data structure for represedtiplgce
function and, hence, a multi—-dimensional points set; then, in Sddtion 5 we present some
application of our technique. Finally, in Sectidn 6 we outline some open problems and
future research directions.

2 Problem Representation

In this section, we show first how to reduce a multi-dimensional problem to a set of

one—dimensional problems, and then how to reconstruct the original problem.
GivenS C INY, withm = |S|. Letz = z1,...,x4 € S, thenn; = |{z; : z € S}|.

The reduction is defined by the following set of functions:

Each functiong; maps the values of a coordinate to a set of integers of bounded
size. This mapping can be easily represented with data structures for one—dimensional
searching, such as B-trees or perfect hashing tables. Without loss of generality, from
now on we assumg C U<, whereU = {1, ...n}, beingn = max;{n;}.

Hence, letr = z1,...,24 € S C U? be a generic key af, wherez; denotes the
value of thei-th coordinate. Let: = a1, as, ..., aq be a value in/?. We denote with
a(i) the subsequence of its firstoordinates, namely(i) = aj,as,...,q;, called a
partial valueor the prefix (of lengthsi) of a. We writeb(j) C a(i) whenj < ¢ and
b = ag, fork =1,2,...,j. Inthe same way, we define the prefix for a keyin

Let S(a(7)) be the subset of containing all keys that are coincident on the prefix
a(i). NotethatS(a(d—1))| < nand|S(a(d))| < 1.Foranya(:) suchthatS(a(i))] > 1
and Ab(y) C a(i) such thatS O S(b(j)) D S(a(i)) we say thau(i) is themaximal
shortest common prefof S(a(i)) with respect taS. We assume that it does not exist
a maximal shortest common prefiXi) such thatS(a(i)) = S, since otherwise we
can consider a reduced dimension universe, by simply deleting the maximal shortest
common prefix from every key.
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The representation mechanismwe use for keys is based on a suitable coding of subsets
of keys with common prefixes of increasing length, starting from the maximal shortest
common prefixes. We denote wifha 2-place function such thgf : U? x U — S. We
code keys using these functions in an incremental way.

Given a sefl’ of keys, we denote Witth, 1 <1 < kr, thel-th key in a fixed,
but arbitrarily chosen, total ordering of tiie- keys inT". The choice of the order is
immaterial: we use it only to make the description clearer.

Let us now assume(:) is a maximal shortest common prefix with respec$té-or
reasons that will be clearer in the following, we only take into account maximal shortest
common prefixes longer than 1. We then repres#iali)),: > 1, with the following
technique.

First we represent the— 1 smallest elements ifi(a(z)) as it follows:

fila1,a2) = Sf(a(i))

fici(ar...a;—1,a;) = Sf,(‘i(i))

Now, if kg(,aiyy < i — 1, we have represented all elementsSifu(i)) and we are
done. Otherwise we still have to representiig,;)) — (¢ — 1) remaining elements in
§' = S(a(@) \ Uiy s .

All keys in S’ can then be partitioned in subsets, possibly just one, each containing
keys with a common prefix(i + j) O a(4), and such that, for each sub$#t a(i + j..)
is the maximal shortest common prefix$ff = S(a(i + j-)) N .S’ with respect to5”.

We now represent thies: keys insS;. by recursively applying the same approach.

Namely, we first represent thie smallest keys irp’. as it follows:

’

S
fi(al oy, ai+1) = SIT

s
fivjo—1(ar .. irj,—1,0itj,) = s;;

Now, if ks, < j,—1, we have represented all element§jrand we are done. Otherwise,

we still have to represent tthg, — (i+j, —1) remaining elements i’ = S, \ /", slS;.

All keys in S/’ can then be partitioned in subsets, possibly just one, each containing
keys with a common prefix(i +j. +h) O a(i+ j,), and such that, for each subsgt, ,
a(i+jr+hr q) is the maximal shortest common prefix®f, = S(a(i+j,+h,4))NS)
with respect taS!. And now the representation process goes on recursively.

We now show an example of the application of the definitions introduced above.

Example 1.Assumed = 6 andn = 9. Consider a set = {233121, 233133, 233135,
233146, 234566, 234577, 234621, 234622, 234623, 3434%ten there are only two
maximal shortest common prefixes with resped toamely23 of length2 and343456
of length6.

We then seff1(2,3) = 233121 and f1(3, 4) = 343456: sincekg(23) £ 2 — 1 while
ks(3as456) < 6 — 1 thenS(343456) has been completely represented, while for keys
remaining inS’ = S(23) \ {233121} we have to recursively apply the same technique.
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The maximal shortest common prefixessth= {233133, 233135, 233146, 234566,
234577,234621, 234622, 2346282331 of length2 + 2 and234 of length2 + 1. Itis
S) = 5(2331) N S’ = {233133, 233135, 23314@Nd S, = 5(234) N S’ = {234566,
234577, 234621, 234622, 234623

We then self» (23, 3) = 233133 and f3(233, 1) = 233135; we also seff3(23,4) =
234566. Sinceks; £ 2 andks, £ 1 then both for keys remaining iy = 57 \
{233133, 233135} and for those ity = S \ {234566} we have to recursively apply
the same technique. We obtain the following s¢{$2331,4) = 233146, f3(234,5) =
234577, f3(234,6) = 234621, f4(2346,2) = 234622, and f5(23462, 3) = 234623.

Given ad—-dimensional set of point§ C U¢ a pointz = a,as,...,aq can be
searched by incrementally evaluating theplace functionsf;. At each step, with
i ={1,...,d — 1}, two cases are possiblé:(a; ...a;,a;+1) = x and we are done.

Otherwise, the search continues with the evaluatioy; of. It is trivial to verify that

the search ends reportingif and only if x € S. In the next section we show how to
efficiently represert—place functions so that the above search strategy can be executed
in a constant number of steps.

3 2-place Functions Representation

In order to state the main result of this section we need to recall some definitions and
give new notations.

3.1 Definitions

A bipartite graphG = (AU B, E) isa graph withAN B = () and edge sef C A x B.

Given a2-place functionf : A x B —— IN, a unique labeled bipartite graph
G = (AU B, E) can be built, such that the label @f, y) € F is equal toz if and only
if v € A,y € B,andf(z,y) = z € Z. Hence, the representation ofaplace function
is equivalent to test adjacency in the bipartite graph and lookup the label associated to
the edge, if it exists. For ease of exposition, in the following, we will deal with labeled
bipartite graphs instead Bfplace functions. Moreover, from now an, andn g denote
the number of vertices inl and B, respectively, analn is the number of edges of the
bipartite graph.

Given a bipartite grapli: = (AU B, E), 2 € AU B is adjacenttoy € AUB
if (x,y) € E. Given a vertexr, the set of its adjacent vertices is denotedddy);
0(z) = |a(z)| is thedegreex. The notation is extended to a sebf vertices asy(S) =
Uzesa(r)ands(S) = 3 g d(z). The maximum degree among verticeS'iis denoted
by Ag. In particular,A 4 and Ag denote the maximum degree among verticesglin
and B, respectively. A bipartite graph iggular if all vertices have the same degree
A = Ay = Ag. A bipartite graphG = (A U B, FE) is bi-regular if all vertices in A
have the same degrek, and all vertices iB have the same degreks.

Given a set of vertice§' € Aor S € B, §s(z) = |a(x) N S| denotes the number
of vertices inS adjacent tac. Furthermoregy; (S) = {z € «(S) : ds(z) = j} denotes
the set of vertices im(.S) incident to.S with exactly j edges. Given a set of vertices
S € AU B, the sub-bipartite induced by is the sub-bipartite?’ = (5, Eg), with
Es=FEnN (S X S)
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A h-cluster S is a set of vertices, either id or in B, s.t.ds(z) < h, z € a(S). A
1-cluster is simply calledluster.

3.2 Partitioning into h-Clusters

We present an algorithm which, given a bipartite grapk- (A U B, E'), computes a
h-clusterC C A, with h = [logng]; hence, the sub-bipartite induced 6yU B has

the propertyA, ) < h. Of course, this can be done trivially @ consists of at most

h vertices. Somewhat surprisingly, it turns out that a clever selection of vertices of the

h-cluster, we can find A-cluster of(? ( ) vertices, hence a significant fraction of all

vertices inA.

The idea behind the algorithm derives from the following observation: when we add
a new vertex: to the h-cluster, then for each vertexin a(z), its degreejc(y) with
respect taC' increases by one. A trivial approach would be to just check that for each
vertexy € a(C) Na(x), oc(y) < h — 1 holds; this guaranteed, ) < h after the
insertion. Unfortunately, on the long run this strategy does not work. A smarter strategy
must look forward, to guarantee that not only the current choice is correct, but that it
does not restrict too much successive choices. A new vertexadded to the cluster in
h successive steps, at each sfegbserving howr increases the numbeér;_,(C)| of
vertices adjacent t6' having degreg — 1 with respect ta”. At each step the selection
is passed by those vertices which do not increase too much the niumhe(C)| of
vertices adjacent t6' having degreg — 1 with respect ta”', where “too much” means
no more thart times the average value over all candidates at gtépr some suitable
choice oft.

We will prove that this strategy causes the nunbg(C)| of vertices adjacent t6'
having degreé with respect ta to increase very slowly, thus ensuring that this number
is less than 1 until at lea L vertices have been chosen, for a fixed constant

The algorithm is presented in Figure 1; from now 6 denotes thé-cluster at the
end of step, and.S; ; the set of vertices, to be addedd®_,, that passed the selection
step;. Furthermore, the notatiam (C;) is extended to denote the 98t— «(C;) of all
vertices inB not adjacent ta@;.

Lemma2. |S; ;| > (na—i+1)(1—1)".

Proof. At each step we select those verticese S; ;_; suchthato; 1 (C;—1) Na(x)]

is no more thart times the average valyg; ;_; over all vertices inS; ;_;. If a set
of n non-negative integers with average valuéhen at most:/¢ elements have value
greater tharty, and, hence, at least(1 — 1/t) elements have value at magt, thus
|Si,j| > (]. — ]-/t)‘Si,j—lL with ‘Slo| =ny — i+ 1; the Lemma follows.

Lemma 3. Letn; ; = |o;(C;)|, thatis the number of verticgsn o(C;) s.t.oc, (y) = j.
Then p
tAB(i — ].) nj

(na—it)(1-1=T | 7

Nij <
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Co + 0;
1< 0;
repeat
i1+ 1;
Si,0 «— A—Ci_q;
for j <+ 1to h do begin
Des, ., 1@i-1(Cionna@)|
Hinj—1 = e |Si,j—1| ;
Sij+—{z € Sij-1:|aj—1(Cim1) Na(x)| < tpsj-1};
end;
pick a vertexz € S; ;;
Ci « Ci—1 U {z},
until Si,j =0;
end.

Fig. 1. Algorithm Select.

Proof. The proof is by induction on the stegp

Base stepj = 1. At step(i, 1), pi, is the average degree of thg — i + 1 vertices in

A — C;_1 with respect to vertices not connected@; _1 ). Thus,u; o < ﬁ and

a vertexz that is added t65; ; verifiesd,,(c,_,)(r) < =

If = is added ta”;_1, n;—1,1 is increased by at mosrt“”—hL1 new vertices. Hence,

< n tm <i1 tm tm(i — 1)
n; n;— e —— .
M il T sk T it 1

=~
Il

: tA i—1 :
Sincem < Agnpg,n;; < % and the base step is proved.

Induction stepj — 1 — j. At step (4, j), pi,j—1 is the average degree of candidate
vertices inS, ;1 with respect to vertices in;_1(C;—1). By Lemma&2 and since the

total number of edges outgoing from;_,(C;_1) is at mostAgn;_1 ;—1, we have
Apni_1,j-1
Hij— S (na— L+1)(1——)

—T .
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A vertexxz is added taS; ;; if it verifies 6., (c,_,)() < tui;—1. Hence, ifz is
added taC;_1, n;—1,; is increased by at most; ;_; new vertices. Thus,

i—1
tABN;i—1 -1 < tApng j—1
T<Y

k

(ra—i+ D) (-1 T -k (-1
tAB 1—1

Nij < Mi-1,5+

< < Nk j—1
. ) .
(na—i+1) (1—%)] 1
. Jj—1
< tAB =l tAB(k — 1) np
_— . ,'_1 ﬁ .
(na—i+ D) (1=4)" T {(a—k+1)(1-1)7 (7 —1)!
[ 17 1—1
< tAp _ .nBl |Z<k— 1)1
(m—i+1(-H7T | U=
- 17
(n—i+1(1-1)= | F

This concludes the induction step.

Theorem 4. LetG = (A U B, E) be a bipartite graph. Foh > |logng |, Algorithm

Select finds &-clusterC of {3’“‘} vertices in timeD(|C|naAa).
(2e2+1)Ap

—1
Proof. If t =h >2,then(1—1) % > ﬁ Leti,,.. be the value of indexat the end

of the execution of Algorithm Select. Considering that> (g)h Lemmd3B implies:

. h+1
6% AB (Z.max — 1)

- np .
nA*Zmax“i’]-

M h 1 < [

2e2 Agp+1 NA—imax+1 =
h > |logng| > [logng] — 1, andC.

Tmax

3 .
If tax < [ A w then €225 (max—1) % hencen;,,.. . ni1 < i < 1 for

is ah-cluster.

From now ong denotes the constadt® + 1 < 10. The following theorem will be used
to derive the space complexity of the proposed data structure.
Theoreni# leads to the following

Corollary 5. LetG = (AU B, E) be a bipartite graph. Foih > |logng|, A can be
partitioned into[28Ap] - [logn4] h-clusters. The time complexityig, A 4.

Proof. The sequence of clusters is computed by repeatedly selectirgusster and
removing its vertices fromd. Let us suppose that aftériterations the numbet’, of
vertices remained id is greater tham 4 /2, but afterk + 1 iterations is less than or equal
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na/2. By Theorem§ ¥, during the firgtiterations, algorithm Select findsclusters of

at Ieastmz/ﬂ vertices. Hence, it iterations at leask mz/ﬂ vertices have been

removed fromA, sok < 26Ap.
We can repeat the same argument to the remaining vertices, each time halving the
number of vertices still im; this can obviously repeated no more tHésg n 4 | times.

3.3 Partitioning into Clusters

The following lemma characterizes the complexity of partitioning a bipartite gtaph
(A U B, E) into clusters {-clusters). Clusters will be used to build the ground data
structure upon which the others are based.

Lemma6. LetG = (A U B, E) be a bipartite graph.B can be partitioned inl +
Ap(Aa — 1) clusters. The time required @(np AsAp)

Proof. Let By,. .., By, be a partition of5 into clusters so thaB; is a maximal cluster
for B — U;;ﬁ B;. Each vertexy € B; has at mosiAp adjacent vertices, and each of
them has at most\ 4 — 1 adjacent vertices different from Hence, a vertey € B;
prevents at most\g (A4 — 1) vertices to be included in the same cluster. Since the
cluster is maximal, each vertex i either has been choseni) or has been excluded

from it, sonp < |Bi|(1+ Ap(Aa — 1)). Hence|B;| > =, —- The lemma
follows.

Note that the bound given by Lemrh 6 is tight, since there exists an infinite class of
regular bipartite graphs that cannot be decomposed in lessthd0A—1) clusters[11].

4 The Data Structure

Inthis Section we presentthe data structure for the multi—~dimensional searching problem.
Based upon the decomposition theorems given in Sdctidn 3.2, we previously present

a data structure for labeled bipartite that allows us to represent a bipartite Graph

(AU B, E) in O(n + mlogn) space, and to test if two vertices are adjacent with a

constant number of steps. For sake of clarity, we first describe a simpler data structure

that represent bi-regular bipartite graphs, then extend the result to represent all bipartite

graphs.

4.1 Representing Bi-Regular Bipartite Graphs

Given a bi-regular bipartite gragh = (AUB, E), we partitionA in h-clusters according
to Corollany$; hence, we obtain a sequence of at Ms s ] bipartite graphss; =
(A;, B, E;), whereA,; is thei-th h-cluster andE; = E N (A; x B). Then we partition
the vertex seB of each bipartite7; = (A; U B, E;) into clusters. Lemmgl6 ensures
that each bipartite graph is decomposed into at masti(A4 — 1) clusters.

We define the following arrays:
— hclus of sizena; @ = helus|z] is the index of the uniqué-clusterA; to which

x € A belongs;
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— clus of sizeng x [28Agh]; j = clus[y, 1] is the index of the unique clustét; ;
in G; to whichy € B belongs;

— join; of sizeng x (1+ h(Aa —1)); y = join[z, j] is the unique possible vertex
y € B adjacent tar in the j-th cluster in the uniqué-th h-cluster to whichx
belongs.

Adjacency on the bipartite graph can be teste®isteps sincéz, y) € E if and only if,
giveni = hclus|z] andj = clus[y, ], y = join|x, j] holds. The total space required
is

O(na+np [28Ah] +na(1+h(As—1))) = O((n+m)logn) .
Note that ifm < n then isolated vertices can be trivially represented, so the space
complexity become®(n + mlogn).

4.2 Representing Bipartite Graphs and2—place Functions

We now show how to obtain for general bipartite graphs the same results as for bi-
regular graphs. Given a bipartite graph = (A U B, E), we first partitionB into
maximal subset®;, s.t.Vy € B;, 28 < §(y) < 2¢1. We obtain a sequence of at most
h = [logn] bipartite graph€3; = (A U B;, E;), whereB; is thei-th subset ofB and
EZ:EQ(AXBZ)

Then, according to Corollafy 5, for each such bipartite grétwe partition A
into h-clustersA; ;, obtaining a sequence of at mdﬁ““m h bipartite graphs; ;,
and further partition each-cluster into at most subsetsd, ; ;, s.t.Va € A; ; , 2k <
8, (x) < 2¥*+1, obtaining a sequence of bipartite grajghs; .

Finally, for each bipartite grapi; ; i, we partition the seb; into clusters; Lemmial6
ensures that each bipartite gra@h; i is decomposed into at most h(Ay4, ,, — 1)
clusters.

We define the following arrays:

— range Of sizenp; i = range[y| is the index of the unique subsBt to whichy
belongs;

— hclus of sizena x h; j = helus|z, ¢] is the index of the uniqué-clusterA, ; to
whichz € A belongs inG;.

— subs of sizeny x h; k = subs[z, 7] is the index of the unique subsét ; ;. in the
uniqueh-cluster to whiche € A belongs inG,.

— For each vertey € B;, we define an arrayanges, of size [20F13] h; ranges, [j]

is a reference to the arrayus, which contains the cluster indicesypin all subsets

A; ;i itis empty ify is not adjacent to any vertex iy; ;. The total space needed

for arrayranges, [j] forally € Bis

0. > [2MpIn =003 Y 8(y)Bh) = O(mh) .

Bi yeB; Bi yeB;

Readingrangesy[j] requires2 steps, one to read the initial address of the array
giveny, and one to access ijsth element.

— For each vertey € B;, and eacth-clusterA; ; connected tg, we define an array
clus; clusl[k] is the index of the unique cluster @, ; . to whichy € B; belongs;
it is empty ify is not adjacent to any vertex i; ; .. For each vertey € B;, since
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2t < §(y) < 2L, at mos2i+! such arrays are defined, each of them having size
h. Hence, the total space needed for all arrelyss is

0 > 2n)=00_ > s(y)h) =O(mh) .

B; yeB; Bi yeB;

— joins of sizeng x h; joins[z, 1] is a reference to the arrgyin, which contains
all vertices inB; adjacent tac. It is empty ifx is not adjacent to any vertex i;.
— For each vertex € A; ; i, and each sdB; connected ta:, we define an arrayoin
of size(1 + k(28! — 1)); join[l] is the (unique) possible vertex adjacentitn
thel-th cluster ofG; ; x; it is empty if x is not adjacent to any vertex theh cluster
of G, ; 1. For each vertex € A, the space needed for all its related arraysn is
O(>_p, 205,(7)) = O(hd(z), so the total space for arraysin for all z € Ais
O(mh).
Adjacency on the bipartite graph can be tested in constant time Gingg € E if and
only if, giveni = range[y], j = hclus|z,i], k = subs[z,i], clus = rangesy[j],
I = clus[k] andjoin = joins[z,i], y = join[!] holds. The test requiréssteps. The
total space required is

O(npg +nah +mh) = O((n+m)logn) .

Also in this case, ifn < n then isolated vertices can be trivially represented, so the
space complexity becomé¥n + mlogn).
¢From the above discussion, we have the following theorem:

Theorem 7. There exists a data structure that represents a bipartite graph wvithr-
tices andm edges in spac®(n + mlogn). Vertex adjacency can be testedristeps.
Preprocessing time i®(n?A), whereA is the maximum vertex degree.

The representation of 2-place function and the lookup operation which given two
objects, return a value associated to the pair, is equivalent to the following: given a
bipartite graphG = (A U B, E), and alabeling function : E — IN, andz € A,

y € B,if (z,y) € EreturnL(z,y). This can be easily accomplished with the previously
described data structure and, wheneery) € E, extendingjoin[l] to contain both

the (unique) possible vertgxadjacent tax in the I-th cluster ofG; ;; and the value
L(x,y). This leads to the following theorem:

Theorem 8. There exists a data structure that represents-place function of size:
between objects from a domain of sizien spaceO (n + m log n). The lookup operation
requires? steps. Preprocessing timeG¥n?).

4.3 Representing Multi—-dimensional Data

Given a point setS C U4, with m = |S| andn = |U|. Let (fi,..., fa_1) be the
sequence of—place functions representirtj as described in Sectidh 2. Additionally,
letm = |S| andm; be the size of thé—place functionf;, for1 < i < d — 1. By the
definition, we haven = Zf;ll m;. Moreover, for anyi, n; < m;, n; being the size of
the domain set of;. By Theoreni8, we can state the following theorem:
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Theorem 9. There exists an implicit data structure that represents aset U< of
multi—-dimensional points in spac¥m log n). The exact match and prefix—partial match
queries can be performed #{d — 1) and7(d — 1) + ¢ steps, respectively, whetés the
number of points reported. The preprocessing tim@ (ign?).

5 Extensions

5.1 External Memory Data Structure

Due to its nature, the above described data structure can be efficiently applied to secon-
dary storage. In this paper, we consider the standard two-level I/O model introduced by
Aggarwal and Vitter in[[1]. In this case, we can devise a powerful compression technique
leading to a space optimal data structure.

Inthe data structure described in Secliom 4.2, the critical arrayaages, clus, and
join, that is those requiring a total spa©¢mh), which in terms of external memory
storage implie<D(mh/B) blocks. The following lemma counts the number of non-
empty entries in these arrays:

Lemma 10. Letk’ be the total number of non-empty entries in arrayages,, for all
y € B; k" be the total number of non-empty entries in all arrayas; and &’ be the
total number of non-empty entries in arraysin. Thenk’ < m, k" < m, k""" < m.

Proof. If ranges, [j] is not empty, then some edge, y) belongs ta; ;; on the other
hand, there is a unique bipartite gra@h; containing such edge. Hence, the total number
of non-empty entries in arraysnges, for ally € B is at mostm.

If clus[k] is not empty for some vertex € B; and somer-cluster4; ; connected
to y, then some edgér, y) belongs toG; ; »; since there is a unique bipartite graph
G, containing such edge, the total number of non-empty entries in all atlaysis
at mostm.

If join[l] is not empty, then some edde, y) belongs toG; ; x; there is a unique
bipartite graphG; ; . containing such edge; the total number of non-empty entries in
arraysjoin for all x € A is at mostmn.

Leta be an array of siz&. We partitiona into intervals ofB elements, and represent
each interval by a reference to the block containing the non empty entries in that interval.
It is easy to see that an arrayof size k with k¥’ empty entries can be represented in
O(% + k') space, thus iD(£; + %) blocks; furthermore, one accessaté] maps to
2 memory accesses. hence the external memory version of ThEbrem 8 and Theorem 9
can be stated as follows:

Theorem 11. There exists an external-memory data structure that represéniglace
function of sizen between objects from a domain of sizevith O(’”‘%T”“”) blocks.
The lookup operation requireld) I/Os.

Theorem 12. There exists an external memory implicit data structure that represents
a setS C IN? of multi—dimensional points wit®(m,/B) blocks. The exact match and
prefix—partial match queries requif®(d — 1) and10(d — 1) + ¢t/ B I/Os, respectively,
wheret is the number of points reported by the partial match query.
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5.2 Incremental Exact Match Queries

The representation we propose for a multi—-dimensional poiri séibws to efficiently
perform the exact match operation in a more general context. In fact we can define the
incremental exact matofjuery, where the coordinates are specified incrementally, that

is, the search starts when the first coordinate is given, and proceeds refining the searching
space as soon as the other coordinates are specified. This definition of exact search is
particularly useful in distributed environments where the request for a query is expressed
by sending messages along communication links [15/16(4,12,13] and not all coordinates
reside on the same machine.

Another field of application of the incremental exact match query is fantieeactive
exploratory searcton Web. In this case the user can specify the searching keys one by
one so as to obtain intermediate results.

Also, the incremental exact match query is particularly practical when dealing with a
point sets from a very high multi—-dimensional space (order of thousands of keys). In this
case we can manage the query in a distributed environment by specifying etly
keys a time in order to prevent network congestion and to obtain a more reliable answer.

5.3 Improving Conventional Searching Data Structures

Our decomposition technique can be positively applied to one-dimensional hashing and
perfect hashing when dealing with real keys. kebe the machine word length, and

K > wthekey length. We can divide each keyiiifw sub-keys, and reduce the original
one—dimensional searching problem to a multi—-dimensional searching problem, which
can be solved with our technique with no additional storage and with a constant number
of I/Os.

Another important application it to the trie data structure. With a technique similar
to the one above described, we can consider larger node sizes.

6 Open Problems

Oneimportant open problem is that of dynamizing the data structure; even anincremental-
only version data structure would be a useful improvement. Another important research

direction is to extend the operation set to include other operations useful for the mana-

gement of a multi-dimensional data set (e.g. range queries, retrieve maximal elements,
orthogonal convex-hulktc)

We are currently carrying out an extensive experimentation on secondary memory,
based on a data sets derived from a business application. This experimentation activity
is still at its beginning, the main purpose being primarily to test the effective speedup
in the lookup operation and the overall size of the representation on these data sets.
Preliminary experimentation results show that the behavior of our data structure is very
fast and works very well in the average case.
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