ADAMS: an Object-Oriented System
for Epidemiological Data Manipulation

Leonardo Meo-Evoli*, Enrico Nardellit,

Domenico M. Pisanelli?,

Fabrizio L. Ricci*

* ISRDS, Consiglio Nazionale delle Ricerche, Italy.
+ IASI, Consiglio Nazionale delle Ricerche, Italy.
ITBM, Consiglio Nazionale delle Ricerche, Italy.

Abstract

In epidemiology it is extremely useful to compare the observed
trends of various phenomena with the expected trends in order
to find out abnormal morbid phenomena: in statistical
databases (SDBs) this means performing table manipulation on
aggregated data (macro data). The table manipulation are often
implemented in different ways, since different aggregate
functions are used to generate different kinds of macro data (data
type) from disaggregated data. Therefore, logically similar
manipulations at macro data level need to be defined separately
and ad-hoc by the user for each data type. We propose to model
macro data using an object-oriented approach with an instance-
inheritance mechanism, which allows the user to manage an
SDB without having to explicitly deal with the different data
types (automatic data type management). In the paper we
describe the static and dynamic properties of our object
oriented-model; the metaschema of statistical database system
embodying such concepts (ADAMS: Aggregated DAta
Management System) and the advantages of our system are
discussed.

Keywords: human-machine interface, statistical
database, object oriented approach, epidemiological data
manipulation

Introduction

Throughout the world epidemiological data is recognized as
being important for an effective health care policy. In fact these
data, when correlated to geographical patterns, may evidence
local deviations from standard values and give rise to adequate
action.

Such a “"unique source of readily-available health status
indicators” [11] is also of priceless value for the prevention of
diseases, a fact which has been acknowledged by the World
Health Organization (WHO) and which was ratified in the
twenty-ninth World Health Assembly. WHO recommends
member nations to properly identify and correctly tabulate the
causes of death (reported by each country on appropriate forms)

This work is partially supported by Consiglio Nazionale delle
Ricerche under MULTIDATA Project and by the Commission of
European Communities (EUROSTAT) under DOSES program

Permission to copy without fee all or part of this material is granted
provided that the copies are not msde or distributed for direct
commercial advantage, the ACM copyright aotice and the title of the
publication and its date appesr, and notice is given that copying is by

652

in order to identify the main trends and to effectively stress
prevention. "The most effective public health objective is lo
prevent the precipitating cause from operating.” {28].
Epidemiological data are therefore relevant instruments in
supporting decision-making processes in health care
management and planning. In this paper we present ADAMS, an
object oriented system for epidemiological data manipulation
whose aim is to help in the phase of exploiting statistical
tables describing a particular phenomenum.

ADAMS (Aggregated Data Management System) allows a given
table (e.g.: local values) to be examined by generating the
reference table (e.g.: national values) with the same structure
and therefore it is a valid tool in extracting information from
statistical tables. It can contribute to the prevention and the
detection of "sentinel event” [23].

We focus on the study of databases (SDBs) which contain
aggregated data (macro data) and which are able to support the
work of statisticians, assuming that the disaggregated data from
which they have been generated are no longer available (for
reasons of safety and efficiency).

Manipulating SDBs generally involves changing their
descriptive data (for instance, eliminating an attribute). When
the descriptive data of an SDB are modified, the macro data must
be modified in accordance with a well-defined algorithm. This
algorithm is strictly dependent on the aggregate function which
generated the macro data from disaggregated data. Users often
find difficulty in understanding the semantics of this algorithm
[10]. Our solution is to incorporate these semantics in the data
model; in this way it is possible to free the user from having to
understand or express the algorithm that is required to perfom
the query.

The object oriented model we propose is centered around the
concept of "data type”. This model is standard enough and
essentially follows the lines defined by Smalltalk-80 [7]. We
have added the definition of an instance inheritance mechanism.
It makes possible to share information at the instance level in a
controlled way, since it assigns only to root instances of
instance inheritance hierarchies the responsibility for dynamic
evolution.

The paper is set out as follows: in the next section we shall
discuss issues of data type management; in the following we

permission of the Associstion for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

ACM-SAC '932/3/IN, USA
© 1993 ACM 0-89791-568-29300002/0652..31.50

present our object-oriented model; then the metaschema of the
statistical database system (ADAMS) embodying such concepts is
shown and finally the advantages of our system are discussed.

Automatic Data Type Management

Macrodata, also called Statistical Tables (STs), have a very
complex data structure. The elements that characterize a ST may
be grouped into two classes [17}]:

- Quantitative Data: i.e. the single summary attribute
representing the phenomenon described by the ST; its
instances, swnmary values, are the numeric values inside
the ST, its type, data type, depends on the statistical
aggregate function used to generate the summary values
(e.g. 'average’).

- Descriptive Data: i.e. the set of category attributes (also
called variables) uniquely classifying summary values; for
each category attribute a finite set of values, the table
variable domain (generally strings of alphanumeric
characters), is defined; the cartesian product of these
domains represents the "set of points” in the table space for
which a summary value can be defined.

An example of ST is shown in figure 1.

summayy attribute]
category attributes
World life
expectancy sex
country Temale]
80
78
52

summary values

Figure 1
A simple example of statistical table
(data type is "average"; source is [27]).

Users of SDBs generally perform two kinds of table processing:

- Table Management. that is manipulation of the category
attributes and of the variable domains (e.g. summarization,
which eliminates one of the category attributes);

- Data_Analysis, that is performing calculations on summary

values contained inside STs (e.g. carrying out the 2 test).
The former builds up new STs from STs already existing in the
database and requires appropriate operations to allow table
space manipulations. The latter performs statistical analysis on
summary values and requires the use of statistical packages and
programming languages, according to the analysis employed.
Here we consider only table management issues and focus on
problems related to the operations to be performed on summary
values when varying descriptive data of STs (for precise and
formal definition of these operations see [22]). Table
management is extremely useful in order to compare observed
trends of phenomena with their expected trends or with trends
which are typical of other geographical areas in order to find out

653

abnormal morbid phenomena (the so-called “sentinel
events"[23]).

In, for example, the case of summarization: this operator
eliminates a category attribute. Let us take the case of a user
studying indicators on hospital recovered patients . The
starting table reports patients per "ward” (the table variable
domain is: “anesthesiology”, “intensive care unit",
"cardiology”, "pediatry”) and "type of hospital” (the table
variable domain is: "public”, "private”). If we want to know the
distribution of patients per "ward"™ a summarization bas to be
performed on "type of hospital”. Let us take as a starting point
the statistical table T; ("Number of patients recovered in
hospital in Italy in 1990 per ward and type of hospital™), whose
data type is an absolute value. The summarization described
above gives the table T, by eliminating the attribute "type of

hospital”

number of patients
type of hospital
ward public private
anesthesiology 8 424 382
intensive care unit 82 897 2 089
cardiology 175 133 33 162
pediatry 464 494 4 958
Table T1

Number of hospital recovered patients in Italy in 1990
per ward and type of hospital (source is [9])

number of patients

ward

anesthesiology 8 806

intensive care unit 84 986

cardiology 208 295

pediatry 469 452
Table T2

Number of hospital recovered patients
in Italy in 1990 per ward (source is [9])

In this case the values of Ty must be computed by summing the
corresponding values of T; for every element of the table

variable domain associated with "kind of hospital”, applying to
T, the computation function:

tf:Ztll-J
]

where:

tiz is the generic instance of the summary attribute of T3

i is the generic element of the table variable "ward”
ti'jl is the generic instance of the summary attribute of T

i is the generic element of the table variable “type of

hospital”.

If the summarization on "kind of hospital” is applied to table
T3 (where the data type is an arithmetic mean), the result is

table T4. We note that this manipulation produces the same
result as the previous one at the descriptive data level (i.e., to
delete the attribute “type of hospital”).

ea engt ospita] sta
type of hospital
ward public private
anesthesiology 7.1 2.0
intensive care unit 6.3 7.2
cardiology 8.8 14.9
pediatry 5.3 8.1
Table T3

Mean length of hospital stay (in days) in Italy in 1990
per ward and type of hospital (source is [9])

Mean lepgth of hospital stay

ward

anesthesiology 6.9

intensive care unit 6.3

cardiology 9.8

pediatry 5.3
Table T4

Mean length of hospital stay (in days) in Italy in 1990
per ward (source is [9])

In this case, however, the values of T4 cannot be computed as in
the previous case: the summary values in T must be involved
in the computation in order to obtain the correct values in Ty4.
This means that the following computation function has to be

used:
3 1
zti.j i
4 "
1
Z‘i.j
)

where:
114 is the generic instance of the summary attribute of T4
i is the generic element of the table variable "ward”
t,j is the generic instance of the summary attribute of T3
ti,jl is the generic instance of the summary attribute of T

From this example we note two critical points in the table
management.

The first is that summary values processing is strictly
dependent on the data type of the ST being manipulated: the
same kind of table space manipulation can require several

654

different algorithms (called resolution algorithms) which
depend on the data type.

-A second major point is that generally it is not possible to

know ‘a priori' which data types must be defined in a SDB. In
fact, statistical activity typically involves the identification of
new aggregate functions to generate indicators which are valid
for specific areas of investigations. Since the set of data types a
SDB is required to manage can always be enlarged when new
needs arise, a SDB has to have the possibility of being extended
to deal with new data types.

In any case, when manipulations on descriptive data have to be
performed, algorithms for computing new summary values must
be known at run time. Such algorithms are neither simple nor
commonplace. Therefore, the simple solution of getting the
user to specify them (as proposed by several authors [19], [12].
[26], [14] and [6]) poses some difficulties (e.g. users have to
know a programming language, similar algorithms need to be
specified again and again with slight variations). In fact, users
often find it difficult to understand the semantics of resolution
algorithms; furthermore, once tbe user understands the
resolution algorithm it is complex and/or lengthy to express it
in these query languages [10].

The approach we propose is to transfer into SDBs the
knowledge needed to achieve automatic table manipulation and
to associate this knowledge with of STs data type (automatic
data type management). Such a solution presents the advantage
of a more flexible and compact definition of data types, since
the various manipulation operations are not defined for a
specific ST but for a class of STs with the same data type [18).
Various proposals have been made which follow approaches
similar to ours. The STRAND query language [10] is
inconvenient because one has to define 'a priori’ the data type
management procedures for each single ST. The G-relations [25]
suggests the possibility of implementing data type
management procedures, but only for the summarization
operation. In [8] operations that work on STs use ‘hidden
information', but it is not clear from the paper bow such
information is used; moreover, these operations are not
performed if the data type of the input ST to the manipulation is
different from 'absolute value'. The limitation [16] is that the
approach is valid only for the manipulation of the simplest data
type to be processed (i.e. absolute value). In general all the
proposals found in the literature are rather generic, failing to
define precisely how it is possible to obtain a true automatic
data type management.

Our proposal is based on the use of an object-oriented approach,
which has a number of significant advantages from the database
point of view (e.g. encapsulation, inheritance, overriding: see,
for example, [2]). In particular, with our approach it is possible
for the user to specify the kind of manipulation to be executed
on a given ST independently from its data type; in fact the
system takes care of calling the correct algorithm, depending
on the specific data type of the ST. In order to ensure to the user
a table management which is independent from the data type
(logically independent statistical table manipulation), the
database has to know, for each data type and for each particular
operation, the resolution algorithm for calculating the output
summary values. The various algorithms for calculating the
summary values as a function of data type are presented and
discussed in [4].

The Concepts of Our Object-Oriented Approach

There is no general agreement on what exactly an object-
oriented model is and different authors use the basic concepts
(like class, instance, inheritance,...) in slightly but
significantly different ways.

Our modeling of STs is based on the concepts of class, subclass,
superclass, instance, method, message, class variable, instance
variable and (simple) inheritance as they are defined in
Smalitalk-80 [7]. The rationale for our choice is the fact that
Smalltalk-80 is probably the best known object-oriented
system and one of the basic references for everyone working in
this field. At the same time, it offers a very clean and
homogeneous set of definitions for all the most important and
used concepts of the object oriented field.

A class defines the static structure and the dynamic behaviour of
its instances. The static structure is described by specifying the
instance variables of each instance. The dynamic behavior is
described by specifying the actions to be executed by each class
instance in response to requests to do actions {messages) from
other instances. Instance variables may be manipulated only by
the instance which owns them. Class variables can be also
defined, which are variables owned and managed directly by the
class itself.

A class may have jnstances, that is objects which have the
structure and the behaviour specified in their class definition.
The behavior of an instance (and of all the instances belonging
to the same class) is completely defined by the set of messages
it responds to. Instances are dynamically created and destroyed.

A subgclass of a class jnherits its definitions of instance
structure and behaviour and possibly specializes them (class
inheritance). In this framework, we consider only gimple
inheritance, that is inheritance from at most one class, called a
superclass.

For the purposes of ST modeling, we introduce an instance
inheritance relationship between instances. This means that
two instances which belong to two classes with a class
inheritance relationship (i.e. one class is directly a subclass of
the other) may also have an instance inheritance relationship
between them. In other words, just as every class has a
superclass from which it inherits, every instance may have a
superinstance from which it inherits. The superinstance of
instance A, if it exists, is necessarily an instance of the
superclass of A's class. Also for the instance inheritance
relationship we shall consider only simple inheritance, i.e. an
instance can inherit from at most one superinstance. In such a
way a number of instance inheritance hierarchies may be built
up, which always run parallel to class inheritance hierarchy.
The instance which is the root of an instance inheritance
hierarchy is called gxemplar. In the example of figure 2, there
are two instance inheritance hierarchies, where Al and A2 are
the two exemplars.

The instance inheritance mechanism we have introduced is more
restrictive with respect to classical object oriented approaches,
since it imposes tighter constraints on the dynamic evolution
of instance variable values. Namely, when two instances are in
a direct instance inheritance relationship, they are bound to
have the same values for instance variables which are common
to both classes.

655

Suppose, for example, that A is an instance of class CA, B is an
instance of class CB, CB is a subclass of CA, and an instance
inheritance relationship between A and B has been defined.
Then, since CB is a subclass of CA, its instances have the same
structures defined in CA (and possibly additional structures
defined in CB). Moreover, instance B, besides having the same
structures as instance A, is constrained to assume the same
values.

Figure 2 shows a fragment of a class hierarchy and of an
instance inheritance hierarchy illustrating this constraint: the
dependency between instance variables is shown graphically.

CA

Instance_Variables
ALPHA
BRAVO

SUBCLASS_OF

Iinstance_Variables
CHARLIE

Figure 2
A fragment of a class hierarchy
and of an instance inheritance hierarchy

When an instance receives a message requiring that one of its
variables is modified, such a message is bandled in different
ways, depending both on the initialization of the variable and
on whether or not the instance has inherited that variable from a
superinstance.

When the variable to be changed is an inherited one, the
receiver instance, in fact, handles the message by delegating
the task to its superinstance, and possibly to the
superinstance’'s superinstance, up to the exemplar for that
specific INHERITS_FROM bierarchy. It is the exemplar that
now manages the way in which changes really happen. If the
instance which originally received the message bas a non-
initialized variable then the receiver instance and all its
subinstances have the variable changed in the same way.
Otherwise, there will be a superinstance of the receiver instance
(called here top-instance, possibly the exemplar itself), so that
the variable is initialized and its superinstance is not. In this
case, the top instance and all its subinstances will receive the
same change.

If the variable is not inherited, the receiver instance itself will
instead activate the appropriate method for answering the

message. After having executed this method, the instance

advises instances of which it is a superinstance so that they can

update the changed variables to the same value.

In such a way, for each superinstance/subinstance chain of N

instances there always exists an index K (1 € K £ N) so that each

instance from K to N has the variable assigned to the same
value, while each instance from 1 (the exemplar) to K-1 has the
non assigned (non initialized) variable.

In this way, a message may be sent to an instance for updating

one of its inherited variables. The message climbs up to its top

instance to be executed and to produce the change of the specific
variable in the top instance and in all its subinstances.

Such a mechanism makes it possible to share information at the

instance level in a controlled way, since it only assigns to

exemplars the responsibility for the dynamic evolution of the
variables they defined. The reader interested in the information
sharing mechanism in the object oriented approach using

exemplars should also consult [13], [15], {24], [1].

ADAMS' Metaschema

A prototype of the ADAMS system has been tested at Consiglio

Nazionale delle Ricerche, Istituto di Studi sulla Ricerca e la

Documentazione Scientifica on a Macintosh IIx using the

MacApp environment and the Object Pascal language [5]. We

shall discuss the ADAMS system with an example: the study of

indicators on bospital recovered patients.

The model we propose has four class levels. Let us now examine

in a more detailed way the structure of each of the classes (see

also figure 5).

Level 1. TABLE_SCHEMA defines the characteristics of STs

which are independent of data type. All the STs which have the

same summary attribute, the same category aftributes, and the
same category attribute domains are defined by the creation of
an instance of the class TABLE_SCHEMA. That is,

TABLE_SCHEMA defines the following instance variables:

- SUM_ATTR: this variable defines the semantics of data
contained in a ST; it therefore contains the name of the
examined phenomenon;

- CAT_ATTR: this variable defines the schema used for
classifying data contained in a ST; it therefore contains the
category attribute names, the definition domain of each of
the category attributes, the real values taken within the
definition domain by each of the category attributes (table
variable domains). It is therefore structured as a set of
triples <category_attribute_name, category_attribute_
domain, table_variable_domain>. Note that category
attributes are usually set-valued. At this level, clearly only
the names and the domains of the category attributes will
be known.

Regarding instance methods, TABLE_SCHEMA contains only
those methods used for manipulating the defined set of category
attribute names and domains.

The specification of category attribute domains is made by
choosing one of the following predefined domains: integer,
real, boolean, char, string, date & time, integer-interval.

In our example, a category of STs relative to employment by
sex, economic branch, and age is defined by creating the
instance OCC of the class TABLE_SCHEMA as follows:
SUM_ATTR: hospital recovered patients

656

CAT_ATTR: { (ward, String, -), (type of hospital, String, -)}
Level 2 TABLE_SPACE does not add instance variables, but
specifies the table variable domains for the variable

CAT_ATTR; that is, it specifies the table space of STs. In

particular the method "New' for this class explicitly requires the

assignment of these values. The instance at this level is put
into the INHERITS_FROM relation with the instance of

TABLE_SCHEMA which represents the whole category of STs.

In the example there is an instance of TABLE_SPACE which is

an instance inheritance from exemplar OCC:

CAT_ATTR: { (ward, String, {anesthesiology, intensive care

unit, cardiology, pediatry}), (type of hospital, String, {public,

private}}.

Level 3 TABLE_STRUCTURE adds structures for the physical

manipulation of STs. In particular it defines the following class

variable:

- DT: this variable specifies the data type of the ST. It is not
an instance of this class but only of the subclasses of
TABLE_STRUCTURE, which use it for recording data type
value.

Moreover, class TABLE_STRUCTURE adds the following
instance variable:

- FUN_TAB: this variable provides a way of accessing the
object which contains the correspondence between points
of the table space and the corresponding value of the
summary attribute.

Regarding instance methods, TABLE_STRUCTURE adds the

specification of methods for computing, given the values of

category attributes, a virtual index to pass to the object
identified by FUN_TAB for accessing the physical structure
which contains summary attribute values (This physical
structure is stored by multidimensional matrix). As far as
instance methods are concerned, TABLE_STRUCTURE adds
methods which define the remaining basic manipulation
operations for aggregation of STs [22); for example

Summarization. These methods are not completely specified,

since at this level it may not be possible to thoroughly define

them (they are data type dependent). The aim of

TABLE_STRUCTURE is to provide, via variables and methods

defined at this level for the logical representation of FUN_TAB,

a support for separation between the conceptual (i.e. table

structure oriented) and logical (i.e. data type oriented) levels of

representation of FUN_TAB. Therefore, every instance of

TABLE_SPACE has one and only one subinstance, which is an

instance of TABLE_STRUCTURE, containing the methods used

for table manipulations, common to all STs with different data
types.

Our example defines an instance of TABLE_STRUCTURE

(OCC_L_T); it is put into an instance inheritance relationship

with instance OCC_1.

Level 4 Subclasses of TABLE_STRUCTURE are the classes

which specify the behavior for the different data types. All

these subclasses inberit class variable DT and assign it a value.

Moreover, they define additional structures for executing table

manipulation operations on STs; some of these additional

structures depend on the data type of the ST [4].

Each subclass of TABLE_STRUCTURE re-specifies methods

introduced by TABLE_STRUCTURE for the basic aggregation

operations for STs.

New subclasses of TABLE_STRUCTURE may be added by the

Database Administrator in order to take into account specific

kinds of statistical data or for the purpose of modelling
particular statistical functions.

In our example, a specific ST is defined as an instance of a
suitably defined subclass of TABLE_STRUCTURE which is
associaled with a specific data type. Such an instance is then put
into an instance inheritance relationship with OCC_1_T.
Namely, we defined two instances (O_1, O_2) relative to the
homogeneous set OCC_1. The instance O_1 refers to the class
AVERAGE_TYPE, the instance O_2 refers to the class
ABSOLUTE_TYPE.

The resolution algorithm for performing manipulation
operations is encapsulated in the object AVERAGE_TYPE. Such
manipulation needs a ST with data type absolute value and
therefore the instance O_2 is the reference table of the instance
O_l.

Discussion

The main tasks performed by an SDB user are:

- to express table manipulation as the trasformation of the
descriptive part of ST;

- to set up queries, that is, to build complex queries from
elementary ones;

- to browse through schema and queries;

- to define subsets of tables of interest;

- to display and format the resuit.

The user does not have to insert, update or delete STs; this is the

task of the Database Administrator.

With an example of 2 working session we illustrate how the

ADAMS system allows the user to perform browsing and

querying. The database schema is represented for the user by

means of the GRASS model (Graphical Approach to Statistical

Summaries) [21]. This formalism is used to represent STs

graphically by means of a direct acyclic graph.

ADAMS supports different manipulation paradigms following a

conversational style and tailored to different profiles of users

[5]. They are classified adopting the "user cube” approach [3].

" & Fie E4it Bebug
NS wndew

[Mean length of xt.
by ward b

Type of hespital Fesa oh of '

Fean length of stay by ward qun"'h'Ml‘(H... Tength of stay).

IVﬂmmamm I I

Figure 3
ADAMS' multi-window graphical interface

657

Those with a good technical knowledge of applicative domain
employ a keyword language (STAQUEL®), but there also the
possibility of building incremental quieries by means of VISTA.
VISTA is based on an operation graph where each operand is a
query element. In this way a non expert user is facilitated in
building complex queries. The multi-window graphical interface
is depicted in figure 3.

In our approach, which ensures the user a Table Management
independent from the data type (i.e., logically independent
statistical table manipulation). the database has to know, for
each data type and for each particular operation, the resolution
algorithm for calculating the output summary values. It is
possible because there is the class AVERAGE_TYPE, where the
method summarization is specified. We note that such classes
may define the following instance variable: REF_TAB refers to
a reference ST, that is to an instance of other subclasses of
TABLE_STRUCTURE, whose ST is necessary for the execution
of table manipulations (in the example the object O_2).

Note also the query displayed in text format by STAQUEL*
language and the GRASS view of the Logical Schema rationalized
after the automatic layout command has been given.

Using simple visual interaction with the icons representing
objects of the ADAMS system, the user can activate the relevant
methods, such as the 'GET_STRUCTURE' applied to a query type
object resulting in the display of its structure.

The query languages which result from this object oriented
system enable table management to be carried out without
having to take into account of summary values and data types.
This means that table management refers only to the elements
which form the schema of the database.

In the following, we compare two statistical query languages:
STAQUEL* and Summary_Table_by_Example [20]. Our aim is to
show, by means of a typical user query, that languages based on
this object oriented system are easier to use for the end user than
the traditional query languages where the user must specify the
resolution algorithm.

Let us take the case of a user studying the distribution of
patients recovered in hospital (tables T1 and T2). The user
performs the query (expressed by Summary_Table_by
_Example) of figure 4 to eliminate the category attribute "type
of hospital”

If the user employs the query language STAQUEL*, the query is
the following one:

X type_of_hospital (patients_recovered).
The query expressed by STAQUEL* is both simpler and more
compact than one expressed by Summary_Table_by_Example,
as well as closer to the statistician’s way of operating.
The above example shows that, with the traditional query
languages, the usual simple queries for the table manipulation
(the summarization) is expressed in an extremely complex way,
while an important characteristic for a user friendly interface is
the simplicity of use. Our approach easily permits the
expression of usual statistical queries.
It can be seen that the user does not have to:

1) express the formula for the calculation of the new
summary value;
2) know the existence of other data, even though they are

necessary to calculate the new summary values.

Root
o ward SUM(R.2ySUM(S.2)
S
output ward number
=
fecovered_patients ward type_of_hospital number
ward number
t —— ——
R
output ward number * mean
] ———
rcovered_patients ward type_of_hospital number
ward | type_of_hospital number
[leogth_of_stay ward type_of_hospital mean
ward type_of_hospital nean
Figure 4

An example of application of the statistical query language
Summary_Table_by_Example [20]

In fact, the user manipulates, by STAQUEL*, the STs at metadata
level; for example, he/she performs the summarizaton
operation to specify only the category attribute (an element of
the intensional aspect of metadata). But the system has to
know, for each data type and for each affected operator, the
resolution algorithm for calculating the output summary values.

An apparent limitation of the automatic data type management

approach is that it only considers the data type defined ‘a priori’

by the DBA. However, the limitation is not as strong as it
might seem in that:

1) the data type generally defined in the SDB and of which the
resolution algoritms are kown, cover almost all the data
types made available to the users;

2) in planning the SDB, the DBA already knows beforehand
the resolution algoritms which have to be provided in order
to enable the stored STs to be manipulated.

Conclusions
ADAMS allows to define and manage ST. The system uses
context-driven editors and represents operations and metadata

by means of the icon-graphical paradigm. Three alternative
interaction modalities are provided. An editor using visual

658

languages is available to the novice/casual users (the user
defines.mathematical links between statistical tables).
Interaction may also be performed using the direct manipulation
approach (the user specifies directly on the GRASS* graph
her/his manipulation), whereas, for expert users, a key word
language is implemented. Independently from the approach
adopted by user for querying SDB, the system displays all the
three different query representations. Therefore the user is able
to verify the system's interpretation of his query.

The object-oriented model for ST representation allows the user
to integrate with the "closed world” of databases the features of
the "open world” of statistics. Even if this model is not directly
utilizable by the user, it allows him to express his table
management queries without having to worry about the
algorithms to compute the summary values.

This model represents a starting point to capture statistical
knowledge in such a way as to simplify user interaction with the
system because his attention is directed towards the semantics
of the statistical operation and not towards the procedures for
implementing it.

In addition, it allows to express table management operations
at table space level. If, for instance, summarization is
concerned, one has only to indicate the category attribute to be
eliminated.

This implies that it is possible studying table management
operators properties and relative algebra (completeness,
reachability,...) independently from the data type. These
properties are the formal groundwork for defining an interface
based on logical independence that is aimed at simplifying
man-machine interaction [18].

References

[1] J.Almarode, "Rule-based delegation of prototypes”,
Proc. OOPSLA’89, Oct.1989.

(2} F.Bancilhon, "Object-oriented database systems”, Proc.
VII ACM SIGACT/SIGMOD/SIGART symposium on
PODS, 1988.

[3] W.W.Cotterman, K.Kumar, "User Cube: A Taxonomy of
End Users”, Communications of the ACM, 32,11, 1989.

[4] G. Falcitelli, L. Meo Evoli, E. Nardelli, F.L Ricci, "The

Mefisto® model: an object oriented representation for
statistical data management”, Proceed. of the Data
Analysis and Learning Symbolic and Numeric
Knowledge, 1989 .

[5} F. Ferri, P. Grifoni, L. Meo-Evoli, F.L. Ricci, "ADAMS:
an aggregate data management system with multiple
interaction techniques”, Database and expert systems
applications, Proceed. of the DEXA 91, Springer-Verlag,
1991.

[6] S.P.Ghosh, "Statistical relational tables for statistical
database management”, IBM Res. Lab., San Jose, CA,
Tech.Rep. RJ 4394, 1984.

[7) A.Goldberg, D.Robson, "Smalltalk 80: The language and
its implementation”, Addison-Wesley, 1983.

(8] H.keda, Y.Kobayashi, "Additional facilities of a
conventional DBMS to support interactive statistical
analysis”, Proceed. of the I° Intern. Workshop on
Statistical Database Management, Menlo Park,
California, December 1981.

[9] Istituto Internazionale per gli Sudi e l'Informazione [15] H.Lieberman, "Using prototypical objects to implement
Sanitaria, "Statistiche Sanitarie”, 1992 (in Italian). shared behaviour in object oriented systems”, Proc. of

[10] R.R.Johnson, "Modelling summary data”, Proceed. of OOPSLA 86, 1986.
the International Conference on Management of Data, [16] F.M.Malvestuto, "Answering queries in categorical data
ACM-SIGMOD, Ann Arbor, Michigan, April-May 1981. base”, Proceed. of A.C.M. PODS Conference, 1987.

(12] A.Klug, "Equivalence of relational algebra and relational [17] L. Meo-Evoli, M.Rafanelli, F.L.Ricci, "The relational
calculus query language having aggregate functions”, model and the statistical tables™, 7th Statistical Software
Journal of the ACM, Vol.29, N.3, July 1982. Newsletter, vol. 18, N. 3, December 1990.

[11] J.C.Kleinman, "The Continued Vitality of Vital [18] L. Meo-Evoli, F.L. Ricci. A.Shoshani, "On the semantic
Statistics™, editorial, American Journal of Public Health, completeness of macro-data operators for statistic
72 (2), 1982. . aggrggalion". Proceed. of the P\e/II° Intern. W(;rkinagl

(13] W.R.LaLonde, D.A.Thomas, J.R.Pugh, "An exemplar Conference on Scientific and Statistical Database
bas.ed Smalltalk”, PI:OC. of 1986 Conf. on Object Management, 1992.
grlelfnteg Prolg;asuglmmg Systems, Languages and [19] GiOLso:'logllu,bZ.M.g)zscl)yoglul. Zl l:ialos.m'Exlencliing

pplications, . relation. gebra and relational calculus with set-valued

[14] L. Lakhal, R. Cicchetti, S. Miranda, "RTL: a relational attributes and aggregate functions” ACM Trans. Database
and table language for statistical databases”, Proceed. of Systems, 12, 4, 1987.
the 2° symposium on mathemetical fundamentasls of [20] G.Ozsoyoglu, V.Matos, Z.M.Ozsoyoglu, "Query
database sytems, Lecture Notes in Computer Science, processing techniques in the Summary-Table-by-
364, Springer-Verlag, 1989. Example database query language”, ACM trans. Database

Systems, 14, 4, 1989.
{21} M.Rafanelli, F.L.Ricci, "Proposal of a logical model for
——— S iveieiatialidl statistical data base”, Proceed. of the II° Internat.
o e | T : Workshop on Statistical Database Management, 1983.
- N ‘ [22] M.Rafanelli, F.L.Ricci, "Mefisto: a functional mode! for
‘ ' statistical entities”, IEEE Trans. on Knowledge and Data
D ‘ Engineering, October 1993 (in press).
e / —— : [23] D.D.Rutstein, R.J.Mullan, T.M.Frazier, W.E.Halperin,
e N J.M.Melius, J.P.Sestito, "Sentinel Health Events
" (Occupational): A Basis for Physician Recognition and
Pt - S Public Health Surveillance”, American Journal of Public
V otarme . Health, 1983.
oS [24] L.A.Stein, "Delegation is inheritance”, Proc. of 1987
w . Conf. on Object Oriented Programming Systems,
et Languages and Applications, 1987.
‘e, [25] S.Y.W.Su, "SAM®* : a semantic association model for
Ce, corporate and scientific-statistical databases”,
— Tey Information Sciences, Vol.29, N.2 and 3, May and June
. i 1983.
- -— — ' [26] A.U.Tansel , M.E.Arkun , G.Ozsoyoglu, "Time-by-
e . . Example query language for historical databases”, IEEE
a e i Pyl Transactions on Software Engineering, Vol SE-15, N.4,
\ R g, Aol 1989
= \;\:-g ->, (27] JMA.TOOI;CS)'. L.A.Carle, US. News & World Report,
e . - N arch 1989.
N 3:_ oo [28) World Health Organization, International Classification
0 N of Diseases. Manual of the International Statistical
::::_ N Classification of Diseases, Injuries, and Causes of Death,
;_ N N Voll.1 and 2, 9th Revision, Geneva, 1977.
Awtselogen - a1y
—_— \. “““ 3
[R
\rarnao ety
LU |
reSsss]
L] '“

Figure 5
ADAMS' Metaschema

659

L e - - -

Address requests for reprints and extended version of this paper
to F.L. Ricci, ISRDS-CNR, V. C. de Lollis 12, 00185 Rome,
ITtaly (fax: +396 4463836; e-mail: isrd@vm.cnuce.cnr.it)

