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tLet PG(r; s) denote a shortest path between two nodes r and sin an undire
ted graph G = (V;E) su
h that jV j = n and jEj = mand with a positive real length w(e) asso
iated with any e 2 E. Inthis paper we fo
us on the problem of �nding an edge e� 2 PG(r; s)whose removal is su
h that the length of PG�e�(r; s) is maximum, whereG � e� = (V;E n fe�g). Su
h an edge is known as the most vitaledge of the path PG(r; s). We will show that this problem 
an besolved in O(m � �(m;n)) time, where � is the fun
tional inverse of theA
kermann's fun
tion, thus improving on the previous O(m+ n logn)time bound.1 Introdu
tionLet G = (V;E) be an undire
ted graph with jV j = n verti
es and jEj = medges, with a positive real length w(e) asso
iated with ea
h edge e 2 E.Given a sour
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from r to s in G is de�ned as a path whi
h minimizes the sum of the lengthsof the edges along the path from r to s. The length of PG(r; s) is 
alledthe distan
e in G between r and s and will be in the following denoted asdG(r; s).The removal of an edge e 2 PG(r; s) from the graph G results in adi�erent { and perhaps longer { shortest path from r to s: dG�e(r; s) �dG(r; s), where G � e = (V;E n feg). We 
all PG�e(r; s) a repla
ementshortest path for edge e. In the past, the problem of �nding an edge inPG(r; s) whose removal from G results in the largest in
rease of the distan
ebetween r and s has been studied. This edge is generally denoted as themost vital edge with respe
t to the shortest path PG(r; s). For the sake ofbrevity, we will refer to this problem in the following as to the most vital edge(MVE) problem. More pre
isely, the MVE problem with respe
t to PG(r; s)asks for �nding an edge e� 2 PG(r; s) su
h that dG�e�(r; s) � dG�e(r; s), forany edge e 2 PG(r; s).The MVE problem has been solved eÆ
iently by Malik et al. [1℄, whogave an O(m+n logn) time algorithm to 
ompute all the repla
ement short-est paths between the sour
e and the destination node in the presen
e ofedge failures along the (original) shortest path. As a by-produ
t of theirsolution, the most vital edge along the path is immediately obtained.In this paper we improve the above result to O(m ��(m;n)) time, where� is the well-known fun
tional inverse of A
kermann's fun
tion [4℄. The im-provement 
omes from the use of a linear time algorithm for the undire
tedsingle sour
e shortest paths tree [7℄, 
ombined in a novel way with the useof a transmuter [6℄. Namely, we build all the repla
ement paths for any edgee 2 PG(r; s), and we sele
t the shortest by using a transmuter. Moreover,we also show that our approa
h allows to solve with the same time 
om-plexity the longest-detour (LD) problem [2℄, whi
h asks for �nding an edgee� = (u�; v�) 2 PG(r; s) whose removal produ
es a detour at node u� su
hthat the length of PG�e�(u�; s) minus the length of PG(u;� s) is maximum,for any edge in PG(r; s).Solving eÆ
iently the MVE problem is important for dealing with tran-sient failures on a 
ommuni
ation network. Suppose in fa
t that the givengraph models a 
ommuni
ation network, and the shortest path we are fo-
using on represents the 
ommuni
ation line between a sour
e and a targetof a message (the two endpoints of the path). Assume that sudden (tran-sient) failures of links (i.e., edges) are possible in su
h a network. Whenthis happens along the 
ommuni
ation line between r and s and the linkjoining u and v goes down, messages should then be routed from r to s on2



a shortest path that does not use edge (u; v). Of 
ourse, from the networkmanagement point of view, it is important to know \a priori" both the mostvital edge and the repla
ing shortest paths for all the edges along the path.Our approa
h allows to solve eÆ
iently both problems.In what follows, r and s are assumed to be 2-edge 
onne
ted, so thatfor ea
h edge e on PG(r; s), at least one alternative path exists. Otherwise,the MVE problem 
an be easily solved in O(m) time by applying Tarjan'salgorithm for �nding the bridges of G [3℄. In fa
t, removing a bridge betweenr and s will in
rease the length of any repla
ement shortest path to in�nity.The 
omputation model we use is a RAM, where the memory is dividedinto addressable words of length ! [7℄. The edge lengths are represented as
oating point numbers, ea
h 
ontained in O(1) words.The paper is organized as follows: in Se
tion 2 we solve eÆ
iently theMVE problem; in Se
tion 3 we show how to use the same approa
h forsolving the LD problem; �nally, Se
tion 4 
ontains 
on
luding remarks andlists some open problems.2 Solving eÆ
iently the MVE problemLet PG(r; s) be a shortest path joining r and s in G. We start by 
omputingthe shortest paths trees rooted at r and s, denoted as SG(r) and SG(s),respe
tively. This 
an be done in O(m) time and spa
e [7℄. Let e = (u; v)be an edge on PG(r; s), with u 
loser to r than v. Let Mr(e) denote the setof nodes rea
hable in SG(r) from r without passing through edge e and letNr(e) = V nMr(e) be the remaining nodes (i.e., the subtree of SG(r) rootedat v). Figure 1 shows Nr(e) and Mr(e). Symmetri
ally, we de�ne the setsMs(e) and Ns(e) with respe
t to SG(s). Note that for the nodes in Mr(e)(Ms(e)), the distan
e from r (s) does not 
hange after deleting the edge e,while for the nodes in Nr(e) (Ns(e)) the distan
e from r (s) may in
reaseas a 
onsequen
e of deleting e.Nr(e) and Mr(e) de�ne a 
ut in G, andCr(e) = f(x; y) 2 E n fegj(x 2Mr(e)) ^ (y 2 Nr(e))gis the set of edges 
rossing the 
ut (
rossing edges, for short). Sin
e arepla
ement shortest path PG�e(r; s) joining r and s must 
ontain an edgein Cr(e), it follows that it 
orresponds to the set of edges whose lengthssatisfy the 
ondition 3
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Figure 1: Mr(e) and Nr(e).
dG�e(r; s) = minf=(x;y)2Cr(e)fdG�e(r; x) + w(f) + dG�e(y; s)g:Ea
h individual term of the above expression is available in O(1) time for�xed (x; y), on
e SG(r) and SG(s) have been 
omputed. In fa
t, dG�e(r; x) =dG(r; x), sin
e x 2Mr(e), and then 
an be obtained in O(1) time by lookingat SG(r). For given f , w(f) is available in O(1) time. Con
erning dG�e(y; s),the following holds:Lemma 1 Let f = (x; y) 2 Cr(e). Then, we have that y 2Ms(e).Proof. Suppose, for the sake of 
ontradi
tion, that y 62 Ms(e), i.e., y 2Ns(e). Therefore, y is a des
endant of u (and v) in SG(s). This means thatPG(s; y) makes use of e, and then we have (sin
e subpaths of shortest pathsare shortest paths) that PG(v; y) is a subpath of PG(s; y). ThereforedG(v; y) = w(e) + dG(u; y) > dG(u; y):On the other hand, sin
e y 2 Nr(e), we have that PG(r; y) makes use of(u; v), and then we have that PG(u; y) is a subpath of PG(r; y). Hen
edG(u; y) = w(e) + dG(v; y) > dG(v; y);that is, we have a 
ontradi
tion. 24



rvuSG(r)
Nr(e) �Ms(e)

Mr(e)sFigure 2: Edge e = (u; v) 2 PG(r; s) is removed from G. Dashed lines represent 
rossingedges.Sin
e y 2Ms(e), we 
on
lude that its distan
e from s remains un
hangedafter deleting the edge e = (u; v), that is, dG�e(y; s) = dG(y; s), and then it
an be obtained in O(1) time by looking at SG(s). Figure 2 illustrates thesituation.Therefore, it remains to establish the minimum over all the 
rossingedges. To do this eÆ
iently, we make use of a transmuter [6℄. A transmuterDG(T ) is a dire
ted a
y
li
 graph that represents the set of fundamental
y
les of a graph G with respe
t to a spanning tree T = (V;ET ). Thetransmuter DG(T ) 
ontains for ea
h tree edge e one sour
e node ve, for ea
hnon-tree edge f one sink node vf , and a 
ertain number of additional nodes.The fundamental property of a transmuter is that there is a dire
ted pathfrom a given sour
e ve to a given sink vf if and only if e and f form a 
y
le inT + f = (V;ET [ffg). It is 
lear that all and only edges belonging to Cr(e)form a 
y
le with e. Therefore, we 
an build a transmuter having as sour
enodes all the edges belonging to SG(r) and as sink nodes all the remainingedges. This 
an be done in O(m ��(m;n)) time and spa
e [6℄. Given su
h atransmuter, we 
an solve the MVE problem by labelling in O(1) time a sinknode vf , asso
iated with a non-tree edge f = (x; y), with the 
ost
(vf ) = dG(r; x) + w(f) + dG(y; s):Afterwards, we pro
ess the nodes of the transmuter in reverse topologi
alorder, labelling ea
h node with the minimum of the labels of its immediatesu

essors. When the pro
ess is 
omplete, a sour
e node ve, asso
iated witha tree edge e 2 PG(r; s), is labelled with a 
ost 
(ve) 
orresponding to the5



length of a shortest path from r to s not using e. Finally, the most vitaledge e� of PG(r; s) 
an be easily obtained in O(n) time as the edge su
h that
(ve�) = maxe2PG(r;s)f
(ve)g:Therefore, the following result 
an be stated:Theorem 1 The most vital edge on a shortest path PG(r; s) between twonodes r and s in a graph G = (V;E) with n verti
es and m edges, with posi-tive real edge lengths, 
an be determined in O(m��(m;n)) time and spa
e. 23 Solving eÆ
iently the LD problemIn this se
tion we illustrate how to make use of the te
hnique developed inthe previous se
tion to solve an interesting variation of the MVE problem:the longest-detour (LD) problem [2℄, whi
h asks for �nding an edge e� =(u�; v�) 2 PG(r; s) whose removal produ
es a detour at node u� su
h thatthe length of PG�e�(u�; s) minus the length of PG(u�; s) is maximum, for anyedge in PG(r; s). Su
h an edge is 
alled a detour-
riti
al edge. The problem isinteresting sin
e in 
ommuni
ation networks, when a message is routed alongthe path PG(r; s), if a sudden (transient) failure of a link e = (u; v) in su
ha path o

urs, then the message 
annot 
ontinue on its path as intended,as the outgoing edge (u; v) to be taken is 
urrently not operational. Themessage should then be routed from u to s on a shortest path that does notuse edge (u; v). This problem has been solved in O(m+ n logn) time [2℄.However, by using a transmuter, we 
an solve the LD problem in O(m ��(m;n)) time, as follows:Theorem 2 The detour-
riti
al edge on a shortest path PG(r; s) betweentwo nodes r and s in a graph G = (V;E) with n verti
es and m edges, withpositive real edge lengths, 
an be determined in O(m � �(m;n)) time andspa
e.Proof. As for the MVE problem, we start by 
omputing in O(m) timeand spa
e the shortest paths trees rooted at r and s, denoted as SG(r)and SG(s), respe
tively. Maintaining the same notations as above, we now
onsider the 
ut Cs(e) indu
ed by Ms(e) and Ns(e), with the 
orresponding
rossing edges. Sin
e the detour PG�e(u; s) joins u 2 Ns(e) with s 2Ms(e),6



it must 
ontain an edge in Cs(e). Then, it follows that it 
orresponds to theset of edges whose lengths satisfy the 
onditiondG�e(u; s) = minf=(x;y)2Cs(e)fdG�e(u; x) + w(f) + dG�e(y; s)g: (1)Any term of the above expression 
an be evaluated in O(1) time for �xed(x; y), on
e SG(r) and SG(s) have been 
omputed. In fa
t, sin
e x 2 Ns(e),we have dG�e(u; x) = dG(s; x) � dG(s; u), and sin
e y 2 Ms(e), we havedG�e(y; s) = dG(y; s).Therefore, it remains to establish the minimum over all the 
rossingedges. To do this eÆ
iently, on
e again we make use of a transmuter. Itis 
lear that all and only edges belonging to Cs(e) form a 
y
le with e.Therefore, as for the MVE problem, to sele
t the edge minimizing (1), we
ould build a transmuter asso
iating with the sour
e nodes all the edgesbelonging to SG(s), and with the sink nodes all the non-tree edges. However,there is a diÆ
ulty this time in asso
iating a 
ost with sink nodes: in fa
t,if vf is a sink node asso
iated with a non-tree edge f = (x; y) forming a
y
le in SG(s) + f with e1 = (u0; u1); e2 = (u1; u2); : : : ; ek = (uk�1; uk),ei 2 PG(r; s); i = 1 : : : k, then, a

ording to (1), it will have di�erent 
ostsdepending on whi
h ei is 
onsidered. Hen
e, the question is: whi
h value
(vf ) in the transmuter should be asso
iated with f , su
h that 
(vf ) isindependent of ei? To solve this problem, we asso
iate with vf the following
ost depending only on edge f
(vf ) = dG(y; s) + w(f) + dG(s; x);and 
orresponding to the length of the shortest (not ne
essarily simple) 
y
lein SG(s)+f starting from s and passing through f . In fa
t, for any 
rossingedge f that repla
es e, we have that dG�e(u; s) = 
(vf ) � dG(s; u), andtherefore, a shortest 
y
le (i.e., a 
y
le minimizing 
(vf ) for any 
rossing edgef) is asso
iated with a shortest detour, and vi
e-versa. Figure 3 illustratesthe situation.Afterwards, we pro
ess the nodes of the transmuter in reverse topologi
alorder. When the pro
ess is 
omplete, ea
h sour
e node ve asso
iated withan edge e 2 PG(r; s) is labelled with a 
ost 
(ve) 
orresponding to the lengthof a shortest 
y
le in SG(s) starting from s and making use of an edge inCs(e). Sin
e the length of the detour indu
ed by the failure of an edgee = (u; v) 2 PG(r; s) is 
(ve) � dG(s; u), it follows that the distan
e from uto s in
reases by 
(ve)� 2dG(s; u), and therefore the detour-
riti
al edge ofPG(r; s) 
an be obtained in O(n) time as the edge e� = (u�; v�) su
h that7



sSG(s) Ms(e)Ns(e) ru x yv
Figure 3: Edge e = (u; v) 2 PG(r; s) is removed from G. A 
rossing edge f = (x; y) isasso
iated with a (not ne
essarily simple) 
y
le starting from s and passing through f (inbold).


(ve�)� 2dG(s; u�) = maxe=(u;v)2PG(r;s)f
(ve)� 2dG(s; u)g: 24 Con
lusionsIn this paper we have presented a faster solution to the problems of �nd-ing the most vital edge and the detour-
riti
al edge along a shortest pathPG(r; s) between two nodes r and s. Our solutions run in O(m � �(m;n))time, where � is the fun
tional inverse of the A
kermann's fun
tion, The bestprevious bounds known in the literature were O(m+ n log n) time [1, 2℄.Our solutions are eÆ
ient, but lower and upper bounds still do notmat
h. However, a linear time algorithm is not allowed to use a transmuterover all the m edges, sin
e the transmuter already has size 
(m � �(m;n))[5℄, and therefore a di�erent approa
h is needed.A
knowledgements { The authors would like to thank the anonymous refer-ees for their suggestions, whi
h helped us in improving the paper.
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