A Faster Computation of the Most Vital
Edge of a Shortest Path*

Enrico Nardellif Guido Proietti? Peter Widmayer®

June 15, 2000

Abstract

Let Pg(r,s) denote a shortest path between two nodes r and s
in an undirected graph G = (V, E) such that |V| = n and |[E| = m
and with a positive real length w(e) associated with any e € E. In
this paper we focus on the problem of finding an edge e* € Pg(r, s)
whose removal is such that the length of Pg_.+ (7, s) is maximum, where
G —e* = (V,E\ {e*}). Such an edge is known as the most vital
edge of the path Pg(r,s). We will show that this problem can be
solved in O(m - a(m,n)) time, where « is the functional inverse of the
Ackermann’s function, thus improving on the previous O(m + nlogn)
time bound.

1 Introduction

Let G = (V, E) be an undirected graph with |V| = n vertices and |E| = m
edges, with a positive real length w(e) associated with each edge e € F.
Given a source node r and a destination node s in G, a shortest path Pg(r, s)

*Work supported by the EU TMR Grant CHOROCHRONOS and by grant ” Combi-
natorics and Geometry” of the Swiss National Science Foundation.

fDipartimento di Matematica Pura ed Applicata, Universita di L’Aquila, Via Vetoio,
67010 L’Aquila, Ttaly and Istituto di Analisi dei Sistemi e Informatica, CNR, Viale Man-
zoni 30, 00185 Roma, Italy. E-mail: nardelliQunivaq.it.

{CONTACT AUTHOR: Dipartimento di Matematica Pura ed Applicata, Universita
di L’Aquila, Via Vetoio, 67010 L’Aquila, Italy. Ph: +39-0862-433727. Fax: +39-0862-
433180, and Istituto di Analisi dei Sistemi e Informatica, CNR, Viale Manzoni 30, 00185
Roma, Italy. E-mail: proietti@univaq.it.

$Institute fiir Theoretische Informatik, ETH Zentrum, 8092 Ziirich, Switzerland. E-
mail: widmayer@inf.ethz.ch.

from r to s in G is defined as a path which minimizes the sum of the lengths
of the edges along the path from r to s. The length of Pg(r,s) is called
the distance in G between r and s and will be in the following denoted as
dg(r,s).

The removal of an edge e € Pg(r,s) from the graph G results in a
different — and perhaps longer — shortest path from r to s: dg_.(r,s) >
dg(r,s), where G —e = (V,E \ {e}). We call Pg_.(r,s) a replacement
shortest path for edge e. In the past, the problem of finding an edge in
Pg(r, s) whose removal from G results in the largest increase of the distance
between r and s has been studied. This edge is generally denoted as the
most vital edge with respect to the shortest path Pg(r,s). For the sake of
brevity, we will refer to this problem in the following as to the most vital edge
(MVE) problem. More precisely, the MVE problem with respect to Pg(r, s)
asks for finding an edge e* € Pg(r, s) such that dg_e-(r, 8) > dg—_¢(r, s), for
any edge e € Pg(r, s).

The MVE problem has been solved efficiently by Malik et al. [1], who
gave an O(m+nlogn) time algorithm to compute all the replacement short-
est paths between the source and the destination node in the presence of
edge failures along the (original) shortest path. As a by-product of their
solution, the most vital edge along the path is immediately obtained.

In this paper we improve the above result to O(m - a(m,n)) time, where
« is the well-known functional inverse of Ackermann’s function [4]. The im-
provement comes from the use of a linear time algorithm for the undirected
single source shortest paths tree [7], combined in a novel way with the use
of a transmuter [6]. Namely, we build all the replacement paths for any edge
e € Pg(r,s), and we select the shortest by using a transmuter. Moreover,
we also show that our approach allows to solve with the same time com-
plexity the longest-detour (LD) problem [2], which asks for finding an edge
e* = (u*,v*) € Pg(r,s) whose removal produces a detour at node u* such
that the length of Pg_.~(u*,s) minus the length of Pg(u,* s) is maximum,
for any edge in Pg(r, s).

Solving efficiently the MVE problem is important for dealing with tran-
sient failures on a communication network. Suppose in fact that the given
graph models a communication network, and the shortest path we are fo-
cusing on represents the communication line between a source and a target
of a message (the two endpoints of the path). Assume that sudden (tran-
sient) failures of links (i.e., edges) are possible in such a network. When
this happens along the communication line between r and s and the link
joining u and v goes down, messages should then be routed from r to s on

a shortest path that does not use edge (u,v). Of course, from the network
management point of view, it is important to know “a priori” both the most
vital edge and the replacing shortest paths for all the edges along the path.
Our approach allows to solve efficiently both problems.

In what follows, r and s are assumed to be 2-edge connected, so that
for each edge e on Pg(r,s), at least one alternative path exists. Otherwise,
the MVE problem can be easily solved in O(m) time by applying Tarjan’s
algorithm for finding the bridges of G [3]. In fact, removing a bridge between
r and s will increase the length of any replacement shortest path to infinity.
The computation model we use is a RAM, where the memory is divided
into addressable words of length w [7]. The edge lengths are represented as
floating point numbers, each contained in O(1) words.

The paper is organized as follows: in Section 2 we solve efficiently the
MVE problem; in Section 3 we show how to use the same approach for
solving the LD problem; finally, Section 4 contains concluding remarks and
lists some open problems.

2 Solving efficiently the MVE problem

Let Pg(r, s) be a shortest path joining r and s in G. We start by computing
the shortest paths trees rooted at r and s, denoted as Sg(r) and Sq(s),
respectively. This can be done in O(m) time and space [7]. Let e = (u,v)
be an edge on Pg(r, s), with u closer to r than v. Let M, (e) denote the set
of nodes reachable in S¢(r) from r without passing through edge e and let
N,(e) = V'\ M,(e) be the remaining nodes (i.e., the subtree of S¢(r) rooted
at v). Figure 1 shows N,(e) and M, (e). Symmetrically, we define the sets
M;(e) and Ng(e) with respect to Sig(s). Note that for the nodes in M, (e)
(Mg(e)), the distance from r (s) does not change after deleting the edge e,
while for the nodes in N,(e) (Ns(e)) the distance from r (s) may increase
as a consequence of deleting e.
N, (e) and M, (e) define a cut in G, and

Cre) ={(z,y) € E\{e}|(z € M (e)) A (y € Nr(e))}

is the set of edges crossing the cut (crossing edges, for short). Since a
replacement shortest path Pg_¢(r, s) joining r and s must contain an edge
in Cy(e), it follows that it corresponds to the set of edges whose lengths
satisfy the condition

Sa(r)

Figure 1: M. (e) and N, (e).

dG—e('ra S) = min {dG—e('ra {L‘) + w(f) + dG—e(ya 3)}
f=(z,y)eCr(e)

Each individual term of the above expression is available in O(1) time for
fixed (z,y), once Sg(r) and S (s) have been computed. In fact, dg_(r, z) =
dg(r,x), since z € M, (e), and then can be obtained in O(1) time by looking
at Sg(r). For given f, w(f) is available in O(1) time. Concerning dg_.(y, s),
the following holds:

Lemma 1 Let f = (z,y) € Cy(e). Then, we have that y € M(e).

Proof. Suppose, for the sake of contradiction, that y ¢ M(e), i.e., y €
Ns(e). Therefore, y is a descendant of u (and v) in S¢(s). This means that
Pg(s,y) makes use of e, and then we have (since subpaths of shortest paths
are shortest paths) that Pg(v,y) is a subpath of Pg(s,y). Therefore

dg(v,y) = w(e) +dg(u,y) > da(u,y).

On the other hand, since y € N,(e), we have that Pg(r,y) makes use of
(u,v), and then we have that Pg(u,y) is a subpath of Pg(r,y). Hence

dG(uay) = ’UJ(@) + dg(’l),y) > dg(’l),y),

that is, we have a contradiction. O

Figure 2: Edge e = (u,v) € Pg(r, s) is removed from G. Dashed lines represent crossing
edges.

Since y € Mjs(e), we conclude that its distance from s remains unchanged
after deleting the edge e = (u,v), that is, dg—¢(y, s) = da(y, s), and then it
can be obtained in O(1) time by looking at Si(s). Figure 2 illustrates the
situation.

Therefore, it remains to establish the minimum over all the crossing
edges. To do this efficiently, we make use of a transmuter [6]. A transmuter
D¢(T) is a directed acyclic graph that represents the set of fundamental
cycles of a graph G with respect to a spanning tree T' = (V. Ep). The
transmuter D¢(7") contains for each tree edge e one source node v,, for each
non-tree edge f one sink node vy, and a certain number of additional nodes.
The fundamental property of a transmuter is that there is a directed path
from a given source v, to a given sink vy if and only if e and f form a cycle in
T+ f=(V,ErU{f}). It is clear that all and only edges belonging to C,(e)
form a cycle with e. Therefore, we can build a transmuter having as source
nodes all the edges belonging to Si(r) and as sink nodes all the remaining
edges. This can be done in O(m - a(m,n)) time and space [6]. Given such a
transmuter, we can solve the MVE problem by labelling in O(1) time a sink
node vy, associated with a non-tree edge f = (z,y), with the cost

c(vf) =dg(r,z) +w(f) +da(y, s).

Afterwards, we process the nodes of the transmuter in reverse topological
order, labelling each node with the minimum of the labels of its immediate
successors. When the process is complete, a source node v, associated with
a tree edge e € Pg(r,s), is labelled with a cost ¢(v.) corresponding to the

length of a shortest path from r to s not using e. Finally, the most vital
edge e* of Pg(r,s) can be easily obtained in O(n) time as the edge such that

e(ver) = max {e(ve)}-

Therefore, the following result can be stated:

Theorem 1 The most vital edge on a shortest path Pg(r,s) between two
nodes r and s in a graph G = (V, E) with n vertices and m edges, with posi-
tive real edge lengths, can be determined in O(m-a(m,n)) time and space. O

3 Solving efficiently the LD problem

In this section we illustrate how to make use of the technique developed in
the previous section to solve an interesting variation of the MVE problem:
the longest-detour (LD) problem [2], which asks for finding an edge e* =
(u*,v*) € Pg(r,s) whose removal produces a detour at node u* such that
the length of Pg_.+ (u*, s) minus the length of P;(u*, s) is maximum, for any
edge in Pg(r, s). Such an edge is called a detour-critical edge. The problem is
interesting since in communication networks, when a message is routed along
the path Pg(r, s), if a sudden (transient) failure of a link e = (u,v) in such
a path occurs, then the message cannot continue on its path as intended,
as the outgoing edge (u,v) to be taken is currently not operational. The
message should then be routed from u to s on a shortest path that does not
use edge (u,v). This problem has been solved in O(m + nlogn) time [2].

However, by using a transmuter, we can solve the LD problem in O(m -
a(m,n)) time, as follows:

Theorem 2 The detour-critical edge on a shortest path Pg(r,s) between
two nodes r and s in a graph G = (V, E) with n vertices and m edges, with
positive real edge lengths, can be determined in O(m - a(m,n)) time and
space.

Proof. As for the MVE problem, we start by computing in O(m) time
and space the shortest paths trees rooted at r and s, denoted as Sg(r)
and Sg(s), respectively. Maintaining the same notations as above, we now
consider the cut Cs(e) induced by M,(e) and Ng(e), with the corresponding
crossing edges. Since the detour Pg_.(u, s) joins u € Ng(e) with s € M;(e),

it must contain an edge in Cs(e). Then, it follows that it corresponds to the
set of edges whose lengths satisfy the condition

da_e(u,s) = f:(m’fi‘)ié‘cs(e){d(“(“’ z) +w(f) +da—c(y,s)}. (1)

Any term of the above expression can be evaluated in O(1) time for fixed
(z,y), once Sg(r) and Si(s) have been computed. In fact, since z € Ng(e),
we have dg_c(u,z) = dg(s,x) — dg(s,u), and since y € Ms(e), we have
dG—e(y. s) = da(y, s).

Therefore, it remains to establish the minimum over all the crossing
edges. To do this efficiently, once again we make use of a transmuter. It
is clear that all and only edges belonging to Cs(e) form a cycle with e.
Therefore, as for the MVE problem, to select the edge minimizing (1), we
could build a transmuter associating with the source nodes all the edges
belonging to S (s), and with the sink nodes all the non-tree edges. However,
there is a difficulty this time in associating a cost with sink nodes: in fact,
if vy is a sink node associated with a non-tree edge f = (z,y) forming a
cycle in Sg(s) + f with e = (ug,u1),e9 = (ur,u2),...,ex = (ug—1,uk),
e; € Pg(r,s),1 = 1...k, then, according to (1), it will have different costs
depending on which e; is considered. Hence, the question is: which value
c(vy) in the transmuter should be associated with f, such that c(vy) is
independent of e;7 To solve this problem, we associate with v; the following
cost depending only on edge f

C(vf) = dG(yas) +w(f) + dg(s,fl?),

and corresponding to the length of the shortest (not necessarily simple) cycle
in S(s) + f starting from s and passing through f. In fact, for any crossing
edge f that replaces e, we have that dg_.(u,s) = c(vy) — dg(s,u), and
therefore, a shortest cycle (i.e., a cycle minimizing c¢(vy) for any crossing edge
f) is associated with a shortest detour, and vice-versa. Figure 3 illustrates
the situation.

Afterwards, we process the nodes of the transmuter in reverse topological
order. When the process is complete, each source node v, associated with
an edge e € Pg(r, s) is labelled with a cost ¢(ve) corresponding to the length
of a shortest cycle in Sg(s) starting from s and making use of an edge in
Cs(e). Since the length of the detour induced by the failure of an edge
e = (u,v) € Pg(r,s) is c(ve) — dg(s,u), it follows that the distance from u
to s increases by c¢(ve) — 2dg (s, u), and therefore the detour-critical edge of
Pg(r, s) can be obtained in O(n) time as the edge e* = (u*,v*) such that

Figure 3: Edge e = (u,v) € Pg(r,s) is removed from G. A crossing edge f = (z,y) is
associated with a (not necessarily simple) cycle starting from s and passing through f (in
bold).

e(ver) = 2dg(s,u") = e=(uygeal)§c(r,s){0(ve) ~ 2de(s,u)}-

4 Conclusions

In this paper we have presented a faster solution to the problems of find-
ing the most vital edge and the detour-critical edge along a shortest path
Pg(r, s) between two nodes r and s. Our solutions run in O(m - a(m,n))
time, where « is the functional inverse of the Ackermann’s function, The best
previous bounds known in the literature were O(m + nlogn) time [1, 2].

Our solutions are efficient, but lower and upper bounds still do not
match. However, a linear time algorithm is not allowed to use a transmuter
over all the m edges, since the transmuter already has size Q(m - a(m,n))
[5], and therefore a different approach is needed.

Acknowledgements — The authors would like to thank the anonymous refer-
ees for their suggestions, which helped us in improving the paper.

References

[1]

2]

K. Malik, A.K. Mittal and S.K. Gupta, The k£ most vital arcs in the
shortest path problem, Oper. Res. Letters, 8 (1989) 223-227.

E. Nardelli, G. Proietti and P.Widmayer, Finding the detour-critical
edge of a shortest path between two nodes, Info. Proc. Letters, 67 (1)
(1998) 51-54.

R.E. Tarjan, A note on finding the bridges of a graph, Info. Proc.
Letters, 2 (1974) 160-161.

R.E. Tarjan, Efficiency of a good but not linear set union algorithm,
Journal of the ACM, 22 (1975) 215-225.

R.E. Tarjan, Complexity of monotone networks of computing conjunc-
tions, Annals Discrete Math., 2 (1975) 121-133.

R.E. Tarjan, Applications of path compression on balanced trees, Jour-
nal of the ACM, 26 (1979) 690-715.

M. Thorup, Floats, integers, and single source shortest paths, Proc. of
15th Annual Symposium on Theoretical Aspects of Computer Science
(STACS’98), Paris, France, February 25-27, 1998, in Lecture Notes in
Computer Science, Vol. 1373, Springer, 1998, pages 14-24.

