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Abstract

In this paper we introduce an efficient algorithm for the on-line computation of
the MacNeille completion of a poset. Our algorithm is polynomial in the number of
elements in the lattice completion and has a better worst-case complexity than previous
proposals.

1 Introduction

The area of algorithms for partially ordered sets (i.e., posets) is a relatively new one
and is subject of many research efforts [18, 19, 20, 22], since it has many potential
applications in a lot of areas of computer science.

In particular, the computation of the MacNeille completion (or lattice completion) of
a given poset is an interesting subject to investigate [2, 10, 24], due to the fact that
many algorithms are more efficient when the poset is a lattice (e.g., testing dominance
in a poset is easier in a lattice [25] than in a general poset [26]) and every poset
can be embedded in a lattice: the MacNeille completion is then the smallest lattice
allowing such an embedding. Lattices are also largely investigated in computer science
as efficient representation models [1, 5, 7, 8, 11, 13, 16, 21, 27].

Also, a wide interest has recently spread about on-line algorithms, both in the
general algorithmic community [17] and among those more specifically interested to
algorithms for posets [4, 12, 15, 14]. For our purposes, on-line is intended in the sense
that only insertions of elements are allowed (i.e., no deletions).

In this paper we present an efficient algorithm to compute on-line the lattice completion
of a poset. Computing on-line the lattice completion means to start with a small
subposet whose lattice completion is computed trivially, and then inserting one after
the other the remaining elements of the poset, building, after each insertion, the lattice
completion of the inserted elements.

If one just uses the MacNeille definitions of lattice completion to derive an algorithm,
a time exponential in the size of the input poset may be required. Moreover, the
algorithm is not on-line.

In the literature, to the best of our knowledge, the first on-line algorithm for the
computation of the lattice completion that is polynomial in the number of the elements
of the resulting lattice was [21]. Perry has not given in [21] a detailed computational
complexity analysis, and the presentation of the algorithm is at an abstract level.
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Using standard data structures we proved [9] that her algorithm requires, for each
element that is added to poset P, O(s*) time to compute the (transitive closure of
the) lattice completion L of P, where n = |P| and s = |L|, starting from the lattice
completion obtained after the addition of the previous element. Note that it may be

s =0(2").

Caseau presented in [5] an on-line algorithm to build the new lattice completion when a
new minimal element is inserted. His algorithm is not fully detailed and it has a worst
case complexity of O(n’s*).

Habib introduced in [12] the so-called Lazy MacNeille completion for representing a
poset so to allow to test if the least upper bound of two elements x and y exists
(in O(ns)) and, if not, to add it to the representation. Hence to compute the whole
MacNeille completion L of a poset P when a new element is inserted one has to repeat,
in general, the above test for each pair of elements inserted in L. This gives a total
complexity of O(ns®).

Our algorithm computes, for each added element, the transitive closure of the lattice
completion L of poset P in time O(sn® + m) where m is the number of edges in L.
Hence our algorithm is always better than Perry’s one but for the case of s = O(n),
when it has the same complexity. As a side effect, also the transitive reduction of L is
computed.

Note that using the currently most efficient data structure for the representation of
(transitive reduction of) lattices [24, 25] would not be, in general, of help in this case,
since such a data structure is a static one with an O(s®) building time.

1.1 Notations

A partially ordered set (poset) is an algebraic structure < P, <p> where P is a set and
<p is a partial order relation (namely a reflexive, symmetric and transitive relation)
among the elements of P. To simplify notations, we usually denote a poset < P, <p>
as P. In this paper we always assume that P is finite. Two elements z,y € P are said
comparable if © <p y or y <p x. Otherwise they are said incomparable. When z <p y
we say y dominates x or x is dominated by y (in P). If z <p y and = # y we write
r <p y. We say that y covers x or x is covered by y and write x <p y if x <p y and
there is no z € P such that x <p z <p y. A subset X of P is called an antichain
(resp. a chain) if it contains only pairwise incomparable (resp. comparable) elements.
The height (resp. width) of P, denoted with h(P) (resp. w(P)) is the size of a maximal
chain (resp. antichain) of P.

Given a subset X of P we say that z € P is an upper bound (resp. lower bound)
of X if Ve € X, it is x <p z (resp. z <p x). Given X C P we denote as X*P (resp.
X.p) the set of all upper bounds (resp. lower bounds) of X. Given z € P we simplify
the notation writing z*? instead of {z}"P and z., instead of {z}.,. The element z is
called the least upper bound or join of X and is denoted as lubp(X), if z € X*P and
z <ptforall t € X*P. The greatest lower bound or meet of X (denoted as glbp(X))
is defined dually. A non-empty poset P is called a lattice if for each z,y € P both
lubp({z,y}) and glbp({z,y}) exist. When P is a lattice then for each X C P both
lubp(X) and glbp(X) exist. Given X C P and x € X then z is said to be a mazrimal
element (resp. minimal) of X if there is no z € X such that z <p z (resp. z <p z). We
denote the set of all maximal (resp. minimal) elements of X as mazimalp(X) (resp.
minimalp(X)). Given X C P and t € X we say that t is the top (resp. bottom) of
X if ¢ is the unique maximal (resp. minimal) element of X, denoted by Top(X) (resp.
Bottom(X)). If L is a lattice both Top(L) and Bottom(L) exist. Given a poset P,
we define its MacNeille completion (or lattice completion) as the poset < M (P),C>
where M(P)={Q | Q CP A Q@ = (Q"P)«p}. It is well known [3, 6] that M(P) is a
lattice and has the additional property of being the smallest lattice into which P can
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be embedded.

When we speak of the representation of a poset we usually mean a representation
of the whole order relation. When we want to refer to the transitive reduction we will
specify it explicitly.

2 The Perry’s algorithm for MacNeille comple-
tion

2.1 An informal description

The algorithm of Perry builds the MacNeille completion of a given poset P by starting
from an initial lattice Lo containing just the top and the bottom of P*.

The i-th on-line pass takes as input lattice L;_; which is the MacNeille completion
of a subposet P;_1 of P such that |P;| = i + 2, together with a new element ¢ € P
such that ¢ € P,_;. The purpose of the i-th on-line pass is to compute the MacNeille
completion L; of subposet P; = P;_1 U {q}. This will require the insertion in L;_;
of new order relations and possibly new elements to obtain lattice L;. When all the
elements of P have been processed the algorithm terminates.

In a first step, all order relations of the new element g with L;_; are determined and
inserted into the representation of L;_i. For each element [ of L;_1, the set of elements
of P; dominated by both ¢ and [ is determined and then the set of the lower bounds
of the upper bounds of the above set is compared against the set of elements of P;
dominated by ¢. If the former set is contained in the latter, then [ is dominated by ¢,
while if the former contains the latter, then I dominates ¢. If the two sets coincide then
I = q. If neither of the two set is contained in the other one [ and ¢ are not comparable.

In a second step, new elements and order relations are possibly inserted in L;—; U {g}
to enforce the lattice property and to obtain L;. In fact it may happen that for some
element [ in L;_1, the pair (I, ¢) lacks a join (or meet) in L;_; U{q}: then a new element
must be added to be the required join (or meet).

The search for elements [ in L;—; such that the pair (I,q) lacks a join can be
restricted to a subset Ry (g). Then for each element [ in Ry (q) a suitable function ®(.)
is applied to determine the join ®(I) in L;—1 of the elements that dominate both [ and
q-

If such a join is [ itself and [ does not dominate g then [ is not the join of elements
in Lj—1 U {q}, hence a new element needs to be added. Moreover, order relations are
possibly added among the new element and elements in L;_; or elements previously
added during this step.

Otherwise two things may happen:

1. I dominates g, then [ is the required join; or

2. ®(l) # 1, then we can defer the enforcement of the lattice property of L;_; U {q}
to the visit of ®(I). In fact in this case the join in L;—; U {q} of pair (®(1),q) is
also the join of pair (I, q).
The search for elements [ in L;—; such that the pair (I,q) lacks a unique meet is
done in a dual way.

2.2 A formal description

In this section we give a more formal description of the generic on-line pass of the
Perry’s algorithm. For more details see [21]. In this and the following subsection, input
(resp. output) lattice L (resp. L') to the algorithm corresponds to the lattice indicated

LIf P does not contain a top or a bottom, these can be added
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as Li—1 (resp L;) in the informal description. Similarly, P corresponds to P;—; and P
corresponds to P;.

If x and y are elements of poset T' we use the following notations: x :=r y meaning
that = is made coincident with y in T; z :<7 y meaning that the pair (z,y) is added
to the current partial order relation of T' with the semantics £ <r y. Comments are
enclosed between ‘/*’ and */’.

If an element is inserted while visiting element [ € L (lines 19 and 28), then we let
[ refer to this new element as New(l).

INPUT: P':Poset; g:new element; L:lattice;
OUTPUT: L':lattice;

begin
/* Step 1: Form a temporary poset T relating ¢ with elements of L. */
forl € L do
ifle P
then relate [ and ¢ in T as they are related in P’
else if ((I., N P)"P').,, Cq.,, thenl:<rgfi
if ¢up,y € ((lepy NP)"P" )4, then ¢ :<r [ fi
i_fQ*P; = ((l*L nP)*P’)*Pr thﬂq =T lﬁﬁ@
/* Step 2: Form lattice L' adding new elements and order relations to 7. */
Set L' :=T
/* Let coverr(q) = {x1,... ,xr} and cocoverr(q) = {y1,... ,ym}. */
/* We use the following notation:
®(1) = glbr ({lubr ((z1,1)),. .., lubL ((zk,1))})
(1) = tubs ({glb2 (51, 1), - glbr (s D)) */
/* We use the following notation:
Rur = (glb (coverr ()" \ (U; {z:}°7)
R = (lubs (cocoverr (@)=, \ (U; {yi}er) */
for [ € Ry such that [ is incomparable with ¢ in 7" and ®(I) = [ do
insert in L' a new element New(])
l:<pr New(l)
q : <1 New(l)
for l; € L do
if (I <z 1) A (New(ly) exists) then New(l;) :<p» New(l) fi
if (1<t li) A (New(lh) exists) then New(l) :<p New(l,) fi
if l; € l., U{q} then [, :<p/ New(l) i
if Iy € {l,q}"" then New(l) :<p/ I1 fi od od
for | € Rp such that [ is incomparable with ¢ in T and ¥(I) =1 do
insert in L' a new element New(])
New(l) :<p/ 1
New(l) :<p/ q
for l; € L do
if (I <z 1) A (New(lh) exists) then New(l,) : <y New(l) fi
if (1<t li) A (New(lh) exists) then New(l) :<p, New(l,) fi
if Iy € " U {q} then New(l) :<p 1
ifl, € {l,q}*T then I :<;» New(l) fi od od

end

2.3 Complexity of Perry’s algorithm

During Step 1 the cost for each I € L is dominated by the cost of finding sets g.,, and
((lsp, N P)"P" )., and to check if one of them is contained in the other. To find g.,,
requires O(n). To find (I., N P) also requires O(n). Given a subset @ of P, finding the
set of its upper bounds (or lower bounds) requires O(n?) because we have to compare
each element of P with each element of Q. Then finding ((I«, N P)"?')«,, requires
O(n?). Given Q1,Q2 C P, to check if Q1 C Q2 requires O(n?) (we have to search each
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element of Q1 in Q). Hence the total cost of Step 1 is O(sn?).

During Step 2, finding coverr(q) and cocoverr(q) requires O(s?). In fact since a tran-
sitive reduction of L is not available, one has to find maximal elements of a subset of
L. Finding glbr(coverr(q)) and lubg (cocoverr(q)) requires O(s|coverr(g)|) because
finding the least upper bound of a pair of elements requires O(s). It is |coverr(q)| =
O(w(L)) and we proved [9] that for some classes of posets it is |coverr(q)| = Q(w(P)?).
To determine Ry, Rp requires O(sw(L)) because we have to compare each element of
L against each element of coverr(q) (or cocoverr(q)).

Then a loop through Ry begins. In the loop, function ®(.) is evaluated. To evaluate
®(.) takes O(sw(L)) because the evaluation consists in |coverr(q)| + 1 operations of
least upper bound or greatest lower bound of a pair of elements. Moreover in the loop
an element is compared against each element of L. Hence the whole cost of the loop is
O(5*w(L) + s%). The dual loop through Rp has the same cost.

The total cost for the on-line pass of Perry’s algorithm is therefore O(s?).

3 A Better Algorithm for the Transitive Closure

3.1 An informal description

The basic approach is the same as in Perry’s algorithm. A first important difference is
that we substitute the computation of ®(.) with the (more efficient) computation of a
different structure.

The computation of ®(I), for an [ € L;_1, in Perry’s algorithm has the purpose
of checking if a new element needs to be added to enforce the lattice property. This
happens if [ = ®(1).

We substitute this computation with a different operation. Namely, we search for an
element z in coverr;_, (I) that is dominated by every element in L;_; which dominates
in L;_1 U{q} both [ and q. If z exists then | <z, , z and z <r,_, ®(I), hence I # ®(I).

To efficiently execute the above test, we build and maintain at each on-line pass
also the transitive reduction of L;_1, using suitable data structures to be presented in
Sect. 3.5. Ths computation of ¥(.) is substituted with a similar operation.

An additional important difference from the point of view of the overall time complexity
is in Step 2. We substitute the check against each element currently in the lattice
(lines 22-26 and 31-35 of Perry’s algorithms) with a check guided by the order relations
currently existing in the lattice.

Finally, a minor difference with Perry’s algorithm is in Step 1. We use a different
method to check, given an element [ of L;_; whether [ has to dominate new element g,
or to be identified with it, or to be dominated by it (lines 6-8 of the Perry’s algorithm).
This also provides more efficiency, even if does not affect the overall time complexity.

3.2 A formal description

In this section we give a more formal description of the generic on-line pass of our
algorithm. We first give the general schema and then details the internal procedures.
We omit the operations dealing with the data structure maintaining the transitive re-
duction, that will be described in Sect. 3.5. Discussion about correctness is in Sect. 3.3.

INPUT: P':Poset; g:new element; L:lattice;
OUTPUT: L':lattice;
begin
/* Step 1: Form a temporary poset T relating ¢ with elements of L */.
for I € L do
ifleP
then relate [ and ¢ in T as they are related in P’
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6 else if (I has to be dominated by ¢g)A— (I has to dominate q)
7 then!:<;/ g fi
8 if —(I has to be dominated by q)A(l has to dominate q)
9 then q:<p I fi
10 if (I has to be dominated by ¢)A(l has to dominate q)
11 then q:=11
12 L':=T
13 stop fi fi od
14 /* Step 2: Form lattice L' adding new elements to T. */
15 Set L' :=T
16 for I € (glbr (coverp(q)))*" and such that [ is incomparable with ¢ in T do
17 if a new element needs to be inserted for [
18 then
19 insert in L' a new element New(])
20 1 :<p New(l)
21 q :<p New(l)
22 for I, € I"" do
23 if ¢ <7 I then New(l) :<ps I1 fi
24 if (New(l1) exists) then New(l) :<p New(li) fi od
25 for I, € 1., do
26 l1 : <1 New(l)
27 if (New(l1) exists) then New(li) :<y: New(l) fi od fi
28 /* Insert here operations on the data structure
29 representing the transitive reduction. */
30 od
31 /* Update the data structure representing transitive reduction of L’
32 considering new elements inserted in L' during the above for cycle. */
33 for I € (lubr (cocoverp(q)))«, and such that [ is incomparable with ¢ in T" do
34 if a new element needs to be inserted for [
35 then
36 insert in L' a new element New(])
37 New(l) <y 1
38 New(l) :<p/ q
39 for I, € I"" do
40 New(l) :<p/ l1
41 if (New(l,) exists) then New(l) :<p» New(l,) fi od
42 for Iy €., do
48 if I} <7 ¢ then [, :<;/ New(l) fi
44 if (New(l,) exists) then New(l:) :<p, New(l) fi od fi
45 /* Insert here operations on the data structure
46 representing the transitive reduction. */
47 od
48 /* Update the data structure representing transitive reduction of L’
49 considering new elements inserted in L' during the above for cycle. */
50 end

To test whether [ has to be dominated by ¢ (lines 6, 8,10) we use a boolean function
(LessThan) presented below. If LessThan returns true then [ has to be dominated by

q.

To test whether [ has to dominate ¢ (lines 6, 8,10) we use a dual boolean function

(GreaterThan).

BOOLEAN FUNCTION LessThan
INPUT: l:element;
OUTPUT: result:boolean;

1 begin
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result := true
for x € P do
ife<pl Ax gpr q then result := false fi od
return result
end

To test whether it is necessary to create a new element in the visit of (lubr, (cocoverp(q)))«,,
we use a boolean function (NewDown) presented below. If NewDown returns true then
a new element has to be inserted.

To test whether it is necessary to create a new element in the visit of (glbr (coverp(q)))**

we use a dual boolean function (NewUp).

BOOLEAN FUNCTION NewDown
INPUT: l:element
OUTPUT: result:boolean

begin

Compute ., Ngx,,

result := true

for y € cocoverr,(l) do

if Vo € (l*L QQ*P;)y z<LYy
then result := false
store y fi od

return result

end

In the above function we need cocoverr(l), which is not efficiently provided by the
representation of L. Hence we use a supplementary data structure (see Sect. 3.5)
representing the transitive reduction of L.

Note that to be able to answer test z <; y in O(1) we represent partial order
relations in L with a boolean adjacency matrix that is suitably enlarged during on-
line passes. Note also we want to search in {*Z and [., without necessarily searching
through L. This can be achieved by threading non zero entries of the matrix (which
correspond to I*Z and I.,).

3.3 Correctness

We here give correctness proofs for our algorithm. We assume correctness of Perry’s
algorithm (see [21]) and we show our algorithm produces the same results.

In Step 1 we substitute comparisons of lines 6-8 in Perry’s algorithm with functions
LessThan and GreaterThan. These functions implement an equivalent (but computa-
tionally less expensive) test, as shown by the following theorem.

Theorem 1 It is:
((ley NP) P ), Cgupy <= Vz € (l.,NP),x<pq

and

q*P, g((l*L ﬂP)*P’)* — VmE(l*LﬂP),qu/x

p/

O

Note also that if during Step 1 for an [ € L we identify [ and ¢ then obviously L = L',
hence we can exit from the algorithm (line 13 of our algorithm).

In Step 2, Perry’s algorithm performs a loop on each element of Ry and a similar one
on each element of Rp. In our algorithm we have instead a loop on (glbr (coverp(q)))*L
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and a similar one on (lubz (cocoverp(q)))«,. Our loops perform the same operations
as Perry’s ones.

In fact glbr(coverr(q)) = glbr(coverp(q)) hence Ry C (glbr(coverp(q)))*L. More-
over Vz € ((glbr(coverp(q)))™™ \ Ru) we have ¢ <7 z hence our algorithm takes no
actions when it examines elements of this kind because of the condition at line 16. The
same happens with respect to Rp and (lubr, (cocoverp(q)))«y, -

Then our algorithm performs the tests implemented by procedure NewUp(l) and
NewDown(l) instead of evaluating functions ®(I) and ¥(I). The following theorem
proves that this is correct:

Theorem 2 We have:
®(l) =1 < Py € coverr(l) | Ve € I"* Ng'P'),y<r x

and
V(1) =1 <= By € cocoverr(l) | Vo € (I., Ng.p, ), <Ly

O

Finally note that we have substituted instructions in lines 22-26 (resp., lines 31-35) of
Perry’s algorithm, executing a loop through whole L, with instructions in lines 22-27
(resp., lines 39-44), in our algorithm, executing a loop through I*L (resp., through l., ).

The correctness of these substitutions above can be easily seen checking that con-
ditions in lines 22-26 of Perry’s algorithm imply that, for each I; that is incomparable
with I, neither I; nor the possibly existing New(l1) have to be related with New(l).
Dually for conditions in lines 31-35.

3.4 Complexity of Our Algorithm

In order to analyze computational complexity of our algorithm we need the following
results:

Theorem 3 Let L be the MacNeille completion of P. ThenVl € L, we have |coverr (I)| =
O(w(P)) and |cocoverr ()| = O(w(P)). O

Corollary 4 Let L be the MacNeille completion of P. Then the number of order
relations in the transitive reduction representation of L is O(sw(P)). a

Note that Theorem 3 can not be used to show that the computational complexity of
the evaluation of functions ®(I) and ¥(l) is O(sw(P)). In fact it does not apply to
|coverr(q)| because the intermediate working poset T' is not the normal completion of
P. Tt can be shown [9] that for some classes of posets |coverr(q)| = Q(w(P)?), but it
is not known if posets exist such that |coverr(q)| = Q(w(L)).

We are now ready to discuss time complexity.

In Step 1, for each [ € L the cost of the step is dominated by the cost of functions
LessThan and GreaterThan which is O(n). Hence the total cost of Step 1 is O(sn).

In Step 2, finding glbr.(coverp(q)) and lubr, (cocoverp(q)) requires O(s|coverp(q)|)
because finding the least upper bound of a pair of elements requires O(s), hence the cost
is O(sw(P)). In the subsequent loops (each iterated O(s) times) function NewUp (or
NewDown) is evaluated. The cost of NewDown is O(nw(P)), because |l., Ng«,, | = O(n)
and |cocoverr (l)| = O(w(P)). The cost of NewUp is the same. Moreover in each loop
any new element New(l) is compared against each element of [** and ., . Note that
Yoer |+l | = O(m), where m is the number of order relations of the transitive
closure. Obviously in the worst case m = O(s?). Hence the whole cost of Step 2 is
O(snw(P) + m).

Finally note that each update to the structure described at the end of Sect. 3.2
allowing to test x <; y in constant time can be executed in constant time during
Step 1 and Step 2.

The total cost for an on-line pass is O(sn” + m).
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3.5 Maintaining the transitive reduction

We now describe a data structure that for each element I € L, where L is the input
lattice of our algorithm, stores coverr(l) and cocoverr (l). Suppose we have such a
structure for L before executing a generic pass of our algorithm. Then during Step 2
of our algorithm we need to update the data structure according to the new lattice
L’. We here below discuss explicitly only how to perform changes due to those new
elements inserted by our algorithm during the visit of (lubr, (cocoverp(q)))«, in lines 33-
47. Changes caused by the visit in lines 16-30 can performed in a dual way.

3.5.1 Informal Description

We use a queue M, cleared at the beginning of the generic pass, where we store elements
of L whose visit during the current pass has determined the insertion of a new element.
To implement function New(-) we use also an array A that for each element of L stores
a boolean flag and an element of L'.

Moreover we have to do some extra work (to be inserted at lines 45-46) of our
algorithm, after each call to function NewDown.

First of all, we set A(l).flag := NewDown(l). If NewDown(l) returns true a new
element New(l) has been created. Then we enqueue [ in M, and store New(l) in
A(l).element. Note that M maintains elements in their topological order.

Otherwise there exists y € cocoverr,(I) such that Yz € (l., Nqs,,), * <z y. Suchy
has been found and stored by function NewDown(l). Then we store y in A(l).element.

All this extra work can be done in O(1) hence the complexity of our algorithm is
not affected.

We now describe the procedure to be inserted at lines 48-49 to update the represen-
tation of the transitive reduction of L’. This procedure visits elements of M and
for each visited element [ first computes cocoverr:(A(l).element) and then updates
cocovery: (y) and covery:(y) of other elements y € L', by deleting transitive rela-
tions, to provide a correct representation of the transitive reduction of L'. Note that
coverr: (A(l).element) has been computed as a consequence of the updates performed
during the visit of elements x preceding [ in M.

3.5.2 A formal description and correctness

The procedure updating the transitive reduction of L' is the following:

PROCEDURE BuildAll
INPUT: M:list of elements;

beﬁgin
I := lubg, (cocoverp(q))
if M =0

then cocovery, (q) == {I}
covery (1) := covery: (I) U {q}
stop
else /* Note that [ is the first element in M. */

cocovery:(q) := {A(l).element}
coverp: (A(l).element) := {q}
repeat dequeue [ from M
coverp (A(l).element) := coverp: (A(l).element) U {I}
cocover (1) := cocovery: (I) U {A(l).element}
compute cocoverr: (A(l).element)
for y € cocovery: (A(l).element) do
for z € coverr: (y) do
if A(l).element <p: z
then coverr: (y) := coverr: (y) \ {z}
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cocover(z) := cocoverr: (z) \ {y} fi od
coverp: (y) := coverp: (y) U {A(l).element} od
until M = ()

=

e l’l;l

Note that cocover(-) and cover(-) are implemented as lists where deletions can be
done in constant time, since the operation is executed while visiting the element to be
deleted.

We now describe the procedure that given an element [ computes cocover: (A(l).element).
This set of elements is built by generating for each element of cocoverr (l) a candidate
and then checking if such a candidate needs to be inserted into cocoverr: (A(l).element)
or not.

We first define a function (FindCandidate) that provides for an input element y a
candidate for the insertion in cocovery: (A(l).element). Let x be the least upper bound
of the sets of elements of L dominated by both y and ¢. If z is dominated by both y
and g (remember that it may be x = y) then FindCandidate returns z. Otherwise it
returns A(z).element. The formal description of such a function is:

FUNCTION FindCandidate
INPUT: y:element
OUTPUT: element

begin
ify<p q
then return y
else if A(y).flag
then return A(y).element
else /* Remember that when A(y).flag =false then
A(y).element is an upper bound of (y«; N s, ). */
FindCandidate(A(y).element) fi i

end

We are now ready to give a procedure (Build) checking if candidates have to be included
in cocoverp:(A(l).element) and inserting them in the positive case. If a candidate
dominates a previously found candidate z then z has not to be included. If a candidate
y is dominated by a previously found candidate then y has not to be included. The
formal description of the procedure is:

PROCEDURE Build
INPUT: [:element;

begin
S:=0
for y1 € cocovery(l) do
y2 := FindCandidate(y:)
for z € S do if z < y» then S := S\ {z} fi od
insert := true
for z € S do
if y» <z z then insert := false fi od
if insert then S := S U {y2} fi od
cocovery (A(l).element) :== S
end

Correctness of procedure Build is given by following theorems.

10
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Theorem 5 Given | € L, procedure Build(l) returns cocoverp(New(l)). a

The proof of previous theorem is based on the following Lemma.

Lemma 6 Let | € L and [ = New(l). For each x € cocovery (), it evists v1 €
cocoverr (l) such that FindCandidate(x1) returns x. m|

Finally we prove correctness of the main procedure.

Theorem 7 Procedure BuildAll computes cocoverr:(l) and coverr:(l) for any I €
(lubr (cocoverp(q))) sy, - |

3.5.3 Complexity

Function FindCandidate requires O(n). In fact each operation but for the recursive
call requires O(1). In the function body a recursive call is invoked with an argument
strictly less than the input argument to the function. Hence arguments of successive
recursive calls form an O(n) chain in L as shown by the following theorem:

Theorem 8 Let L be the MacNeille completion of P. Then h(L) = O(n). O

Procedure Build requires O(nw(P)) because it performs |cocoverr,(I)| calls to FindCan-
didate and compares each of the returned element with at most |cocovery (I)| elements.

Procedure BuildAll requires O(snw(P)). In fact for each | € M procedure Build(l)
requires O(nw(P)) and other operations require O(w(P)?).
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