Esercizi di Analisi Matematica Equazioni differenziali

Tommaso Isola*

18 gennaio 2010

Indice

1	Ger	neralità. Equazioni del primo ordine integrabili	3
	1.1	Teoria	:
	1.2	Equazioni a variabili separabili	7
		1.2.1 Esercizi svolti	7
		1.2.2 Esercizi proposti	17
	1.3	Equazioni omogenee	19
		1.3.1 Esercizi svolti	19
		1.3.2 Esercizi proposti	25
	1.4	Equazioni lineari del primo ordine	27
		1.4.1 Esercizi svolti	27
		1.4.2 Esercizi proposti	34
	1.5	Equazioni di Bernoulli	36
		1.5.1 Esercizi svolti	36
		1.5.2 Esercizi proposti	40
2	Teo	rema di esistenza e unicità locale	43
	2.1	Integrali di funzioni a valori vettoriali	43
	2.2	Teorema di esistenza e unicità locale	44
3	Eau	nazioni differenziali lineari	50
	3.1	Equazioni differenziali lineari a coefficienti continui	50
	3.2	Equazioni differenziali lineari a coefficienti costanti	56
	3.3	Esercizi: Equazioni differenziali lineari omogenee	60
	3.4	Esercizi: Equazioni differenziali lineari non omogenee	64
	0.1	3.4.1 Metodo dei coefficienti indeterminati	64
		3.4.2 Metodo di variazione delle costanti	78
	3.5	Esercizi: Soluzioni periodiche delle equazioni differenziali lineari del II ordine	85
	3.6	Esercizi proposti	87
		r r r r r r r r r r r r r r r r r r r	~ •

^{*}Dipartimento di Matematica, Università di Roma "Tor Vergata", I–00133 Roma, Italy.

4	Convergenza di soluzioni			
	4.1	Equazioni a variabili separabili	90	
	4.2	Equazioni lineari del I ordine	91	
	4.3	Equazioni lineari del II ordine	92	
	4.4	Esercizi proposti	94	

1 Generalità. Equazioni del primo ordine integrabili

1.1 Teoria

Nelle scienze applicate accade spesso che le grandezze relative al fenomeno che interessa studiare appaiono legate tra loro da relazioni che fanno intervenire anche le loro derivate.

Esempio 1.1. (Seconda legge della dinamica classica)

La relazione $\vec{F} = m\vec{a}$ si può riscrivere, introducendo il vettore posizione \vec{r} e ricordando che la forza, in generale, dipende dalla posizione e dalla velocità, come $m\vec{r}''(t) = \vec{F}(t, \vec{r}(t), \vec{r}'(t))$, che è una relazione tra $\vec{r}, \vec{r}', \vec{r}''$.

Esempio 1.2. (Modello di Malthus, 1798)

È un modello di dinamica delle popolazioni. Si considera una popolazione che evolve isolata, e le cui uniche cause di variazione sono le nascite e le morti. Se N(t) è il numero di individui presenti al tempo t, di una popolazione che evolve isolata, e λ il tasso di natalità, μ il tasso di mortalità, $\varepsilon = \lambda - \mu$ il tasso di crescita, e supponiamo che ε sia indipendente dal tempo, allora $\frac{N(t+h)-N(t)}{h} = \varepsilon N(t)$. Passando al limite per $h \to 0$, si ha $N'(t) = \varepsilon N(t)$, che è una relazione tra NeN'.

Esempio 1.3. (Modello di Verhulst, 1845)

Il modello di Malthus è irrealistico, in quanto non considera che, se aumenta la popolazione, aumenta la competizione per accaparrarsi le risorse. Un modello più realistico è stato elaborato da Verhulst, e ipotizza che il tasso di crescita decresca linearmente con N.

Sia N(t) il numero di individui presenti al tempo t, di una popolazione che evolve isolata, e siano λ il tasso di natalità, μ il tasso di mortalità, $\varepsilon = \lambda - \mu > 0$ il tasso di crescita, k > 0 la capacità dell'ambiente. Allora si ha $\frac{N'(t)}{N(t)} = \varepsilon \left(1 - \frac{N(t)}{k}\right) \iff N'(t) = \varepsilon N(t) - \frac{\varepsilon}{k} N(t)^2$.

Definizione 1.4. (Equazione differenziale ordinaria di ordine n)

Siano $U \subset \mathbb{R}^{n+2}$ un aperto, $F: U \to \mathbb{R}$. Si dice equazione differenziale ordinaria di ordine $n \in \mathbb{N}$ una relazione della forma $F(x, y(x), y'(x), \dots, y^{(n)}(x)) = 0$, dove la funzione incognita y compare con le sue derivate fino all'ordine n incluso, e tutte le funzioni sono calcolate nello stesso punto x.

Definizione 1.5. (Equazione differenziale ordinaria in forma normale)

Siano $U \subset \mathbb{R}^{n+1}$ un aperto, $f: U \to \mathbb{R}$. Si dice equazione differenziale ordinaria di ordine $n \in \mathbb{N}$ in forma normale una relazione della forma $y^{(n)} = f(x, y(x), y'(x), \dots, y^{(n-1)}(x))$, dove la derivata di ordine più elevato $y^{(n)}$ è funzione esplicita delle derivate fino all'ordine n-1.

Definizione 1.6. (Sistema di equazioni differenziali ordinarie)

Siano $n \in \mathbb{N}$, $k_1, \ldots, k_n \in \mathbb{N}$, $U \subset \mathbb{R}^{k_1 + \ldots + k_n + n + 1}$ un aperto, $F : U \to \mathbb{R}^n$. Si dice sistema di equazioni differenziali ordinarie di ordine k_1 rispetto alla prima incognita, k_2 rispetto alla seconda incognita, \ldots , k_n rispetto all'*n*-esima incognita, una relazione della forma

$$F(x, y_1(x), y_1'(x), \dots, y_1^{(k_1)}(x), y_2(x), \dots, y_2^{(k_2)}(x), \dots, y_n(x), \dots, y_n^{(k_n)}(x)) = 0.$$

Esso si dice in forma normale se esistono $V \subset \mathbb{R}^{k_1 + \ldots + k_n + 1}$ un aperto, $f: V \to \mathbb{R}^n$, tali che, per ogni $j = 1, \ldots, n$,

$$y_i^{(k_j)}(x) = f_j(x, y_1(x), y_1'(x), \dots, y_1^{(k_1-1)}(x), \dots, y_n(x), y_n'(x), \dots, y_n^{(k_n-1)}(x)).$$

Osservazione 1.7. (Riduzione di un sistema di equazioni differenziali ordinarie in forma normale di ordine qualunque ad uno di ordine 1)

Siano $V \subset \mathbb{R}^{k_1 + \dots + k_n + 1}$ un aperto, $f: V \to \mathbb{R}^n$, e consideriamo, per ogni $j = 1, \dots, n$,

$$y_j^{(k_j)}(x) = f_j(x, y_1(x), y_1'(x), \dots, y_1^{(k_1-1)}(x), \dots, y_n(x), y_n'(x), \dots, y_n^{(k_n-1)}(x)).$$

Introdotte le funzioni ausiliarie $z_{j,p}(x) := y_j^{(p-1)}(x), j = 1, \ldots, n, p = 1, \ldots, k_j - 1$, si ottiene

$$\begin{cases} z'_{j,p}(x) = z_{j,p+1}(x), & j = 1, \dots, n, \ p = 1, \dots, k_j - 1 \\ z'_{j,k_j}(x) = f_j(x, z_{1,1}(x), \dots, z_{1,k_1}(x), \dots, z_{n,1}(x), \dots, z_{n,k_n}(x)), & j = 1, \dots, n, \end{cases}$$

cioè, in forma compatta, per ogni $j=1,\ldots,n,\,p=1,\ldots,k_j$

$$z'_{i,n}(x) = g_{i,n}(x, z_{1,1}(x), \dots, z_{1,k_1}(x), \dots, z_{n,1}(x), \dots, z_{n,k_n}(x)),$$

che è un sistema di equazioni differenziali ordinarie in forma normale di ordine 1.

Definizione 1.8. (Problema di Cauchy)

_____ Γ:EDOVarSep Siano $A \subset \mathbb{R} \times \mathbb{R}^n$ un aperto, $f: A \to \mathbb{R}^n$, $(x_0, y_0) \in A$. Si dice problema di Cauchy per l'equazione differenziale ordinaria y = f(x, y), con dato iniziale (x_0, y_0) , il problema della ricerca di $y: I \subset \mathbb{R} \to \mathbb{R}^n$, derivabile in $I \ni x_0$ e tale che $(x, y(x)) \in A$, per ogni $x \in I$, e

$$\begin{cases} y'(x) = f(x, y(x)), & x \in I, \\ y(x_0) = y_0. \end{cases}$$

Teorema 1.9 (Equazioni a variabili separabili). Siano $I, J \subset \mathbb{R}$ intervalli, $f \in C^0(I)$, $g \in C^0(J)$, $x_0 \in I$, $y_0 \in J$, $g \in C^0(I)$, $g \in C^0($

$$(P) \begin{cases} y'(x) = f(x)g(y) \\ y(x_0) = y_0. \end{cases}$$

- (1) Se $g(y_0) \neq 0$, allora esiste $U \in \mathcal{W}(x_0)$ tale che (P) ha un'unica soluzione, data da $\int_{y_0}^{y(x)} \frac{dy}{g(y)} = \int_{x_0}^x f(s) ds$, per ogni $x \in U$.
- (2) Se $g(y_0) = 0$, $g(y) \neq 0$, per ogni $y \in J \setminus \{y_0\}$, $\frac{1}{g} \notin \mathbb{R}^* ((y_0 \delta, y_0 + \delta) \setminus \{y_0\})$, allora (P) ha un'unica soluzione, data da $y(x) = y_0$, per ogni $x \in I$.
- (3) Se $g(y_0) = 0$, $g(y) \neq 0$, per ogni $y \in J \setminus \{y_0\}$, $\frac{1}{g} \in \mathbb{R}^* ((y_0 \delta, y_0 + \delta) \setminus \{y_0\})$, allora (P) ha la soluzione $y(x) = y_0$, per ogni $x \in I$, ma questa non è unica, in generale.

Dim. (1) (Esistenza). Poniamo $G(y):=\int_{y_0}^y\frac{ds}{g(s)},\ y\in J.$ Poiché $g(y_0)\neq 0$, esiste $V\in \mathcal{W}(y_0)$ tale che $g(y)\neq 0$, per ogni $y\in V$, e quindi $G'(y)=\frac{1}{g(y)}\neq 0$, $y\in V$, e quindi esiste $G^{-1}:G(V)\to V$, inversa di G in V, e si ha $G^{-1}\in C^1(G(V))$. Poniamo $G(V)=:(c,d),\ F(x):=\int_{x_0}^x f(t)\,dt,\ a:=\inf\{t\in I:F(x)\in (c,d),\forall x\in [t,x_0]\},\ b:=\sup\{t\in I:F(x)\in (c,d),\forall x\in [x_0,t]\},\ \text{per cui}\ F(x)\in (c,d),\ \text{per ogni}\ x\in (a,b).$ Poniamo, infine, $y(x):=G^{-1}\circ F(x),\ x\in (a,b),\ \text{e verifichiamo che}\ y$ è soluzione di (P). Intanto $G(y(x))=F(x),\ x\in (a,b),\ \text{e quindi}\ G'(y(x))y'(x)=F'(x),\ x\in (a,b),\ \text{cioè}\ \frac{y'(x)}{g(y(x))}=f(x),\ x\in (a,b)$ [ricordiamo che $y(x)\in G^{-1}((c,d))=V$, e quindi $g(y(x))\neq 0,\ x\in (a,b)$]. Allora $y'(x)=f(x)g(y(x)),\ x\in (a,b),\ \text{ed inoltre}\ y(x_0)=G^{-1}\circ F(x_0)=G^{-1}(0)=y_0$ [in quanto $G(y_0)=0$]. Quindi y soddisfa (P).

- (1) (Unicità). Sia ora z=z(x) una soluzione di (P) in $(\alpha,\beta)\ni x_0$; allora z'(x)=f(x)g(z(x)), $x\in(\alpha,\beta)$, e poiché $g(z(x))\ne 0$, per ogni $x\in(\alpha,\beta)\cap(a,b)$, si ha $\frac{z'(x)}{g(z(x))}=f(x), \ x\in(\alpha,\beta)\cap(a,b)$, e integrando, $\int_{x_0}^x \frac{z'(s)\,ds}{g(z(s))}=\int_{x_0}^x f(s)\,ds$, e, usando il cambiamento di variabile $t=z(s)\implies dt=z'(s)\,ds$, si ha $\int_{z(x_0)}^{z(x)} \frac{dt}{g(t)}=\int_{x_0}^x f(s)\,ds\iff G(z(x))=F(x), \ x\in(\alpha,\beta)\cap(a,b)$, cioè $z(x)=G^{-1}\circ F(x)=y(x), \ x\in(\alpha,\beta)\cap(a,b)$, e l'unicità segue.
- (2) Supponiamo, per assurdo, che esiste $z \in C^1((a,b);J)$, tale che z'(x) = f(x)g(z(x)), $z(x_0) = y_0$, ma $z \not\equiv y_0$; per fissare le idee, supponiamo che esista $x_1 \in (x_0,b)$ tale che $z(x_1) > y_0$, e sia $x_2 := \inf \{x < x_1 : z(t) > y_0, \forall t \in [x,x_1]\}$. Allora, $g(z(x)) \neq 0$, $x \in [x_2,x_1]$, e $g(z(x_2)) = g(y_0) = 0$, e $\int_x^{x_1} \frac{z'(s) \, ds}{g(z(s))} = \int_x^{x_1} f(s) \, ds$. Usando il cambiamento di variabile $t = z(s) \implies dt = z'(s) \, ds$, si ha $\int_{z(x_0)}^{z(x)} \frac{dt}{g(t)} = \int_{x_0}^x f(s) \, ds$; passando al limite per $x \to x_2^+$ si ottiene $\int_{z(x_2)}^{y_0} \frac{dt}{g(t)} = \int_{z(x_2)}^{z(x_0)} \frac{dt}{g(t)} = \int_{z(x_2)}^{x_0} f(s) \, ds \in \mathbb{R}$, contro l'ipotesi $g \notin \mathcal{R}^* \big((y_0 \delta, y_0 + \delta) \setminus \{y_0\} \big)$.
- (3) Ad esempio, il problema di Cauchy

$$\begin{cases} y' = \frac{5}{4}y^{1/5} \\ y(0) = 0, \end{cases}$$

ha infinite soluzioni. Una è y(x)=0, per ogni $x\in\mathbb{R}$. Altre sono date da $\int y^{-1/5}\,dy=\frac{5}{4}\int\,dx\iff \frac{5}{4}y^{4/5}=\frac{5}{4}x+\widetilde{c}\iff y^{4/5}=x+c$, e imponendo la condizione iniziale si ha 0=c, per cui $y(x)=\pm x^{5/4}$, per ogni x>0, per cui altre soluzioni sono

$$y(x) = \begin{cases} 0, & x \le 0, \\ \pm x^{5/4}, & x > 0. \end{cases}$$

Infine, per ogni $a \ge 0$ si hanno le soluzioni

$$y(x) = \begin{cases} 0, & x < a, \\ \pm (x - a)^{5/4}, & x \ge a. \end{cases}$$

Teorema 1.10 (Equazioni omogenee). Sia $f \in C^0(I)$. Allora la soluzione del problema di Cauchy $\begin{cases} y' = f(\frac{y}{x}) \\ y(x_0) = y_0, \end{cases}$ si ottiene

- (1) se $x_0 \neq 0$, dalla soluzione di $\begin{cases} v' = \frac{1}{x} (f(v) v) \\ v(x_0) = \frac{y_0}{x_0}, \end{cases}$ ponendo y(x) = xv(x),
- (2) se $y_0 \neq 0$, dalla soluzione di $\begin{cases} v' = \frac{1}{x} \left(v v^2 f\left(\frac{1}{v}\right) \right) \\ v(x_0) = \frac{x_0}{y_0}, \end{cases}$ ponendo $y(x) = \frac{x}{v(x)}$.

Dim. (1) Sia y(x) = xv(x), per cui y' = v + xv', e l'equazione differenziale diventa $v + xv' = f(v) \iff v' = \frac{1}{x}(f(v) - v)$.

(2) Sia $y(x) = \frac{x}{v(x)}$, per cui $y' = \frac{v - xv'}{v^2}$, e l'equazione differenziale diventa $\frac{v - xv'}{v^2} = f(\frac{1}{v}) \iff v' = \frac{1}{x}(v - v^2f(\frac{1}{v}))$.

Teorema 1.11 (Equazioni lineari). Siano $I \subset \mathbb{R}$ un intervallo, $p, q \in C^0(I)$. Allora esiste un'unica soluzione $y \in C^1(I)$ del problema di Cauchy

$$\begin{cases} y' = p(x)y + q(x) \\ y(x_0) = y_0, \end{cases}$$

ed è data da

$$y(x) = \left(y_0 + \int_{x_0}^x e^{-\int_{x_0}^t p(s) \, ds} q(t) \, dt\right) e^{\int_{x_0}^x p(s) \, ds}.$$

Nel caso particolare che $q(x) = r(x)e^{\int_{x_0}^x p(t) dt}$, con $r \in C^0(I)$, allora

$$y(x) = \left(y_0 + \int_{x_0}^x r(t) \, dt\right) e^{\int_{x_0}^x p(t) \, dt}.$$

Dim. Determiniamo la soluzione generale dell'equazione omogenea associata, cioè $\int \frac{dy}{y} = \int p(x) dx \iff \log |y| = \int p(x) dx + \widetilde{c} \iff y_{om}(x) = ce^{\int p(x) dx}$.

Determiniamo una soluzione particolare $y_p(x) = c(x)e^{\int p(x)\,dx}$, per cui $y_p'(x) = c'(x)e^{\int p(x)\,dx} + c(x)p(x)e^{\int p(x)\,dx}$, e quindi $c'(x)e^{\int p(x)\,dx} + c(x)p(x)e^{\int p(x)\,dx} = p(x)c(x)e^{\int p(x)\,dx} + q(x) \iff c'(x) = q(x)e^{-\int p(x)\,dx} \implies c(x) = \int q(x)e^{-\int p(x)\,dx}\,dx$. Quindi $y_p(x) = e^{\int p(x)\,dx} \int q(x)e^{-\int p(x)\,dx}\,dx$, per cui $y_{gen}(x) = \left(c + \int e^{-\int p(x)\,dx}q(x)\,dx\right)e^{\int p(x)\,dx}$, cioè, $y_{gen}(x) = \left(c + \int_{x_0}^x e^{-\int_{x_0}^t p(s)\,ds}q(t)\,dt\right)e^{\int_{x_0}^x p(t)\,dt}$. Imponendo la condizione iniziale, si ottiene $y_0 = c$, per cui $y_{Cauchy}(x) = \left(y_0 + \int_{x_0}^x e^{-\int_{x_0}^t p(s)\,ds}q(t)\,dt\right)e^{\int_{x_0}^x p(t)\,dt}$.

Teorema 1.12 (Equazioni di Bernoulli). Siano $I \subset \mathbb{R}$ un intervallo, $p, q \in C^0(I)$, $\alpha \in \mathbb{R} \setminus \{0, 1\}$, $x_0 \in I$, $y_0 \in \mathbb{R} \setminus \{0\}$, e consideriamo il problema di Cauchy

$$(P) \begin{cases} y' = p(x)y + q(x)y^{\alpha} \\ y(x_0) = y_0. \end{cases}$$

(1) Se $y_0 > 0$, allora esiste $U \in \mathcal{W}(x_0)$, e un'unica soluzione $y \in C^1(U)$ di (P) che si ottiene dalla soluzione $v \in C^1(I)$ del problema di Cauchy

$$\begin{cases} v' = (1 - \alpha)p(x)v + (1 - \alpha)q(x) \\ v(x_0) = y_0^{1 - \alpha}, \end{cases}$$

 $ponendo\ y=v^{1/(1-lpha)}.$

- (2) Se $y_0 < 0$ e $\alpha \in \mathbb{Z} \setminus \{0,1\}$, distinguiamo due casi:
 - (2a) se $\alpha \in 2\mathbb{Z}$, allora esiste $U \in \mathcal{W}(x_0)$, e un'unica soluzione $y \in C^1(U)$ di (P) che si ottiene dalla soluzione $v \in C^1(I)$ del problema di Cauchy

$$\begin{cases} v' = (1 - \alpha)p(x)v + (1 - \alpha)q(x) \\ v(x_0) = y_0^{1 - \alpha} < 0, \end{cases}$$

ponendo $y = v^{1/(1-\alpha)}$;

(2b) se $\alpha \in 2\mathbb{Z} + 1$, allora esiste $U \in \mathcal{W}(x_0)$, e un'unica soluzione $y \in C^1(U)$ di (P) che si ottiene dalla soluzione $v \in C^1(I)$ del problema di Cauchy

$$\begin{cases} v' = (1 - \alpha)p(x)v + (1 - \alpha)q(x) \\ v(x_0) = (-y_0)^{1 - \alpha} > 0, \end{cases}$$

ponendo $y = -v^{1/(1-\alpha)}$.

Dim. (1) e (2a). Poniamo $v=y^{1-\alpha}$, per cui $y=v^{1/(1-\alpha)}$, $y'=\frac{1}{1-\alpha}v^{\alpha/(1-\alpha)}v'$, e l'equazione per y si trasforma in $\frac{1}{1-\alpha}v^{\alpha/(1-\alpha)}v'=p(x)v^{1/(1-\alpha)}+q(x)v^{\alpha/(1-\alpha)}\iff v'=(1-\alpha)p(x)v+(1-\alpha)q(x)$. La tesi segue.

(2b) Poniamo $v=(-y)^{1-\alpha}$, per cui $y=-v^{1/(1-\alpha)}$, $y'=-\frac{1}{1-\alpha}v^{\alpha/(1-\alpha)}v'$, e l'equazione per y si trasforma in $-\frac{1}{1-\alpha}v^{\alpha/(1-\alpha)}v'=-p(x)v^{1/(1-\alpha)}-q(x)v^{\alpha/(1-\alpha)}\iff v'=(1-\alpha)p(x)v+(1-\alpha)q(x)$. La tesi segue.

1.2 Equazioni a variabili separabili

1.2.1 Esercizi svolti

Esempio 1.13. Determinare, al variare di $y_0 \in \mathbb{R}$, le soluzioni del problema di Cauchy

$$(P) \begin{cases} y'(t) = -2y \\ y(t_0) = y_0. \end{cases}$$

Svolgimento. (1) Se $y_0 \neq 0$, si ha $\int_{y_0}^{y(t)} \frac{dy}{y} = \int_{t_0}^t -2 \, ds \iff \log \left| \frac{y(t)}{y_0} \right| = -2(t-t_0) \iff y(t) = y_0 e^{-2(t-t_0)}, t \in \mathbb{R}.$

(2) Se $y_0 = 0$, l'unica soluzione di (P) è $y(t) = y_0$, per ogni $t \in \mathbb{R}$.

Esempio 1.14. Determinare, al variare di $y_0 \in \mathbb{R}$, le soluzioni del problema di Cauchy

$$(P) \begin{cases} y'(t) = \sqrt{|y|} \\ y(t_0) = y_0. \end{cases}$$

 $Svolgimento. \ (1) \text{ Se } y_0 \neq 0, \text{ si ha } \int_{y_0}^{y(t)} \frac{dy}{\sqrt{|y|}} = \int_{t_0}^t ds. \text{ Se } y_0 > 0, \text{ allora } 2\sqrt{y(t)} - 2\sqrt{y_0} = t - t_0 \iff y(t) = \frac{1}{4}(t - t_0 + 2\sqrt{y_0})^2, \ t > t_0 - 2\sqrt{y_0}. \text{ Se } y_0 < 0, \text{ allora } -2\sqrt{-y(t)} + 2\sqrt{-y_0} = t - t_0 \iff y(t) = -\frac{1}{4}(t - t_0 - \sqrt{-y_0})^2, \ t < t_0 + 2\sqrt{-y_0}.$

(2) Se $y_0 = 0$, non posso applicare il Teorema; infatti (P) ha infinite soluzioni. Ad esempio, y(t) = 0, per ogni $t \in \mathbb{R}$, e, per ogni a < 0 < b,

$$y(t) = \begin{cases} -\frac{1}{4}(t+a)^2, & x < a, \\ 0, & a \le t \le b, \\ \frac{1}{4}(t-b)^2, & t > b. \end{cases}$$

Esempio 1.15 (Modello di Malthus, 1798). Sia y(t) il numero di individui presenti al tempo t, di una popolazione che evolve isolata, e siano λ il tasso di natalità, μ il tasso di mortalità, $\varepsilon = \lambda - \mu$ il tasso di crescita. Allora $\frac{y(t+h)-y(t)}{h} = \varepsilon y(t)$, e al limite per $h \to 0$, si ha $y'(t) = \varepsilon y(t)$, per cui $\int \frac{dy}{y} = \int \varepsilon \, dt \iff \log |y| = \varepsilon t + k \iff y(t) = c e^{\varepsilon t} = y(0) e^{\varepsilon t}$.

Esempio 1.16 (Modello di Verhulst, 1845). Il modello di Malthus è irrealistico, in quanto non considera che, se aumenta la popolazione, aumenta la competizione per accaparrarsi le risorse. Un modello più realistico è stato elaborato da Verhulst.

Sia y(t) il numero di individui presenti al tempo t, di una popolazione che evolve isolata, e siano λ il tasso di natalità, μ il tasso di mortalità, $\varepsilon = \lambda - \mu > 0$ il tasso di crescita, k > 0 la capacità dell'ambiente. Allora si ha $y'(t) = \varepsilon y(t) \Big(1 - \frac{y(t)}{k}\Big)$, per cui $\int \frac{dy}{\varepsilon y(1 - \frac{1}{k}y)} = \int dt$. Poiché

$$\frac{1}{y(1-\frac{1}{k}y)} = \frac{A}{y} + \frac{B}{1-\frac{1}{k}y} = \frac{A(1-\frac{1}{k}y) + By}{y(1-\frac{1}{k}y)} \iff 1 = A + \left(B - \frac{1}{k}A\right)y \iff \begin{cases} A = 1 \\ B = \frac{A}{k} = \frac{1}{k} \end{cases}$$

si ha $t+c=\frac{1}{\varepsilon}\log\frac{|y|}{|1-\frac{1}{k}y|}\iff \frac{y}{1-\frac{1}{k}y}=c'e^{\varepsilon t}.$ Imponendo la condizione iniziale $y(0)=y_0,$ si ha

$$c' = \frac{ky_0}{k - y_0}, \text{ per cui } y = \frac{ky_0 e^{\varepsilon t}}{k - y_0} (1 - \frac{1}{k}y) \iff y(1 + \frac{y_0 e^{\varepsilon t}}{k - y_0}) = \frac{ky_0 e^{\varepsilon t}}{k - y_0} \iff y(t) = \frac{\frac{ky_0 e^{\varepsilon t}}{k - y_0}}{1 + \frac{y_0 e^{\varepsilon t}}{k - y_0}} = \frac{ky_0 e^{\varepsilon t}}{k - y_0 + y_0 e^{\varepsilon t}} = \frac{ky_0 e^{\varepsilon t}}{k - y_0}$$

 $\frac{\kappa y_0}{y_0+(k-y_0)e^{-\varepsilon t}}$.

Îl grafico della soluzione è riportato il figura 1: a sinistra, nel caso $0 < y_0 < k$, a destra, nel caso $y_0 > k$.

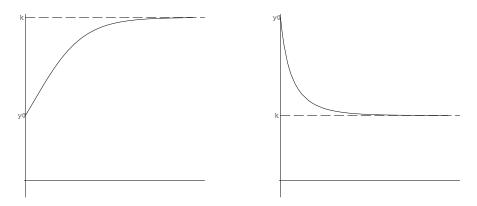


Figura 1: Modello di Verhulst

fig:EquaDif

Esercizio 1. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'(t) = 2(t+1)y^{2/3} \\ y(1) = 1. \end{cases}$$

Svolgimento. Si ha $\int y^{-2/3} dy = \int 2(t+1) dt \iff 3y^{1/3} = t^2 + 2t + c$. Dalla condizione iniziale otteniamo $3 = 3 + c \iff c = 0$, per cui $y(t) = \left(\frac{t^2 + 2t}{3}\right)^3$, $t \in \mathbb{R}$.

Esercizio 2. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'(t) = \frac{\cos^2 y}{1+t^2} \\ y(0) = 0. \end{cases}$$

Svolgimento. Si ha $\int \frac{dy}{\cos^2 y} = \int \frac{dt}{1+t^2} \iff \operatorname{tg} y = \operatorname{arctg} t + c$. Dalla condizione iniziale otteniamo c = 0, per cui $y(t) = \operatorname{arctg}(\operatorname{arctg} t), t \in \mathbb{R}$.

Esercizio 3. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'(t) = \frac{\cos^2 y}{1+t^2} \\ y(0) = \pi. \end{cases}$$

Svolgimento. Si ha $\int \frac{dy}{\cos^2 y} = \int \frac{dt}{1+t^2} \iff \operatorname{tg} y = \operatorname{arctg} t + c$. Dalla condizione iniziale otteniamo c = 0, per cui $y(t) = \pi + \operatorname{arctg}(\operatorname{arctg} t), t \in \mathbb{R}$.

Esercizio 4. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'(t) = y^2 \\ y(0) = 1. \end{cases}$$

Svolgimento. Si ha $\int \frac{dy}{y^2} = \int dt \iff -\frac{1}{y} = t + c$. Dalla condizione iniziale otteniamo c = -1, per cui $y(t) = \frac{1}{1-t}$, t < 1. Osserviamo che dom $y = \mathbb{R} \setminus \{1\}$ è diverso dall'intervallo di esistenza della soluzione.

Esercizio 5. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'(t) = 2t(1+y^2) \\ y(0) = 0. \end{cases}$$

Svolgimento. Si ha $\int \frac{dy}{1+y^2} = \int 2t \, dt \iff \arctan y = t^2 + c$. Dalla condizione iniziale otteniamo c = 0, per cui $y(t) = \operatorname{tg}(t^2), \ -\frac{\pi}{2} < t^2 < \frac{\pi}{2} \iff -\sqrt{\frac{\pi}{2}} < t < \sqrt{\frac{\pi}{2}}$. Osserviamo che dom y è diverso dall'intervallo di esistenza della soluzione.

Esercizio 6. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'(t) = e^{-y} \cos t \\ y(0) = 0. \end{cases}$$

Svolgimento. Si ha $\int e^y dy = \int \cos t dt \iff e^y = \sin t + c$. Dalla condizione iniziale otteniamo c = 1, per cui $y(t) = \log(1+\sin t)$, con $1+\sin t > 0 \iff \sin t > -1 \iff -\frac{\pi}{2} < t < \frac{3\pi}{2}$. Osserviamo che dom y è diverso dall'intervallo di esistenza della soluzione.

Esercizio 7. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'(t) = e^{-y} \cos t \\ y(2\pi) = 0. \end{cases}$$

Svolgimento. Si ha $\int e^y dy = \int \cos t dt \iff e^y = \sin t + c$. Dalla condizione iniziale otteniamo c = 1, per cui $y(t) = \log(1 + \sin t)$, con $1 + \sin t > 0 \iff \sin t > -1 \iff \frac{3\pi}{2} < t < \frac{7\pi}{2}$. Osserviamo che dom y è diverso dall'intervallo di esistenza della soluzione.

Esercizio 8. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'(t) = e^{-y} \cos t \\ y(0) = 2\pi. \end{cases}$$

Svolgimento. Si ha $\int e^y dy = \int \cos t \, dt \iff e^y = \sin t + c$. Dalla condizione iniziale otteniamo $c = e^{2\pi}$, per cui $y(t) = \log(e^{2\pi} + \sin t)$, con $e^{2\pi} + \sin t > 0 \iff t > -e^{2\pi} \iff t \in \mathbb{R}$.

Esercizio 9. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'(t) = \frac{2y^2}{1+t^2} \\ y(0) = 1. \end{cases}$$

Svolgimento. Si ha $\int \frac{dy}{2y^2} = \int \frac{dt}{1+t^2} \iff -\frac{1}{2y} = \operatorname{arctg} t + c$. Dalla condizione iniziale otteniamo $c = -\frac{1}{2}$, per cui $y(t) = \frac{1}{1-2\operatorname{arctg} t}$, con $1-2\operatorname{arctg} t > 0 \iff t < \operatorname{tg} \frac{1}{2}$. Osserviamo che dom y è diverso dall'intervallo di esistenza della soluzione.

Esercizio 10. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'(t) = \frac{1}{te^y} \\ y(1) = 1. \end{cases}$$

Svolgimento. Si ha $\int e^y dy = \int \frac{dt}{t} \iff e^y = \log|t| + c$. Dalla condizione iniziale otteniamo c = e, per cui $e^y = \log|t| + e \iff y(t) = \log(\log|t| + e)$, e dalla condizione iniziale segue che t > 0, e quindi $y(t) = \log(\log t + e)$. Poiché $\log t + e > 0 \iff t > e^{-e}$, si ha che l'intervallo di esistenza della soluzione è $\left(\frac{1}{e^e}, \infty\right)$.

Esercizio 11. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'(t) = \frac{y^2 + 1}{ty} \\ y(1) = 1. \end{cases}$$

Svolgimento. Si ha $\int \frac{y\,dy}{y^2+1} = \int \frac{dt}{t} \iff \frac{1}{2}\log(y^2+1) = \log|t| + c$. Dalla condizione iniziale otteniamo $c = \frac{1}{2}\log 2$, per cui $\log(y^2+1) = \log(2t^2) \iff y(t) = \pm\sqrt{2t^2-1}$, e dalla condizione iniziale segue che dobbiamo scegliere il segno positivo. Poiché $2t^2-1>0 \iff |t|>\frac{1}{\sqrt{2}}$, si ha che l'intervallo di esistenza della soluzione è $\left(\frac{1}{\sqrt{2}},\infty\right)$.

Esercizio 12. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'(t) = \frac{(1+y^2)t^2}{y(1+t^3)} \\ y(0) = -1. \end{cases}$$

Svolgimento. Si ha $\int \frac{y\,dy}{1+y^2} = \int \frac{t^2\,dt}{1+t^3} \iff \frac{1}{2}\log(1+y^2) = \frac{1}{3}\log|1+t^3| + c$. Dalla condizione iniziale otteniamo $c = \frac{1}{2}\log 2$, per cui $1+y(t)^2 = 2|1+t^3|^{2/3} \iff y(t) = \pm \sqrt{2|1+t^3|^{2/3}-1}$; poiché y(0) < 0, si deve scegliere il segno negativo; poiché $1+t^3>0$ in un intorno del dato iniziale $t_0=0$, si ha $y(t) = -\sqrt{2(1+t^3)^{2/3}-1}$, con $2(1+t^3)^{2/3}-1>0 \iff 1+t^3>\frac{1}{2^{3/2}} \iff t>-\sqrt[3]{1-2^{-3/2}}$. Osserviamo che dom y è diverso dall'intervallo di esistenza della soluzione.

Esercizio 13. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'(t) = \frac{1+2t}{\cos y} \\ y(0) = 0. \end{cases}$$

 $Svolgimento. \text{ Si ha } \int \cos y \, dy = \int (1+2t) \, dt \iff \sin y = t^2 + t + c. \text{ Dalla condizione iniziale otteniamo } c = \sin 0 = 0, \text{ per cui } y(t) = \arcsin(t^2 + t), \text{ con } -1 < t^2 + t < 1 \iff \begin{cases} t^2 + t + 1 > 0 \\ t^2 + t - 1 < 0 \end{cases} \iff \frac{-1 - \sqrt{5}}{2} < t < \frac{-1 + \sqrt{5}}{2}.$

Esercizio 14. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'(t) = \frac{1}{t \cos y} \\ y(-1) = 0. \end{cases}$$

Svolgimento. Si ha $\int \cos y \, dy = \int \frac{dt}{t} \iff \sin y = \log |t| + c$. Dalla condizione iniziale otteniamo c = 0, per cui $\sin y = \log |t| \iff y = \arcsin(\log |t|)$; poiché t < 0 in un intorno del dato iniziale $t_0 = -1$, si ha $y(t) = \arcsin(\log(-t))$, con $-1 < \log(-t) < 1 \iff e^{-1} < -t < e \iff -e < t < -\frac{1}{e}$. Osserviamo che dom y è diverso dall'intervallo di esistenza della soluzione.

Esercizio 15. Risolvere il seguente problema di Cauchy:

$$\begin{cases} y' = 2(t+1)y^{2/3} \\ y(1) = 1 \end{cases}.$$

Svolgimento. L'equazione è a variabili separabili; integrando otteniamo

$$\int_{1}^{y(t)} \frac{dy}{y^{2/3}} = \int_{1}^{t} 2(s+1) \, ds$$

cioè

$$[3y^{1/3}]_1^{y(t)} = [s^2 + 2s]_1^t$$

e quindi

$$3y(t)^{1/3} - 3 = t^2 + 2t - 3$$

da cui si ottiene finalmente la soluzione

$$y(t) = \left(\frac{t^2 + 2t}{3}\right)^3.$$

Esercizio 16. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'(t) = \frac{5}{2}ty^{1/5} \\ y(0) = -1. \end{cases}$$

Svolgimento. Si ha $\int y^{-1/5} dy = \frac{5}{2} \int t dt \iff \frac{5}{4} y^{4/5} = \frac{5}{4} t^2 + c \iff y^{4/5} = t^2 + c'$. Dalla condizione iniziale otteniamo c' = 1, per cui $y(t) = \pm (t^2 + 1)^{5/4}$, e dalla condizione iniziale segue che dobbiamo scegliere il segno negativo. L'intervallo di esistenza della soluzione è \mathbb{R} .

Esercizio 17. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'(t) = y(y-1)(t+1) \\ y(0) = 2. \end{cases}$$

Svolgimento. Si ha $\int \frac{dy}{y(y-1)} = \int (t+1) dt$. Poiché

$$\frac{1}{y(y-1)} = \frac{A}{y} + \frac{B}{y-1} = \frac{A(y-1) + By}{y(y-1)}$$

cioè, 1 = (A + B)y - A, per il principio d'identità dei polinomi si ha

$$\begin{cases} A = -1 \\ A + B = 0 \end{cases} \iff \begin{cases} A = -1 \\ B = -A = 1 \end{cases}$$

da cui segue che $\frac{1}{2}t^2 + t + c = \log\left|\frac{y-1}{y}\right|$. Dalla condizione iniziale otteniamo $c = \log\frac{1}{2}$, per cui $\left|\frac{y-1}{y}\right| = \frac{1}{2}e^{t+\frac{1}{2}t^2}$.

Ora $y \mapsto \frac{y-1}{y}$ è positiva in $(-\infty,0) \cup (1,\infty)$, e negativa in (0,1).

Poiché $y(0)=2\in(-\infty,0)\cup(1,\infty)$, allora, per ogni t in un intorno di $t_0=0,\,\frac{y(t)-1}{y(t)}>0$, per cui $\frac{y-1}{y}=\frac{1}{2}e^{t+\frac{1}{2}t^2}\iff y(t)=\frac{1}{1-\frac{1}{2}e^{t+\frac{1}{2}t^2}}.$ Poiché $1-\frac{1}{2}e^{t+\frac{1}{2}t^2}>0\iff t+\frac{1}{2}t^2<\log 2\iff -1-\sqrt{1+2\log 2}< t<-1+\sqrt{1+2\log 2},$ si ha che l'intervallo di esistenza della soluzione è $\left(-1-\sqrt{1+2\log 2},-1+\sqrt{1+2\log 2}\right).$

Esercizio 18. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'(t) = y - y^3 \\ y(0) = 2. \end{cases}$$

Svolgimento. Si ha $\int \frac{dy}{y-y^3} = \int dt$. Poiché

$$\frac{1}{y-y^3} = -\frac{1}{y(y-1)(y+1)} = \frac{A}{y} + \frac{B}{y-1} + \frac{C}{y+1} = \frac{A(y^2-1) + By(y+1) + Cy(y-1)}{y(y^2-1)}$$

cioè, $-1 = (A + B + C)y^2 + (B - C)y - A$, per il principio d'identità dei polinomi si ha

$$\begin{cases} -A = -1 \\ B - C = 0 \\ A + B + C = 0 \end{cases} \iff \begin{cases} A = 1 \\ C = B \iff C = -\frac{1}{2} \\ 2B = -1 \iff B = -\frac{1}{2} \end{cases}$$

da cui segue che $t+c=\log|y|-\frac{1}{2}\log|y-1|-\frac{1}{2}\log|y+1|=\log\frac{|y|}{\sqrt{|y^2-1|}}.$ Dalla condizione iniziale otteniamo $c=\log\frac{2}{\sqrt{3}};$ inoltre, essendo y(0)=2>1, nell'intorno di $t_0=0$ si può scrivere $t+\log\frac{2}{\sqrt{3}}=\log\frac{y}{\sqrt{y^2-1}},$ e poiché y(t)>0, nell'intorno di $t_0=0,$ ciò equivale a $\frac{y}{\sqrt{y^2-1}}=\frac{2}{\sqrt{3}}e^t\iff y^2=\frac{4}{3}e^{2t}\iff y^2=\frac{4}{3}e^{2t}(y^2-1)\iff y^2\left(\frac{4}{3}e^{2t}-1\right)=\frac{4}{3}e^{2t}\iff y^2=\frac{1}{1-\frac{3}{4}e^{-2t}},$ e poiché y(t)>0, nell'intorno di $t_0=0,$ ciò equivale a $y(t)=\frac{1}{\sqrt{1-\frac{3}{4}e^{-2t}}},$ con $1-\frac{3}{4}e^{-2t}>0\iff e^{-2t}<\frac{4}{3}\iff t>-\frac{1}{2}\log\frac{4}{3}=\log\frac{\sqrt{3}}{2}.$

Esercizio 19. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y' = \frac{5}{4}y^{1/5} \\ y(0) = 0. \end{cases}$$

Svolgimento. Questa equazione ha infinite soluzioni. Una è y(t)=0, per ogni $t\in\mathbb{R}$. Altre sono date da $\int y^{-1/5}\,dy=\frac{5}{4}\int\,dt\iff\frac{5}{4}y^{4/5}=\frac{5}{4}t+\widetilde{c}\iff y^{4/5}=t+c$, e imponendo la condizione iniziale si ha 0=c, per cui $y(t)=\pm t^{5/4}$, per ogni t>0, per cui altre soluzioni sono

$$y(t) = \begin{cases} 0, & t \le 0, \\ \pm t^{5/4}, & t > 0. \end{cases}$$

Infine, per ogni $a \ge 0$ si hanno le soluzioni

$$y(t) = \begin{cases} 0, & t < a, \\ \pm (t - a)^{5/4}, & t \ge a. \end{cases}$$

Esercizio 20. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y' = y^{2/3} \\ y(0) = 0. \end{cases}$$

Svolgimento. Questa equazione ha infinite soluzioni. Una è y(t)=0, per ogni $t\in\mathbb{R}$. Altre sono date da $\int y^{-2/3}\,dy=\int dt\iff 3y^{1/3}=t+\widetilde{c}$, e imponendo la condizione iniziale si ha $0=\widetilde{c}$, per cui $y(t)=\left(\frac{t}{3}\right)^3$, per ogni $t\in\mathbb{R}$. Infine, per ogni $\alpha<0<\beta$, altre soluzioni sono date da

$$y(t) = \begin{cases} \left(\frac{t-\alpha}{3}\right)^3, & t \le \alpha, \\ 0, & \alpha \le t \le \beta, \\ \left(\frac{t-\beta}{3}\right)^3, & t \ge \beta. \end{cases}$$

Esercizio 21. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y' = -\sqrt[3]{y+2} \\ y(0) = -2. \end{cases}$$

Svolgimento. Questa equazione ha infinite soluzioni. Una è y=-2. Risolvendo l'equazione per separazione di variabili, si ha $t+c=-\int \frac{1}{\sqrt[3]{y+2}}\,dy=-\frac{3}{2}(y+2)^{2/3}$, e imponendo la condizione iniziale si ha c=0, per cui $t=-\frac{3}{2}(y+2)^{2/3}\iff y(t)=\left(-\frac{2}{3}t\right)^{3/2}-2,\,t<0$, per cui un'altra soluzione è

$$y(t) = \begin{cases} \left(-\frac{2}{3}t\right)^{3/2} - 2, & t < 0, \\ -2, & t \ge 0. \end{cases}$$

Infine, per ogni $a \leq 0$ si ha la soluzione

$$y(t) = \begin{cases} \left(\frac{2}{3}(a-t)\right)^{3/2} - 2, & t < a, \\ -2, & t \ge a. \end{cases}$$

Esercizio 22. Dato il problema di Cauchy

$$\begin{cases} y' = \frac{5}{2}ty^{1/5} \\ y(0) = u \,, \end{cases}$$

trovare u per cui la soluzione non è unica.

Svolgimento. L'equazione è a variabili separabili; integrando otteniamo

$$\int_{u}^{y(t)} \frac{dy}{y^{1/5}} = \int_{0}^{t} \frac{5}{2} s \, ds$$

cioè

$$\left[\frac{5}{4}y^{4/5}\right]_{u}^{y(t)} = \left[\frac{5}{4}s^{2}\right]_{0}^{t}$$

da cui segue

$$y(t)^{4/5} - u^{4/5} = t^2$$

che fornisce le soluzioni

$$y(t) = \pm (t^2 + u^{4/5})^{5/4}$$

e poiché $y(0) = \pm |u|$ la soluzione è data da $y(t) = \operatorname{sgn}(u)(t^2 + u^{4/5})^{5/4}$, se $u \neq 0$, e da $y(t) = \pm |t|^{5/2}$, se u = 0 (osserviamo che tali funzioni sono derivabili ovunque).

Infine se u=0 una ulteriore soluzione del problema di Cauchy è $y\equiv 0$ (si può notare che il valore u=0 è l'unico per cui viene a mancare l'ipotesi di lipschitzianità locale del secondo membro dell'equazione differenziale).

Esercizio 23. Risolvere il seguente problema di Cauchy:

$$\begin{cases} y' = 2(t+1)y^{2/3} \\ y(1) = 0 \ . \end{cases}$$

Svolgimento. Questa equazione ha infinite soluzioni. Una è y=0. Risolvendo l'equazione per separazione di variabili, si ha $(t+1)^2+c=\int y^{-2/3}\,dy=3y^{1/3}$, e imponendo la condizione iniziale si ha $4+c=0\iff c=-4$, per cui un'altra soluzione è $(t+1)^2-4=3y^{1/3}\iff y(t)=\frac{1}{27}(t^2+2t-3)^3$, $t\in\mathbb{R}$. Infine, per ogni a<1< b si ha la soluzione

$$y(t) = \begin{cases} \frac{1}{27} ((t+1)^2 - (a+1)^2)^3, & t < a, \\ 0, & a \le t \le b, \\ \frac{1}{27} ((t+1)^2 - (b+1)^2)^3, & t > b. \end{cases}$$

Esercizio 24. Determinare, al variare di $y_0 \in \mathbb{R}$, la soluzione del problema di Cauchy

$$\begin{cases} y'(t) = y(2-y) \\ y(0) = y_0. \end{cases}$$

Svolgimento. Dal Teorema 1.9 segue che, se $y_0 = 0$, allora y(t) = 0, per ogni $t \in \mathbb{R}$; se $y_0 = 2$, allora y(t) = 2, per ogni $t \in \mathbb{R}$.

Se $y_0 \notin \{0, 2\}$, si ha $\int \frac{dy}{y(2-y)} = \int dt$. Poiché

$$\frac{1}{y(2-y)} = \frac{A}{y} + \frac{B}{y-2} = \frac{A(y-2) + By}{y(y-2)}$$

cioè, -1 = (A + B)y - 2A, per il principio d'identità dei polinomi si ha

$$\begin{cases} -2A = -1 \\ A + B = 0 \end{cases} \iff \begin{cases} A = \frac{1}{2} \\ B = -A = -\frac{1}{2} \end{cases}$$

da cui segue che $t+c=\frac{1}{2}\log|y|-\frac{1}{2}\log|y-2|=\frac{1}{2}\log\frac{|y|}{|y-2|}$. Dalla condizione iniziale otteniamo $c=\frac{1}{2}\log\frac{|y_0|}{|y_0-2|}$, per cui $t=\frac{1}{2}\log\frac{|y(y_0-2)|}{|y_0(y-2)|}\Longleftrightarrow\frac{|y(y_0-2)|}{|y_0(y-2)|}=e^{2t}$. Ora $y\mapsto\frac{y}{y-2}$ è positiva in $(-\infty,0)\cup(2,\infty)$, e negativa in (0,2).

Quindi, se $y_0 \in (-\infty,0) \cup (2,\infty)$, allora, per ogni t in un intorno di $t_0 = 0$, $\frac{y(t)}{y(t)-2} > 0$, per cui $\frac{y(y_0-2)}{y_0(y-2)} = e^{2t} \iff y(t) = \frac{2y_0}{y_0-(y_0-2)e^{-2t}}. \text{ Poiché } y_0 - (y_0-2)e^{-2t} = 0 \iff t = -\frac{1}{2}\log\frac{y_0}{y_0-2}, \text{ si ha che l'intervallo di esistenza della soluzione } e^{-2t} = 0 \iff t = -\frac{1}{2}\log\frac{y_0}{y_0-2}, \text{ si ha che l'intervallo di esistenza della soluzione } e^{-2t} = 0 \iff t = -\frac{1}{2}\log\frac{y_0}{y_0-2}, \text{ si ha che l'intervallo di esistenza della soluzione } e^{-2t} = 0 \iff t = -\frac{1}{2}\log\frac{y_0}{y_0-2}, \text{ si ha che l'intervallo di esistenza della soluzione } e^{-2t} = 0 \iff t = -\frac{1}{2}\log\frac{y_0}{y_0-2}, \text{ si ha che l'intervallo di esistenza della soluzione } e^{-2t} = 0 \iff t = -\frac{1}{2}\log\frac{y_0}{y_0-2}, \text{ si ha che l'intervallo di esistenza della soluzione } e^{-2t} = 0 \iff t = -\frac{1}{2}\log\frac{y_0}{y_0-2}, \text{ si ha che l'intervallo di esistenza della soluzione } e^{-2t} = 0 \iff t = -\frac{1}{2}\log\frac{y_0}{y_0-2}, \text{ si ha che l'intervallo di esistenza della soluzione } e^{-2t} = 0 \iff t = -\frac{1}{2}\log\frac{y_0}{y_0-2}, \text{ si ha che l'intervallo di esistenza della soluzione } e^{-2t} = 0 \iff t = -\frac{1}{2}\log\frac{y_0}{y_0-2}, \text{ si ha che l'intervallo di esistenza della soluzione } e^{-2t} = 0 \iff t = -\frac{1}{2}\log\frac{y_0}{y_0-2}, \text{ si ha che l'intervallo di esistenza della soluzione } e^{-2t} = 0 \iff t = -\frac{1}{2}\log\frac{y_0}{y_0-2}, \text{ si ha che l'intervallo di esistenza della soluzione } e^{-2t} = 0 \iff t = -\frac{1}{2}\log\frac{y_0}{y_0-2}, \text{ si ha che l'intervallo di esistenza della soluzione } e^{-2t} = 0 \iff t = -\frac{1}{2}\log\frac{y_0}{y_0-2}, \text{ si ha che l'intervallo di esistenza della soluzione } e^{-2t} = 0 \iff t = -\frac{1}{2}\log\frac{y_0}{y_0-2}, \text{ si ha che l'intervallo di esistenza della soluzione } e^{-2t} = 0 \iff t = -\frac{1}{2}\log\frac{y_0}{y_0-2}, \text{ si ha che l'intervallo di esistenza della soluzione } e^{-2t} = 0 \iff t = -\frac{1}{2}\log\frac{y_0}{y_0-2}, \text{ si ha che l'intervallo di esistenza della soluzione } e^{-2t} = 0 \iff t = -\frac{1}{2}\log\frac{y_0}{y_0-2}, \text{ si ha che l'intervallo di esistenza della soluzione } e^{-2t} = 0 \iff t = -\frac{1}{2}\log\frac{y_0}{y_0-2}, \text{ si ha che l'intervallo di esistenza della soluzione } e^{-2t} = 0 \iff t = -\frac{1}{2}\log\frac{y_0}{y_0-2}, \text{ si ha che l'intervallo d$

Infine, se $y_0 \in (0,2)$, allora, per ogni t in un intorno di $t_0 = 0$, $\frac{y(t)}{y(t)-2} < 0$, per cui $\frac{y(2-y_0)}{y_0(2-y)} = 0$ $e^{2t} \iff y(t) = \frac{2y_0}{y_0 + (2 - y_0)e^{-2t}}, t \in \mathbb{R}.$

Esercizio 25. Determinare, al variare di $t_0, y_0 \in \mathbb{R}$, la soluzione del problema di Cauchy

$$\begin{cases} y'(t) = -\frac{1}{ty^2} \\ y(t_0) = y_0. \end{cases}$$

Svolgimento. Dal Teorema 1.9 segue che, se $t_0 \neq 0$ e $y_0 \neq 0$, allora si ha $\int y^2 dy = -\int \frac{dt}{t} \iff \frac{1}{3}y^3 = -\log|t| + c$. Imponendo la condizione iniziale si ha $c = \frac{1}{3}y_0^3 + \log|t_0|$ e quindi $y = \sqrt[3]{3(c - \log|t|)} = -\frac{1}{3}(c - \log|t|)$ $\sqrt[3]{y_0^3 + 3(\log|t_0| - \log|t|)}$. Osserviamo che $y_0^3 + 3(\log|t_0| - \log|t|) = 0 \iff \log\left|\frac{t_0}{t}\right| = -\frac{1}{3y_0^3} \iff$ $t=t_0e^{\frac{1}{3y_0^3}}$, dove si è usato il fatto che t e t_0 devono avere lo stesso segno. L'intervallo I di esistenza della soluzione dipende dai segni di t_0 e y_0 :

- (1a) se $y_0 > 0$, $t_0 > 0$, allora $I = (0, t_0 e^{\frac{1}{3y_0}})$
- (1b) se $y_0 > 0$, $t_0 < 0$, allora $I = (t_0 e^{\frac{1}{3y_0}}, 0)$
- (2a) se $y_0 < 0$, $t_0 > 0$, allora $I = (t_0 e^{\frac{1}{3y_0}}, +\infty)$,
- (2b) se $y_0 < 0$, $t_0 > 0$, allora $I = (-\infty, t_0 e^{\frac{1}{3y_0}})$.

Infine, se $t_0 = 0$ o $y_0 = 0$, il problema di Cauchy non ha soluzione.

Esercizio 26. Si consideri il problema di Cauchy

$$\begin{cases} y'(t) = \begin{cases} y(t)^2 & t \in (0,1) \\ \frac{y(t)}{t} & t \ge 1 \\ y(0) = \alpha > 0 \end{cases}.$$

Per quali valori di α il problema ammette soluzione continua $\forall t \geq 0$?

Svolgimento. L'equazione $y^\prime=y^2$ è a variabili separabili; integriamola

$$\int_{\alpha}^{y(t)} \frac{dy}{y^2} = \int_0^t ds ,$$

cioè

$$\left[-\frac{1}{y}\right]_{\alpha}^{y(t)} = t$$
 e quindi $\frac{1}{\alpha} - \frac{1}{y(t)} = t$

da cui si ottiene

$$y(t) = \frac{1}{\frac{1}{\alpha} - t} = \frac{\alpha}{1 - \alpha t} ;$$

tale soluzione è definita per $t < \frac{1}{\alpha}$. L'equazione $y' = \frac{y}{t}$ è a variabili separabili; integriamola

$$\int_{y(1)}^{y(t)} \frac{dy}{y} = \int_1^t \frac{ds}{s} ,$$

cioè

$$\log \frac{y(t)}{y(1)} = \log t$$
 e quindi $y(t) = y(1)t$.

La soluzione esiste $\forall t \geq 0$ se $\alpha < 1$ ed è continua $\forall t \geq 0$ se $y(1) = \frac{\alpha}{1-\alpha}$. Quindi nel caso $0 < \alpha < 1$ la soluzione è data da

$$y(t) = \begin{cases} \frac{\alpha}{1 - \alpha t}, & 0 \le t < 1\\ \frac{\alpha}{1 - \alpha} t, & t \ge 1 \end{cases}$$

1.2.2 Esercizi proposti

Esercizio 27. Determinare la soluzione dei seguenti problemi di Cauchy

$$(1) \begin{cases} y' = 8xy + x \\ y(1) = 2 \end{cases}$$

(2)
$$\begin{cases} y' = -\frac{y}{x} + \frac{1}{x} \\ y(1) = 2, \text{ oppure } y(1) = 1 \end{cases}$$

(3)
$$\begin{cases} y' = \frac{y+1}{\sqrt{x}} \\ y(1) = e, \text{ oppure } y(1) = -1 \end{cases}$$

(4)
$$\begin{cases} y' = 2xy^2 \\ y(0) = -1, \text{ oppure } y(0) = 0 \end{cases}$$

(5)
$$\begin{cases} y' = \frac{y^3}{x} \\ y(1) = -1, \text{ oppure } y(0) = 0, \text{ oppure } y(0) = 1 \end{cases}$$

(6)
$$\begin{cases} y' = \frac{x}{y} \\ y(0) = -1 \end{cases}$$

(7)
$$\begin{cases} y' = -3x^2y^6 \\ y(1) = -1, \text{ oppure } y(0) = 0 \end{cases}$$

(8)
$$\begin{cases} y' = \frac{x}{1-x^2} y^2 \\ y(0) = 1, \text{ oppure } y(0) = 0 \end{cases}$$

(9)
$$\begin{cases} y' = \frac{1+y^2}{2x^2y} \\ y(1) = -1, \text{ oppure } y(0) = 1 \end{cases}$$

(10)
$$\begin{cases} y' = 1 + y^2 \\ y(0) = 1 \end{cases}$$

(11)
$$\begin{cases} y' = \frac{1+y^2}{x} \\ y(-1) = 1, \text{ oppure } y(0) = -1 \end{cases}$$

(12)
$$\begin{cases} y' = \frac{y^2}{x(1+x^2)} \\ y(1) = -1, \text{ oppure } y(0) = 0 \end{cases}$$

(13)
$$\begin{cases} y' = \frac{y}{(x+1)(x^2+1)} \\ y(0) = -1, \text{ oppure } y(0) = 0 \end{cases}$$

(14)
$$\begin{cases} y' = \frac{1}{y(x+1)(x^2+1)} \\ y(0) = -1 \end{cases}$$

(15)
$$\begin{cases} y' = 2x\sqrt{1 - y^2} \\ y(0) = 0 \end{cases}$$

(16)
$$\begin{cases} y' = \frac{y \log y}{x} \\ y(1) = e, \text{ oppure } y(1) = 1 \end{cases}$$

(17)
$$\begin{cases} y' = (y+1)\cos x \\ y(0) = 1, \text{ oppure } y(0) = -1 \end{cases}$$

(18)
$$\begin{cases} y' = (y+1)\sin x \\ y(\frac{\pi}{2}) = 1, \text{ oppure } y(\frac{\pi}{2}) = -1 \end{cases}$$

(19)
$$\begin{cases} y' = \cos^2 y \\ y(0) = \frac{\pi}{4}, \text{ oppure } y(0) = \frac{\pi}{2}, \text{ oppure } y(0) = \pi \end{cases}$$

(20)
$$\begin{cases} y' = \frac{\lg y}{x} \\ y(\frac{1}{2}) = \frac{\pi}{6}, \text{ oppure } y(\frac{1}{2}) = -\frac{\pi}{6} \end{cases}$$

(21)
$$\begin{cases} y' = \frac{y^2}{\lg x} \\ y(\frac{\pi}{6}) = 1, \text{ oppure } y(\frac{\pi}{6}) = 0 \end{cases}$$

(22)
$$\begin{cases} y' = \frac{1}{y \lg x} \\ y(-\frac{\pi}{6}) = -1, \text{ oppure } y(-\frac{\pi}{6}) = 1 \end{cases}$$

(23)
$$\begin{cases} y' = \frac{1+2x}{\cos y} \\ y(0) = 0 \end{cases}$$

(24)
$$\begin{cases} y' = \sqrt{\frac{y}{x}} \sin \sqrt{x} \\ y(\frac{\pi^2}{4}) = 1, \text{ oppure } y(\frac{\pi^2}{4}) = 0 \end{cases}$$

(25)
$$\begin{cases} y' = y^{2/3} \\ y(0) = 1, \text{ oppure } y(0) = 0 \end{cases}$$

1.3 Equazioni omogenee

1.3.1 Esercizi svolti

Esercizio 28. Risolvere il seguente problema di Cauchy

$$\begin{cases} y' = \frac{y}{t} + \sin\frac{y}{t} \\ y(1) = \frac{\pi}{2}. \end{cases}$$

Svolgimento. L'equazione è omogenea. Introduciamo la variabile $v(t) = \frac{y(t)}{t}$, per cui l'equazione diventa $tv' + v = v + \sin v$, e il problema diventa

$$\begin{cases} v' = \frac{\sin v}{t} \\ v(1) = \frac{\pi}{2}. \end{cases}$$

Otteniamo un'equazione a variabili separabili. Si ha

$$\int \frac{dv}{\sin v} = \int \frac{dt}{t} \iff \log \left| \operatorname{tg} \frac{v}{2} \right| = \log |t| + \widetilde{c} \iff \operatorname{tg} \frac{v}{2} = ct,$$

dove in (a) si è usato il cambiamento di variabili $v=2 \arctan z \implies \sin v = \frac{2z}{1+z^2}, \, dv = \frac{2dz}{1+z^2}, \, \text{per cui}$ si ha $\int \frac{dv}{\sin v} = \int \frac{1+z^2}{2z} \cdot \frac{2}{1+z^2} \, dz = \log|z| = \log\left|\operatorname{tg}\frac{v}{2}\right|.$

Imponendo la condizione iniziale, si ricava c = 1, e t > 0.

Inoltre, esplicitando v, si ottiene $v = 2 \arctan t$.

Allora $y(t) = tv(t) = 2t \arctan t$, e l'intervallo di esistenza della soluzione è t > 0.

Esercizio 29. Risolvere il seguente problema di Cauchy

$$\begin{cases} y' = \frac{y}{t} + \operatorname{ctg} \frac{y}{t} \\ y(\frac{1}{2}) = \frac{\pi}{12}. \end{cases}$$

Svolgimento. L'equazione è omogenea. Introduciamo la variabile $v(t) = \frac{y(t)}{t}$, per cui l'equazione diventa $tv' + v = v + \operatorname{tg} v$, e il problema diventa

$$\begin{cases} v' = \frac{\operatorname{ctg} v}{t} \\ v(\frac{1}{2}) = \frac{\pi}{6}. \end{cases}$$

Otteniamo un'equazione a variabili separabili. Si ha

$$\int \operatorname{tg} v \, dv = \int \frac{dt}{t} \iff -\log|\cos v| = \log|t| + \widetilde{c} \iff \cos v = \frac{c}{t}.$$

Imponendo la condizione iniziale, si ricava $c=\frac{\sqrt{3}}{4},$ e t>0.

Inoltre, esplicitando v, si ottiene $v = \arccos \frac{\sqrt{3}}{4t}$.

Allora $y(t) = tv(t) = t \arccos \frac{\sqrt{3}}{4t}$, e l'intervallo di esistenza della soluzione è $t > \frac{\sqrt{3}}{4}$.

Esercizio 30. Risolvere il seguente problema di Cauchy

$$\begin{cases} y' = \frac{y}{t} \log \frac{ey}{t} \\ y(1) = e. \end{cases}$$

Svolgimento. L'equazione è omogenea. Introduciamo la variabile $v(t) = \frac{y(t)}{t}$, per cui l'equazione diventa $tv' + v = v \log(ev)$, e il problema diventa

$$\begin{cases} v' = \frac{v \log v}{t} \\ v(1) = e. \end{cases}$$

Otteniamo un'equazione a variabili separabili. Si ha

$$\int \frac{dv}{v \log v} = \int \frac{dt}{t} \iff \log|\log v| = \log|t| + \widetilde{c} \iff \log v = \frac{c}{t}.$$

Imponendo la condizione iniziale, si ricava c = 1, e t > 0.

Inoltre, esplicitando v, si ottiene $v = e^{1/t}$.

Allora $y(t) = tv(t) = te^{1/t}$, e l'intervallo di esistenza della soluzione è t > 0.

Esercizio 31. Risolvere il seguente problema di Cauchy

$$\begin{cases} y' = \frac{t}{y} + \frac{2y}{t} \\ y(1) = 1. \end{cases}$$

Svolgimento. L'equazione è omogenea. Introduciamo la variabile $v(t)=\frac{y(t)}{t}$, per cui l'equazione diventa $tv'+v=\frac{1}{v}+2v$, e il problema diventa

$$\begin{cases} v' = \frac{v^2 + 1}{vt} \\ v(1) = 1. \end{cases}$$

Otteniamo un'equazione a variabili separabili. Si ha

$$\int \frac{v \, dv}{v^2 + 1} = \int \frac{dt}{t} \iff \frac{1}{2} \log(v^2 + 1) = \log|t| + \widetilde{c} \iff v^2 + 1 = ct^2.$$

Imponendo la condizione iniziale, si ricava c = 2, e t > 0.

Inoltre, esplicitando v, si ottiene $v = \sqrt{2t^2 - 1}$, dove si è usata la condizione iniziale, che assicura che, in un intorno di $t_0 = 1$, v(t) > 0.

Allora $y(t)=tv(t)=t\sqrt{2t^2-1}$, e l'intervallo di esistenza della soluzione è $t>\frac{1}{\sqrt{2}}$.

Esercizio 32. Risolvere il seguente problema di Cauchy

$$\begin{cases} y' = \frac{t}{y} + \frac{2y}{t} \\ y(1) = -2. \end{cases}$$

Svolgimento. L'equazione è omogenea. Introduciamo la variabile $v(t)=\frac{y(t)}{t}$, per cui l'equazione diventa $tv'+v=\frac{1}{v}+2v$, e il problema diventa

$$\begin{cases} v' = \frac{v^2 + 1}{vt} \\ v(1) = -2. \end{cases}$$

Otteniamo un'equazione a variabili separabili. Si ha

$$\int \frac{v \, dv}{v^2 + 1} = \int \frac{dt}{t} \iff \frac{1}{2} \log(v^2 + 1) = \log|t| + \widetilde{c} \iff v^2 + 1 = ct^2.$$

Imponendo la condizione iniziale, si ricava c = 5, e t > 0.

Inoltre, esplicitando v, si ottiene $v = -\sqrt{5t^2 - 1}$, dove si è usata la condizione iniziale, che assicura che, in un intorno di $t_0 = 1$, v(t) < 0.

Allora $y(t) = tv(t) = -t\sqrt{5t^2 - 1}$, è l'intervallo di esistenza della soluzione è $t > \frac{1}{\sqrt{5}}$.

Esercizio 33. Risolvere il seguente problema di Cauchy

$$\begin{cases} y' = \frac{t^2 + ty + y^2}{t^2} \\ y(1) = -1. \end{cases}$$

Svolgimento. L'equazione è omogenea. Introduciamo la variabile $v(t) = \frac{y(t)}{t}$, per cui l'equazione diventa $tv' + v = 1 + v + v^2$, e il problema diventa

$$\begin{cases} v' = \frac{v^2 + 1}{t} \\ v(1) = -1. \end{cases}$$

Otteniamo un'equazione a variabili separabili. Si ha

$$\int \frac{dv}{v^2 + 1} = \int \frac{dt}{t} \iff \arctan v = \log|t| + c.$$

Imponendo la condizione iniziale, si ricava $c=-\frac{\pi}{4}$, e t>0.

Inoltre, esplicitando v, si ottiene $v = \operatorname{tg}(\log t - \frac{\pi}{4})$.

Allora $y(t) = tv(t) = t \operatorname{tg}(\log t - \frac{\pi}{4})$, e l'intervallo di esistenza della soluzione è $e^{-\pi/4} < t < e^{3\pi/4}$.

Esercizio 34. Risolvere il seguente problema di Cauchy

$$\begin{cases} y' = \frac{y(y^2 + t^2)}{t^3} \\ y(-1) = -1. \end{cases}$$

Svolgimento. L'equazione è omogenea. Introduciamo la variabile $v(t) = \frac{y(t)}{t}$, per cui l'equazione diventa $tv' + v = v(v^2 + 1)$, e il problema diventa

$$\begin{cases} v' = \frac{v^3}{t} \\ v(-1) = 1. \end{cases}$$

Otteniamo un'equazione a variabili separabili. Si ha

$$\int \frac{dv}{v^3} = \int \frac{dt}{t} \iff -\frac{1}{2v^2} = \log|t| + c.$$

Imponendo la condizione iniziale, si ricava $c=-\frac{1}{2},$ e t<0. Inoltre, esplicitando v, si ottiene $v^2=\frac{1}{1-2\log(-t)}\iff v=\frac{1}{\sqrt{1-2\log(-t)}},$ dove si è usata la condizione iniziale, che assicura che, in un intorno di $t_0=1,$ v(t)>0. Allora $y(t)=tv(t)=\frac{t}{\sqrt{1-2\log(-t)}},$ e l'intervallo di esistenza della soluzione è $t>-\sqrt{e}.$

Esercizio 35. Risolvere il seguente problema di Cauchy

$$\begin{cases} y' = -\frac{y(y^2 - t^2)}{2t^3} \\ y(1) = 2. \end{cases}$$

Svolgimento. L'equazione è omogenea. Introduciamo la variabile $v(t) = \frac{y(t)}{t}$, per cui l'equazione diventa $tv'+v=-\frac{v(v^2-1)}{2},$ e il problema diventa

$$\begin{cases} v' = -\frac{v^3 + v}{2t} \\ v(1) = 2. \end{cases}$$

Otteniamo un'equazione a variabili separabili. Si ha

$$\int \frac{2dv}{v^3 + v} = -\int \frac{dt}{t} \iff \log \frac{v^2}{v^2 + 1} = -\log|t| + \widetilde{c} \iff \frac{v^2}{v^2 + 1} = \frac{c}{t},$$

dove in (a) si è usato il risultato $\int \frac{2dv}{v^3+v} = \int \left(\frac{2}{v} - \frac{2v}{v^2+1}\right) dv = \log \frac{v^2}{v^2+1}$.

Imponendo la condizione iniziale, si ricava $c = \frac{4}{5}$, e t > 0.

Inoltre, esplicitando v, si ottiene [scrivendo ancora c, per aumentare la leggibilità] $v^2 = \frac{c}{t}(v^2 +$ 1) $\iff v^2 = \frac{c/t}{1-c/t} = \frac{4}{5t-4} \iff v = \sqrt{\frac{4}{5t-4}}$, dove in (b) si è usata la condizione iniziale, che assicura che, in un intorno di $t_0 = 1$, v(t) > 0.

Allora $y(t)=tv(t)=t\sqrt{\frac{4}{5t-4}}$, e l'intervallo di esistenza della soluzione è $t>\frac{4}{5}$.

Esercizio 36. Risolvere il seguente problema di Cauchy

$$\begin{cases} y' = -\frac{y(t+5y)}{4t^2} \\ y(1) = 1. \end{cases}$$

Svolgimento. L'equazione è omogenea. Introduciamo la variabile $v(t) = \frac{y(t)}{t}$, per cui l'equazione diventa $tv' + v = -\frac{v(1+5v)}{4}$, e il problema diventa

$$\begin{cases} v' = -\frac{5(v^2 + v)}{4t} \\ v(1) = 1. \end{cases}$$

Otteniamo un'equazione a variabili separabili. Si ha

$$\int \frac{dv}{v^2 + v} = -\frac{5}{4} \int \frac{dt}{t} \iff \log \left| \frac{v}{v+1} \right| = -\frac{5}{4} \log |t| + \widetilde{c} \iff \frac{v}{v+1} = \frac{c}{t^{5/4}},$$

dove in (a) si è usato il risultato $\int \frac{dv}{v^2+v} = \int \left(\frac{1}{v} - \frac{1}{v+1}\right) dv = \log \left|\frac{v}{v+1}\right|$.

Imponendo la condizione iniziale, si ricava $c = \frac{1}{2}$, e t > 0.

Inoltre, esplicitando v, si ottiene [scrivendo ancora c, per aumentare la leggibilità] $v = ct^{-5/4}(v +$

1) $\iff v = \frac{ct^{-5/4}}{1-ct^{-5/4}} = \frac{1}{2t^{5/4}-1}.$ Allora $y(t) = tv(t) = \frac{t}{2t^{5/4}-1}$, e l'intervallo di esistenza della soluzione è $t > \frac{1}{2^{4/5}}$.

Esercizio 37. Risolvere il seguente problema di Cauchy

$$\begin{cases} y' = \frac{y - \sqrt{t^2 + y^2}}{t} \\ y(1) = 2. \end{cases}$$

Svolgimento. L'equazione è omogenea. Introduciamo la variabile $v(t) = \frac{y(t)}{t}$, per cui l'equazione diventa $tv' + v = v - \sqrt{1 + v^2}$, il problema diventa

$$\begin{cases} v' = -\frac{1}{t}\sqrt{1+v^2} \\ v(1) = 2. \end{cases}$$

Otteniamo un'equazione a variabili separabili. Si ha

$$\int \frac{dv}{\sqrt{1+v^2}} = -\int \frac{dt}{t} \iff \log(v+\sqrt{1+v^2}) = -\log|t| + \widetilde{c} \iff v+\sqrt{1+v^2} = \frac{c}{t},$$

dove in (a) si è usato il cambiamento di variabile $\sqrt{1+v^2} = s-v \implies v = \frac{s^2-1}{2s}, \sqrt{1+v^2} = \frac{s^2+1}{2s^2} \, dv = \frac{s^2+1}{2s^2} \, ds$ per cui si ha $\int \frac{dv}{\sqrt{1+v^2}} = \int \frac{2s}{s^2+1} \cdot \frac{s^2+1}{2s^2} \, ds = \log|s| = \log(v+\sqrt{1+v^2}).$

Imponendo la condizione iniziale, si ricava $c = 2 + \sqrt{5}$, e t > 0.

Inoltre, esplicitando v, si ottiene [scrivendo ancora c, per aumentare la leggibilità] $\sqrt{1+v^2}$

$$\frac{c}{t} - v \iff \begin{cases} 1 + v^2 = \frac{c^2}{t^2} + v^2 - \frac{2cv}{t} \\ v < \frac{c}{t} \end{cases} \iff \begin{cases} v = \frac{t}{2c} \left(\frac{c^2}{t^2} - 1\right) \\ v < \frac{c}{t} \end{cases}$$

ed è subito visto che la soluzione v(t) soddisfa la disequazione $v<\frac{c}{t}$, in quanto questa equivale a $\frac{c^2}{t^2} - 1 < \frac{2c^2}{t^2}$.

Allora $y(t) = tv(t) = \frac{t^2}{2c} \left(\frac{c^2}{t^2} - 1\right) = \frac{1}{2c}(c^2 - t^2) = \frac{\sqrt{5} - 2}{2}(9 + 4\sqrt{5} - t^2)$, e l'intervallo di esistenza della soluzione è t > 0.

Esercizio 38. Risolvere il seguente problema di Cauchy

$$\begin{cases} y' = \frac{y-4t}{t-y} \\ y(1) = 2. \end{cases}$$

Svolgimento. L'equazione è omogenea e quindi introduciamo $u = \frac{y}{t}$ cioè y = ut, per cui y' = u't + u e l'equazione diventa

$$u't + u = \frac{u - 4}{1 - u}$$

cioè

$$u' = \frac{1}{t} \frac{u^2 - 4}{1 - u}$$
,

mentre la condizione iniziale diventa u(1) = 2. Allora la soluzione è u(t) = 2, cioè y(t) = 2t.

Esercizio 39. Risolvere il problema di Cauchy

$$\begin{cases} y' = \frac{y}{t} + e^{-y/t} \\ y(1) = a, \ a \in \mathbb{R} . \end{cases}$$

Trovare l'insieme B dei numeri reali b per cui esiste una soluzione y_a del problema definita almeno in [1,2] e tale che $y_a(2) = b$.

Verificare che la funzione $\varphi(a) := y_a(2), a \in \mathbb{R}$, è un diffeomorfismo.

Svolgimento. Poiché l'equazione è omogenea operiamo la sostituzione u := y/t e quindi y' = u't + u con la quale l'equazione diventa $u't + u = u + e^{-u}$ e il problema di Cauchy

$$\begin{cases} u' = \frac{1}{t}e^{-u} \\ u(1) = a. \end{cases}$$

L'equazione è a variabili separabili; integrando

$$\int_a^{u(t)} e^u du = \int_1^t \frac{ds}{s} ,$$

cioè $e^{u(t)} - e^a = \log t$ (si è sfruttato il fatto che, essendo la condizione iniziale data per t = 1, la soluzione è definita al più per t > 0), cioè $u(t) = \log(\log t + e^a)$ e quindi

$$y_a(t) = t \log(\log t + e^a).$$

Essa è definita per ogni t tale che $\log t + e^a > 0$, cioè $t > e^{-e^a}$ e quindi è definita almeno in [1,2], $\forall a \in \mathbb{R}$.

La funzione

$$\varphi(a) := y_a(2) = 2\log(\log 2 + e^a)$$

è un diffeomorfismo di \mathbb{R} su im φ , poiché φ è C^{∞} e strettamente crescente; determiniamo im φ .

Poiché

$$\lim_{a \to -\infty} \varphi(a) = 2 \log \log 2, \text{ e } \lim_{a \to +\infty} \varphi(a) = +\infty$$

si ha

$$B \equiv \operatorname{im}\varphi = (2\log\log 2, +\infty).$$

Esercizio 40. Provare che la soluzione y(t) del problema di Cauchy, con $t_0 \neq 0$,

$$\begin{cases} y' = \frac{y^3 - t^3}{ty^2} \\ y(t_0) = y_0 \,, \end{cases}$$

verifica $\lim_{t\to 0^{\pm}} y(t) = 0$.

Svolgimento. L'equazione è omogenea $y' = \frac{\left(\frac{y}{t}\right)^3 - 1}{\left(\frac{y}{t}\right)^2}$, e quindi effettuiamo la sostituzione y/t =: u, da cui u't + u = y' e l'equazione diventa

$$u't + u = \frac{u^3 - 1}{u^2} = u - \frac{1}{u^2}$$

cio
è $u'=-\frac{1}{tu^2}$ che è a variabili separabili, e il problema di Cauchy diventa

$$\begin{cases} u' = -\frac{1}{tu^2} \\ u(t_0) = \frac{y_0}{t_0} \end{cases}$$

che integrata dà

$$\int_{y_0/t_0}^{u(t)} -u^2 \, du = \int_{t_0}^t \frac{ds}{s}$$

cioè

$$\left[-\frac{1}{3}u^3 \right]_{y_0/t_0}^{u(t)} = \log \left| \frac{t}{t_0} \right|$$

da cui

$$u(t)^3 - \frac{y_0^3}{t_0^3} = 3\log\left|\frac{t_0}{t}\right|$$

che fornisce la soluzione

$$u(t) = \sqrt[3]{3\log\left|\frac{t_0}{t}\right| + \frac{y_0^3}{t_0^3}}.$$

Tornando alle variabili originarie si ha

$$y(t) = t\sqrt[3]{3\log\left|\frac{t_0}{t}\right| + \frac{y_0^3}{t_0^3}}.$$

Ma allora $\lim_{t \to 0} t \to 0^{\pm} y(t) = 0$.

1.3.2 Esercizi proposti

Esercizio 41. Determinare la soluzione generale delle seguenti equazioni

(1)
$$y' = 1 + \frac{y}{t}$$
,

(2)
$$y' = 2 - \frac{t}{y}$$
,

- (3) $y' = \frac{3y}{2t} + \frac{2t}{y}$,
- $(4) \ y' = \frac{y}{2t} \frac{t}{2y},$
- $(5) \ y' = \frac{y}{2t} + \frac{t}{2y},$
- $(6) y' = \frac{y}{t} + \frac{t}{y},$
- $(7) \ y' = \frac{y}{t} \frac{t}{y},$
- $(8) \ y' = \frac{y-t}{y+t},$
- (9) $y' = -\frac{y-t}{y+t}$,
- $(10) \ y' = \frac{-2y}{y+t},$
- $(11) \ y' = \frac{t^2 + y^2}{2ty},$
- $(12) \ y' = -\frac{t^2 + y^2}{tu},$
- $(13) \ y' = \frac{2ty}{t^2 y^2},$
- (14) $y' = \frac{y^2 + ty + 4t^2}{t^2}$,
- (15) $y' = \frac{y}{t} + \frac{y^2}{t^2}$,
- $(16) \ y' = \frac{y}{t} \frac{y^2}{t^2},$
- $(17) \ y' = \frac{y}{t} + \frac{1}{\cos\frac{y}{t}},$
- $(18) y' = \frac{y}{t} + \operatorname{tg} \frac{y}{t},$
- $(19) \ y' = \frac{y}{t} \frac{y}{t} \log \frac{y}{t},$
- (20) $y' = \frac{y \sqrt{t^2 y^2}}{t}$,
- (21) $y' = \frac{y \sqrt{t^2 + y^2}}{t}$,
- (22) $y' = \frac{y}{t} + \sqrt{1 + \left(\frac{y}{t}\right)^2},$
- (23) $y' = \frac{y}{t} + \sqrt{1 \left(\frac{y}{t}\right)^2}$.

Equazioni lineari del primo ordine

Esercizi svolti 1.4.1

Esercizio 42. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y' = -4y + 5t + 1 \\ y(0) = 0. \end{cases}$$

Svolgimento. Determiniamo la soluzione generale dell'equazione omogenea associata, cioè $\int \frac{dy}{y} =$ $-\int 4 dt \iff \log|y| = -4t + \widetilde{c} \iff y_{om}(t) = ce^{-4t}.$

Determiniamo una soluzione particolare $y_p(t) = c(t)e^{-4t}$, per cui $y_p'(t) = c'(t)e^{-4t} - 4c(t)e^{-4t}$, e quindi $c'(t)e^{-4t} - 4c(t)e^{-4t} = -4c(t)e^{-4t} + 5t + 1 \iff c'(t) = (5t+1)e^{4t} \implies c(t) = \int (5t+1)e^{4t} dt = \int (5t+1)e^{4t} dt$ $\left(\frac{5}{4}t + \frac{9}{16}\right)e^{4t}. \text{ Quindi } y_p(t) = \frac{5}{4}t + \frac{9}{16}, \text{ per cui } y_{gen}(t) = ce^{-4t} + \frac{5}{4}t + \frac{9}{16}.$ Dalla condizione iniziale otteniamo $c = -\frac{9}{16}, \text{ per cui } y_{Cauchy}(t) = -\frac{9}{16}e^{-4t} + \frac{5}{4}t + \frac{9}{16}, t \in \mathbb{R}.$

Esercizio 43. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y' = 4y + e^{3t} \\ y(0) = 0. \end{cases}$$

Svolgimento. Determiniamo la soluzione generale dell'equazione omogenea associata, cioè $\int \frac{dy}{y}$ $\int 4 dt \iff \log|y| = 4t + \widetilde{c} \iff y_{om}(t) = ce^{4t}.$

Determiniamo una soluzione particolare $y_p(t) = c(t)e^{4t}$, per cui $y_p'(t) = c'(t)e^{4t} + 4c(t)e^{4t}$, e quindi $c'(t)e^{4t} + 4c(t)e^{4t} = 4c(t)e^{4t} + e^{3t} \iff c'(t) = e^{-t} \implies c(t) = -e^{-t}$. Quindi $y_p(t) = -e^{3t}$, per cui $y_{gen}(t) = ce^{4t} - e^{3t}$.

Dalla condizione iniziale otteniamo c=1, per cui $y_{Cauchy}(t)=e^{4t}-e^{3t},$ $t\in\mathbb{R}.$

Esercizio 44. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y' = -ty + e^t(t+1) \\ y(0) = 0. \end{cases}$$

Svolgimento. Determiniamo la soluzione generale dell'equazione omogenea associata, cioè $\int \frac{dy}{y}$ $-\int t \, dt \iff \log|y| = -\frac{1}{2}t^2 + \widetilde{c} \iff y_{om}(t) = ce^{-t^2/2}.$

Determiniamo una soluzione particolare $y_p(t)=c(t)e^{-t^2/2}$, per cui $y_p'(t)=c'(t)e^{-t^2/2}-tc(t)e^{-t^2/2}$, e quindi $c'(t)e^{-t^2/2} - tc(t)e^{-t^2/2} = -tc(t)e^{-t^2/2} + e^t(t+1) \iff c'(t) = (t+1)e^{t+t^2/2} \implies c(t) = (t+1)e^{-t^2/2} + e^t(t+1) \iff c'(t) = (t+1)e^{t+t^2/2} \implies c(t) =$ $\int (t+1)e^{t+t^2/2} dt \stackrel{(a)}{=} \int e^s ds = e^s = e^{t+t^2/2}$, dove in (a) si è eseguito il cambiamento di variabile $s = t + t^2/2 \implies ds = (t+1) dt$. Quindi $y_p(t) = e^t$, per cui $y_{qen}(t) = ce^{-t^2/2} + e^t$.

Dalla condizione iniziale otteniamo c=-1, per cui $y_{Cauchy}(t)=-e^{-t^2/2}+e^t$, $t\in\mathbb{R}$. Esercizio 45. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y' = -ty + t^3 \\ y(0) = 2. \end{cases}$$

Svolgimento. Determiniamo la soluzione generale dell'equazione omogenea associata, cioè $\int \frac{dy}{y} = -\int t \, dt \iff \log|y| = -\frac{1}{2}t^2 + \widetilde{c} \iff y_{om}(t) = ce^{-t^2/2}$.

Determiniamo una soluzione particolare $y_p(t) = c(t)e^{-t^2/2}$, per cui $y_p'(t) = c'(t)e^{-t^2/2} - tc(t)e^{-t^2/2}$, e quindi $c'(t)e^{-t^2/2} - tc(t)e^{-t^2/2} = -tc(t)e^{-t^2/2} + t^3 \iff c'(t) = t^3e^{t^2/2} \implies c(t) = \int t^3e^{t^2/2} dt \stackrel{(a)}{=} \int 2se^s ds = 2(s-1)e^s = (t^2-2)e^{t^2/2}$, dove in (a) si è eseguito il cambiamento di variabile $s = t^2/2 \implies ds = t dt$. Quindi $y_p(t) = t^2 - 2$, per cui $y_{gen}(t) = ce^{-t^2/2} + t^2 - 2$.

Dalla condizione iniziale otteniamo c=2, per cui $y_{Cauchy}(t)=2e^{-t^2/2}+t^2-2,\,t\in\mathbb{R}.$

Esercizio 46. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y' = \frac{1}{t}y + 3\\ y(1) = 2. \end{cases}$$

Svolgimento. Determiniamo la soluzione generale dell'equazione omogenea associata, cioè $\int \frac{dy}{y} = \int \frac{dt}{t} \iff \log|y| = \log|t| + \widetilde{c} \iff y_{om}(t) = ct$.

Determiniamo una soluzione particolare $y_p(t) = c(t)t$, per cui $y_p'(t) = c'(t)t + c(t)$, e quindi $c'(t)t + c(t) = c(t) + 3 \iff c'(t) = \frac{3}{t} \implies c(t) = 3\log|t|$. Quindi $y_p(t) = 3t\log|t|$, per cui $y_{qen}(t) = ct + 3t\log|t|$.

Dalla condizione iniziale otteniamo c=2, per cui $y_{Cauchy}(t)=2t+3t\log t,\, t>0.$

Esercizio 47. Determinare, al variare di $\alpha \in \mathbb{R}$, la soluzione del problema di Cauchy

$$\begin{cases} y' = \frac{\alpha}{t}y + t^{\alpha}e^t \\ y(1) = 2. \end{cases}$$

Svolgimento. Determiniamo la soluzione generale dell'equazione omogenea associata, cioè $\int \frac{dy}{y} = \alpha \int \frac{dt}{t} \iff \log|y| = \alpha \log|t| + \widetilde{c} \iff y_{om}(t) = ct^{\alpha}$, in cui si è usato il fatto che |t| = t in un intorno della condizione iniziale $t_0 = 1$.

Determiniamo una soluzione particolare $y_p(t) = c(t)t^{\alpha}$, per cui $y_p'(t) = t^{\alpha}c'(t) + \alpha t^{\alpha-1}c(t)$, e quindi $t^{\alpha}c'(t) + \alpha t^{\alpha-1}c(t) = \alpha t^{\alpha-1}c(t) + t^{\alpha}e^t \iff c'(t) = e^t \implies c(t) = e^t$. Quindi $y_p(t) = t^{\alpha}e^t$, per cui $y_{gen}(t) = ct^{\alpha} + t^{\alpha}e^t$.

Dalla condizione iniziale otteniamo c=2-e, per cui $y_{Cauchy}(t)=(2-e)t^{\alpha}+t^{\alpha}e^{t},\,t>0.$

Esercizio 48. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y' = -\frac{1}{t}y - 1\\ y(1) = 1. \end{cases}$$

Svolgimento. Determiniamo la soluzione generale dell'equazione omogenea associata, cioè $\int \frac{dy}{y}$ $-\int \frac{dt}{t} \iff \log|y| = -\log|t| + \widetilde{c} \iff y_{om}(t) = \frac{c}{t}.$

Determiniamo una soluzione particolare $y_p(t) = \frac{c(t)}{t}$, per cui $y_p'(t) = \frac{c'(t)}{t} - \frac{c(t)}{t^2}$, e quindi $\frac{c'(t)}{t}$ $\frac{c(t)}{t^2} = -\frac{c(t)}{t^2} - 1 \iff c'(t) = -t \implies c(t) = -\frac{1}{2}t^2 \text{ e quindi } y_p(t) = -\frac{1}{2}t, \text{ per cui } y_{gen}(t) = \frac{c}{t} - \frac{1}{2}t.$ Dalla condizione iniziale otteniamo $c = \frac{3}{2}$, per cui $y_{Cauchy}(t) = \frac{3}{2t} - \frac{1}{2}t, t > 0$.

Esercizio 49. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y' = \frac{2}{t}y + \frac{t+1}{t} \\ y(\frac{1}{2}) = 0. \end{cases}$$

Svolgimento. Determiniamo la soluzione generale dell'equazione omogenea associata, cioè $\int \frac{dy}{y}$

 $\int \frac{2\,dt}{t} \iff \log|y| = 2\log|t| + \widetilde{c} \iff y_{om}(t) = ct^2.$ Determiniamo una soluzione particolare $y_p(t) = c(t)t^2$, per cui $y_p'(t) = c'(t)t^2 + 2tc(t)$, e quindi $c'(t)t^2 + 2tc(t) = 2tc(t) + \frac{t+1}{t} \iff c'(t) = \frac{t+1}{t^3} \implies c(t) = -\frac{1}{t} - \frac{1}{2t^2}$ e quindi $y_p(t) = -t - \frac{1}{2}$, per cui $y_{gen}(t) = ct^2 - t - \frac{1}{2}$.

Dalla condizione iniziale otteniamo $0 = \frac{c}{4} - 1 \iff c = 4$, per cui $y_{Cauchy}(t) = 4t^2 - t - \frac{1}{2}$, t > 0.

Esercizio 50. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y' = \frac{1}{t}y - \frac{1}{t(t^2 - 1)} \\ y(\frac{e + 1}{e - 1}) = -1. \end{cases}$$

Svolgimento. Determiniamo la soluzione generale dell'equazione omogenea associata, cioè $\int \frac{dy}{y}$ $\int \frac{dt}{t} \iff \log |y| = \log |t| + \widetilde{c} \iff y_{om}(t) = ct.$ Determiniamo una soluzione particolare $y_p(t) = c(t)t$, per cui $y_p'(t) = c'(t)t + c(t)$, e quindi

 $c'(t)t + c(t) = c(t) - \frac{1}{t(t^2 - 1)} \iff c'(t) = -\frac{1}{t^2(t^2 - 1)}.$ $\operatorname{Ora} - \frac{1}{t^2(t^2 - 1)} = \frac{A}{t} + \frac{B}{t^2} + \frac{C}{t - 1} + \frac{D}{t + 1} \text{ cioè}, -1 = At(t^2 - 1) + B(t^2 - 1) + Ct^2(t + 1) + Dt^2(t - 1),$ e, per il principio d'identità dei polinomi, si ha

$$\begin{cases} A+C+D=0 \\ B+C-D=0 \\ -A=0 \\ -B=-1 \end{cases} \iff \begin{cases} A=0 \\ B=1 \\ C=-D=-\frac{1}{2} \\ 2D=1 \iff D=\frac{1}{2} \end{cases}$$

per cui $c(t) = -\frac{1}{t} + \frac{1}{2} \log \left| \frac{t+1}{t-1} \right|$, e $y_p(t) = -1 + \frac{t}{2} \log \left| \frac{t+1}{t-1} \right|$. Quindi, $y_{gen}(t) = ct - 1 + \frac{t}{2} \log \left| \frac{t+1}{t-1} \right|$. Dalla condizione iniziale otteniamo $-1 = c \frac{e+1}{e-1} - 1 + \frac{e+1}{2(e-1)} \iff c = -\frac{1}{2}$, per cui $y_{Cauchy}(t) = ct - \frac{1}{2}$. $-\frac{1}{2}t - 1 + \frac{t}{2}\log\frac{t+1}{t-1}, t > 1.$

Esercizio 51. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y' = -\frac{1}{t^2}y + e^{1/t} \operatorname{arctg} t \\ y(1) = \frac{e\pi}{4}. \end{cases}$$

Svolgimento. Determiniamo la soluzione generale dell'equazione omogenea associata, cioè $\int \frac{dy}{y} = -\int \frac{dt}{t^2} \iff \log|y| = \frac{1}{t} + \widetilde{c} \iff y_{om}(t) = ce^{1/t}$.

Determiniamo una soluzione particolare $y_p(t) = c(t)e^{1/t}$, per cui $y_p'(t) = c'(t)e^{1/t} - \frac{1}{t^2}c(t)e^{1/t}$, e quindi $c'(t)e^{1/t} - \frac{1}{t^2}c(t)e^{1/t} = -\frac{1}{t^2}c(t)e^{1/t} + e^{1/t} \operatorname{arctg} t \iff c'(t) = \operatorname{arctg} t \implies c(t) = \int \operatorname{arctg} t \, dt = t \operatorname{arctg} t - \int \frac{t}{t^2+1} \, dt = t \operatorname{arctg} t - \frac{1}{2} \log(t^2+1)$ e quindi $y_p(t) = e^{1/t} \left(t \operatorname{arctg} t - \frac{1}{2} \log(t^2+1)\right)$, per cui $y_{gen}(t) = ce^{1/t} + e^{1/t} \left(t \operatorname{arctg} t - \frac{1}{2} \log(t^2+1)\right)$.

Dalla condizione iniziale otteniamo $\frac{e\pi}{4} = ce + e(\frac{\pi}{4} - \frac{1}{2}\log 2) \iff c = \frac{1}{2}\log 2$, per cui $y_{Cauchy}(t) = \frac{\log 2}{2}e^{1/t} + e^{1/t}(t \arctan t - \frac{1}{2}\log(t^2 + 1)) = e^{1/t}(t \arctan t + \frac{1}{2}\log\frac{2}{t^2 + 1}), t > 0.$

Esercizio 52. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y' = -\frac{2t}{t^2 + 1}y + \frac{1}{t(t^2 + 1)} \\ y(1) = -1. \end{cases}$$

Svolgimento. Determiniamo la soluzione generale dell'equazione omogenea associata, cioè $\int \frac{dy}{y} = -\int \frac{2t}{t^2+1} dt \iff \log|y| = -\log(t^2+1) + \widetilde{c} \iff y_{om}(t) = \frac{c}{t^2+1}.$ Determiniamo una soluzione particolare $y_p(t) = \frac{c(t)}{t^2+1}$, per cui $y_p'(t) = \frac{c'(t)}{t^2+1} - \frac{2tc(t)}{(t^2+1)^2}$, e quindi

Determiniamo una soluzione particolare $y_p(t) = \frac{c(t)}{t^2+1}$, per cui $y_p'(t) = \frac{c'(t)}{t^2+1} - \frac{2tc(t)}{(t^2+1)^2}$, e quindi $\frac{c'(t)}{t^2+1} - \frac{2tc(t)}{(t^2+1)^2} = -\frac{2tc(t)}{(t^2+1)^2} + \frac{1}{t(t^2+1)} \iff c'(t) = \frac{1}{t} \iff c(t) = \log|t|$. Quindi, $y_{gen}(t) = \frac{c}{t^2+1} + \frac{\log|t|}{t^2+1}$. Dalla condizione iniziale otteniamo $-1 = \frac{c}{2} \iff c = -2$, per cui $y_{Cauchy}(t) = \frac{\log t - 2}{t^2+1}$, t > 0.

Esercizio 53. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y' = -\frac{2t}{t^2 + 4}y + t \\ y(0) = -1. \end{cases}$$

Svolgimento. Determiniamo la soluzione generale dell'equazione omogenea associata, cioè $\int \frac{dy}{y} = -\int \frac{2t}{t^2+4} dt \iff \log|y| = -\log(t^2+4) + \widetilde{c} \iff y_{om}(t) = \frac{c}{t^2+4}.$

Determiniamo una soluzione particolare $y_p(t) = \frac{c(t)}{t^2+4}$, per cui $y_p'(t) = \frac{c'(t)}{t^2+4} - \frac{2tc(t)}{(t^2+4)^2}$, e quindi $\frac{c'(t)}{t^2+4} - \frac{2tc(t)}{(t^2+4)^2} = -\frac{2tc(t)}{(t^2+4)^2} + t \iff c'(t) = t(t^2+4) \iff c(t) = \frac{1}{4}t^4 + 2t^2$. Quindi, $y_{gen}(t) = \frac{c}{t^2+4} + \frac{t^4+8t^2}{4(t^2+4)}$.

Dalla condizione iniziale otteniamo $-1=\frac{c}{4}\iff c=-4,$ per cui $y_{Cauchy}(t)=\frac{t^4+8t^2-16}{4(t^2+4)},$ $t\in\mathbb{R}.$

Esercizio 54. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y' = -\frac{t}{t^2 + 1}y + \frac{1}{t^2 + 1} \\ y(0) = -1. \end{cases}$$

Svolgimento. Determiniamo la soluzione generale dell'equazione omogenea associata, cioè $\int \frac{dy}{y} = -\int \frac{t}{t^2+1} dt \iff \log|y| = -\frac{1}{2}\log(t^2+1) + \widetilde{c} \iff y_{om}(t) = \frac{c}{\sqrt{t^2+1}}.$

Determiniamo una soluzione particolare $y_p(t) = \frac{c(t)}{\sqrt{t^2+1}}$, per cui $y_p'(t) = \frac{c'(t)}{\sqrt{t^2+1}} - \frac{tc(t)}{(t^2+1)^{3/2}}$, e quindi $\frac{c'(t)}{\sqrt{t^2+1}} - \frac{tc(t)}{(t^2+1)^{3/2}} = -\frac{tc(t)}{(t^2+1)^{3/2}} + \frac{1}{t^2+1} \iff c'(t) = \frac{1}{\sqrt{t^2+1}} \iff c(t) = \int \frac{dt}{\sqrt{t^2+1}} \stackrel{(a)}{=} \int \frac{2z}{z^2+1} \frac{z^2+1}{2z^2} \, dz = \int \frac{c'(t)}{\sqrt{t^2+1}} \, dz = \int \frac{dt}{\sqrt{t^2+1}} \frac{(a)}{z^2+1} \int \frac{dt}{\sqrt{t^2+1}} \, dz = \int \frac{dt}{\sqrt{t^2+1}} \frac{(a)}{z^2+1} \int \frac{dt}{\sqrt{t^2+1}} \, dz = \int \frac{dt}{\sqrt{t^2+1}} \int \frac{dt}{\sqrt{t^2$ $\log |z| = \log(t + \sqrt{t^2 + 1}), \text{ dove in } (a) \text{ si è usato il cambiamento di variabili } \sqrt{t^2 + 1} = z - t \implies t = \frac{z^2 - 1}{2z}, \sqrt{t^2 + 1} = \frac{z^2 + 1}{2z}, dt = \frac{z^2 + 1}{2z^2} dz. \text{ Quindi, } y_{gen}(t) = \frac{c}{\sqrt{t^2 + 1}} + \frac{\log(t + \sqrt{t^2 + 1})}{\sqrt{t^2 + 1}}.$ Dalla condizione iniziale otteniamo c = -1, per cui $y_{Cauchy}(t) = \frac{\log(t + \sqrt{t^2 + 1}) - 1}{\sqrt{t^2 + 1}}, t \in \mathbb{R}.$

Esercizio 55. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y' = -\frac{t}{t^2 + 1}y + \frac{1}{(t^2 + 1)^2} \\ y(0) = -1. \end{cases}$$

Svolgimento. Determiniamo la soluzione generale dell'equazione omogenea associata, cioè $\int \frac{dy}{y}$ $-\int \frac{t}{t^2+1} dt \iff \log|y| = -\frac{1}{2}\log(t^2+1) + \widetilde{c} \iff y_{om}(t) = \frac{c}{\sqrt{t^2+1}}.$

Determiniamo una soluzione particolare $y_p(t) = \frac{c(t)}{\sqrt{t^2+1}}$, per cui $y_p'(t) = \frac{c'(t)}{\sqrt{t^2+1}} - \frac{tc(t)}{(t^2+1)^{3/2}}$, e quindi $\frac{c'(t)}{\sqrt{t^2+1}} - \frac{tc(t)}{(t^2+1)^{3/2}} = -\frac{tc(t)}{(t^2+1)^{3/2}} + \frac{1}{(t^2+1)^2} \iff c'(t) = \frac{1}{(t^2+1)^{3/2}} \iff c(t) = \int \frac{dt}{(t^2+1)^{3/2}} \stackrel{(a)}{=}$ $\int \left(\frac{2z}{z^2+1}\right)^3 \frac{z^2+1}{2z^2} dz = \int \frac{4z}{(z^2+1)^2} dz = -\frac{2}{z^2+1} = \frac{-2}{1+(t+\sqrt{t^2+1})^2} = \frac{-2}{1+t^2+2t\sqrt{t^2+1}+t^2+1} = \frac{-1}{t^2+1+t\sqrt{t^2+1}} = \frac{t\sqrt{t^2+1}-t^2-1}{(t^2+1)^2-t^2(t^2+1)} = \frac{t\sqrt{t^2+1}-t^2-1}{t^2+1} = -1 + \frac{t}{\sqrt{t^2+1}}, \text{ dove in } (a) \text{ si è usato il cambiamento di variabili}$ $\sqrt{t^2+1} = z - t \implies t = \frac{z^2-1}{2z}, \sqrt{t^2+1} = \frac{z^2+1}{2z}, dt = \frac{z^2+1}{2z^2} dz. \text{ Quindi, } y_p(t) = -\frac{1}{\sqrt{t^2+1}} + \frac{t}{t^2+1} \text{ e}$ $y_{gen}(t) = \frac{c}{\sqrt{t^2+1}} + \frac{t}{t^2+1}.$

Dalla condizione iniziale otteniamo c=-1, per cui $y_{Cauchy}(t)=\frac{t-\sqrt{t^2+1}}{t^2+1},$ $t\in\mathbb{R}.$

Esercizio 56. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y' = \frac{t}{t^2 - 1}y + t \\ y(2) = -1. \end{cases}$$

Svolgimento. Determiniamo la soluzione generale dell'equazione omogenea associata, cioè $\int \frac{dy}{y} = \int \frac{t}{t^2-1} dt \iff \log|y| = \frac{1}{2}\log|t^2-1| + \widetilde{c} \iff y_{om}(t) = c\sqrt{t^2-1}$, dove si è usata la condizione iniziale per riscrivere $|t^2 - 1| = t^2 - 1$.

Determiniamo una soluzione particolare $y_p(t) = c(t)\sqrt{t^2 - 1}$, per cui $y_p'(t) = c'(t)\sqrt{t^2 - 1} + \frac{tc(t)}{\sqrt{t^2 - 1}}$ e quindi $c'(t)\sqrt{t^2-1} + \frac{tc(t)}{\sqrt{t^2-1}} = \frac{tc(t)}{\sqrt{t^2-1}} + t \iff c'(t) = \frac{t}{\sqrt{t^2-1}} \iff c(t) = \int \frac{t\,dt}{\sqrt{t^2-1}} \stackrel{(a)}{=} \frac{1}{2}\int \frac{dz}{\sqrt{z}} = \int \frac{t\,dt}{\sqrt{t^2-1}} \stackrel{(a)}{=} \frac{t\,dt}{\sqrt{t^2-1}} \stackrel{(a)}{=} \frac{t\,dt}{\sqrt{t^2-1}} = \int \frac{t\,$ $\sqrt{z} = \sqrt{t^2 - 1}$, dove in (a) si è usato il cambiamento di variabili $z = t^2 - 1 \implies dz = 2t \, dt$. Quindi, $y_{qen}(t) = c\sqrt{t^2 - 1} + t^2 - 1$.

Dalla condizione iniziale otteniamo $-1 = c\sqrt{3} + 3 \iff c = -\frac{4}{\sqrt{3}}$, per cui $y_{Cauchy}(t) = -\frac{4}{\sqrt{3}}\sqrt{t^2 - 1} + t^2 - 1$, t > 1.

Esercizio 57. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y' = -\frac{t}{t^2 - 1}y + \frac{t}{t^2 - 1} \\ y(0) = -1. \end{cases}$$

Svolgimento. Determiniamo la soluzione generale dell'equazione omogenea associata, cioè $\int \frac{dy}{y} = -\int \frac{t}{t^2-1} dt \iff \log|y| = -\frac{1}{2}\log|t^2-1| + \widetilde{c} \iff y_{om}(t) = \frac{c}{\sqrt{1-t^2}}$, dove si è usata la condizione iniziale per riscrivere $|t^2-1| = 1-t^2$.

Determiniamo una soluzione particolare $y_p(t) = \frac{c(t)}{\sqrt{1-t^2}}$, per cui $y_p'(t) = \frac{c'(t)}{\sqrt{1-t^2}} + \frac{tc(t)}{(1-t^2)^{3/2}}$, e quindi $\frac{c'(t)}{\sqrt{1-t^2}} + \frac{tc(t)}{(1-t^2)^{3/2}} = \frac{tc(t)}{(1-t^2)^{3/2}} + \frac{t}{t^2-1} \iff c'(t) = -\frac{t}{\sqrt{1-t^2}} \iff c(t) = -\int \frac{t\,dt}{\sqrt{1-t^2}} \stackrel{(a)}{=} \frac{1}{2}\int \frac{dz}{\sqrt{z}} = \sqrt{z} = \sqrt{1-t^2}$, dove in (a) si è usato il cambiamento di variabili $z = 1 - t^2 \implies dz = -2t\,dt$. Quindi, $y_{gen}(t) = \frac{c}{\sqrt{1-t^2}} + 1$.

Dalla condizione iniziale otteniamo $-1=c+1\iff c=-2$, per cui $y_{Cauchy}(t)=-\frac{2}{\sqrt{1-t^2}}+1$, -1< t<1.

Esercizio 58. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y' = -y \operatorname{ctg} t + 2 \cos t \\ y(\frac{\pi}{4}) = 1. \end{cases}$$

Svolgimento. Determiniamo la soluzione generale dell'equazione omogenea associata, cioè $\int \frac{dy}{y} = -\int \frac{\cos t}{\sin t} dt \iff \log |y| = -\log |\sin t| + \tilde{c} \iff y_{om}(t) = \frac{c}{\sin t}$, dove si è usata la condizione iniziale per riscrivere $|\sin t| = \sin t$.

Determiniamo una soluzione particolare $y_p(t) = \frac{c(t)}{\sin t}$, per cui $y_p'(t) = \frac{c'(t)}{\sin t} - \frac{c(t)\cos t}{\sin^2 t}$, e quindi $\frac{c'(t)}{\sin t} - \frac{c(t)\cos t}{\sin^2 t} = -\frac{c(t)\cos t}{\sin^2 t} + 2\cos t \iff c'(t) = 2\sin t\cos t \iff c(t) = \sin^2 t$. Quindi, $y_{gen}(t) = \frac{c}{\sin t} + \sin t$.

Dalla condizione iniziale otteniamo $1 = c\sqrt{2} + \frac{\sqrt{2}}{2} \iff c = \frac{\sqrt{2}-1}{2}$, per cui $y_{Cauchy}(t) = \frac{\sqrt{2}-1}{2\sin t} + \sin t$, $0 < t < \pi$.

Esercizio 59. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y' = -y \frac{\cos t}{1+\sin t} + \frac{2t}{1+\sin t} \\ y(0) = 1. \end{cases}$$

Svolgimento. Determiniamo la soluzione generale dell'equazione omogenea associata, cioè $\int \frac{dy}{y}$

 $-\int \frac{\cos t}{1+\sin t} dt \iff \log|y| = -\log(1+\sin t) + \widetilde{c} \iff y_{om}(t) = \frac{c}{1+\sin t}.$ Determiniamo una soluzione particolare $y_p(t) = \frac{c(t)}{1+\sin t}$, per cui $y_p'(t) = \frac{c'(t)}{1+\sin t} - \frac{c(t)\cos t}{(1+\sin t)^2}$, e quindi $\frac{c'(t)}{1+\sin t} - \frac{c(t)\cos t}{(1+\sin t)^2} = -\frac{c(t)\cos t}{(1+\sin t)^2} + \frac{2t}{1+\sin t} \iff c'(t) = 2t \iff c(t) = t^2. \text{ Quindi, } y_{gen}(t) = \frac{c+t^2}{1+\sin t}$ Dalla condizione iniziale otteniamo c=1, per cui $y_{Cauchy}(t)=\frac{1+t^2}{1+\sin t},$ $-\frac{\pi}{2}< t<\frac{3\pi}{2}.$

Esercizio 60. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y' = -\frac{1}{\sqrt{t}}y + 1\\ \lim_{t \to 0^+} y(t) = \frac{1}{2}. \end{cases}$$

Svolgimento. Determiniamo la soluzione generale dell'equazione omogenea associata, cioè $\int \frac{dy}{y}$ $-\int \frac{1}{\sqrt{t}} dt \iff \log|y| = -2\sqrt{t} + \widetilde{c} \iff y_{om}(t) = ce^{-2\sqrt{t}}.$

Determiniamo una soluzione particolare $y_p(t) = c(t)e^{-2\sqrt{t}}$, per cui $y_p'(t) = c'(t)e^{-2\sqrt{t}} - \frac{c(t)e^{-2\sqrt{t}}}{\sqrt{t}}$, e quindi $c'(t)e^{2\sqrt{t}} - \frac{c(t)e^{-2\sqrt{t}}}{\sqrt{t}} = -\frac{c(t)e^{-2\sqrt{t}}}{\sqrt{t}} + 1 \iff c'(t) = e^{2\sqrt{t}} \iff c(t) = \int e^{2\sqrt{t}} dt \stackrel{(a)}{=} \frac{1}{2} \int ze^z dz = \frac{1}{2}(z-1)e^z = \frac{1}{2}(2\sqrt{t}-1)e^{2\sqrt{t}},$ dove in (a) si è usato il cambiamento di variabili $z = 2\sqrt{t} \implies t = \frac{1}{2}(z-1)e^z = \frac{1}{2}(z-1$ $\frac{1}{4}z^2, dt = \frac{1}{2}z dz. \text{ Quindi, } y_{gen}(t) = ce^{-2\sqrt{t}} + \sqrt{t} - \frac{1}{2}.$ Dalla condizione iniziale otteniamo $\frac{1}{2} = \lim_{t \to 0^+} y_{gen}(t) = c - \frac{1}{2} \iff c = 1, \text{ per cui } y_{Cauchy}(t) = c - \frac{1}{2}$

 $e^{-2\sqrt{t}} + \sqrt{t} - \frac{1}{2}, t > 0.$

Esercizio 61. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y' = -y \frac{\sin t}{1 - \cos t} + 1 \\ \lim_{t \to 0^+} y(t) = 0. \end{cases}$$

Svolgimento. Determiniamo la soluzione generale dell'equazione omogenea associata, cioè $\int \frac{dy}{y} =$

 $-\int \frac{\sin t}{1-\cos t} dt \iff \log |y| = -\log(1-\cos t) + \widetilde{c} \iff y_{om}(t) = \frac{c}{1-\cos t}.$ Determiniamo una soluzione particolare $y_p(t) = \frac{c(t)}{1-\cos t}$, per cui $y_p'(t) = \frac{c'(t)}{1-\cos t} - \frac{c(t)\sin t}{(1-\cos t)^2}$, e $\text{quindi } \frac{c'(t)}{1-\cos t} - \frac{c(t)\sin t}{(1-\cos t)^2} = -\frac{c(t)\sin t}{(1-\cos t)^2} + 1 \iff c'(t) = 1 - \cos t \iff c(t) = t - \sin t. \text{ Quindi,}$ $y_{gen}(t) = \frac{c+t-\sin t}{1-\cos t}.$

Dalla condizione iniziale otteniamo

$$0 = \lim_{t \to 0^+} y_{gen}(t) = \lim_{t \to 0^+} \frac{c + \frac{1}{6}t^3 + o(t^3)}{\frac{1}{2}t^2(1 + o(1))} = \begin{cases} +\infty \cdot \operatorname{sgn}(c), & c \neq 0, \\ 0, & c = 0. \end{cases}$$

Allora $y_{Cauchy}(t) = \frac{t - \sin t}{1 - \cos t}$, $0 < t < 2\pi$.

Esercizio 62. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y' = -y \frac{\cos t}{1+\sin t} + 1\\ \lim_{t \to (\frac{3\pi}{2})^-} y(t) = 0. \end{cases}$$

Svolgimento. Determiniamo la soluzione generale dell'equazione omogenea associata, cioè $\int \frac{dy}{y}$

 $-\int \frac{\cos t}{1+\sin t} dt \iff \log |y| = -\log(1+\sin t) + \widetilde{c} \iff y_{om}(t) = \frac{c}{1+\sin t}.$ Determiniamo una soluzione particolare $y_p(t) = \frac{c(t)}{1+\sin t}$, per cui $y_p'(t) = \frac{c'(t)}{1+\sin t} - \frac{c(t)\cos t}{(1+\sin t)^2}$, e quindi $\frac{c'(t)}{1+\sin t} - \frac{c(t)\cos t}{(1+\sin t)^2} = -\frac{c(t)\cos t}{(1+\sin t)^2} + 1 \iff c'(t) = 1 + \sin t \iff c(t) = t - \cos t.$ Quindi, $y_{gen}(t) = \frac{c+t-\cos t}{1+\sin t}.$

Dalla condizione iniziale otteniamo

$$0 = \lim_{t \to (\frac{3\pi}{2})^{-}} y_{gen}(t) \stackrel{(a)}{=} \lim_{z \to 0^{+}} \frac{c + \frac{3\pi}{2} - z + \sin z}{1 - \cos z}$$

$$= \lim_{z \to 0^{+}} \frac{c + \frac{3\pi}{2} - \frac{1}{6}z^{3} + o(z^{3})}{\frac{1}{2}z^{2}(1 + o(1))} = \begin{cases} +\infty \cdot \operatorname{sgn}(c + \frac{3\pi}{2}), & c \neq -\frac{3\pi}{2}, \\ 0, & c = -\frac{3\pi}{2}, \end{cases}$$

dove in (a) si è usato il cambiamento di variabili $z = \frac{3\pi}{2} - t$.

Allora
$$y_{Cauchy}(t) = \frac{t - \frac{3\pi}{2} - \cos t}{1 + \sin t}, -\frac{\pi}{2} < t < \frac{3\pi}{2}.$$

Esercizio 63. Dire se esistono soluzioni dispari (cioè y(-x) = -y(x)) dell'equazione

$$y' = y\cos t + \sin t .$$

Svolgimento. Non esistono soluzioni dispari perché se y è soluzione dispari allora il primo membro è pari mentre il secondo è dispari.

Esercizi proposti

Esercizio 64. Determinare la soluzione dei seguenti problemi di Cauchy

(1)
$$\begin{cases} y' = y + x \\ y(1) = e - 2 \end{cases}$$

(2)
$$\begin{cases} y' = 8xy + x^2 \\ y(1) = 2 \end{cases}$$

(3)
$$\begin{cases} y' = \frac{y}{x} + x^2 e^x \\ y(1) = -1 \end{cases}$$

(4)
$$\begin{cases} y' = \frac{x}{x^2 + 1} y + x \\ y(0) = 2 \end{cases}$$

(5)
$$\begin{cases} y' = \frac{1-x^4}{x}y + x^4 \\ y(2) = -2 \end{cases}$$

(6)
$$\begin{cases} y' = -\frac{2}{x}y + \frac{1}{x+1} \\ y(1) = 3 \end{cases}$$

- (7) $\begin{cases} y' = -\frac{2}{x+1}y + \frac{1}{x} \\ y(1) = 3 \end{cases}$
- (8) $\begin{cases} y' = -\frac{y}{x} + \frac{1}{x^2} \\ y(1) = 2 \end{cases}$
- (9) $\begin{cases} y' = \frac{2y}{x} + \frac{x+1}{x} \\ y(1) = 3 \end{cases}$
- (10) $\begin{cases} y' = \frac{x}{x^2 1} y + \frac{1}{x} \\ y(2) = 0 \end{cases}$
- (11) $\begin{cases} y' = \frac{x-1}{x} y + x^2 \\ y(1) = 0 \end{cases}$
- (12) $\begin{cases} y' = \frac{y}{x(1+x^2)} + \frac{\sqrt{x^2+1}}{x} \\ y(2) = 0 \end{cases}$
- (13) $\begin{cases} y' = \frac{y+x}{\sqrt{x}} \\ y(1) = e \end{cases}$
- (14) $\begin{cases} y' = -\frac{y}{2x} + \sqrt{x+1} \\ y(1) = 0 \end{cases}$
- $(15) \begin{cases} y' = \frac{y}{x \log x} + 1\\ y(e) = 1 \end{cases}$
- (16) $\begin{cases} y' = (y + \cos^2 x) \cos x \\ y(0) = 1 \end{cases}$
- (17) $\begin{cases} y' = (y + \cos^2 x) \sin x \\ y(\frac{\pi}{2}) = 1 \end{cases}$
- (18) $\begin{cases} y' = y \, \operatorname{ctg} x + 1 \\ y(\frac{\pi}{2}) = 0 \end{cases}$
- (19) $\begin{cases} y' = y \operatorname{tg} x + \sin x \\ y(0) = 2 \end{cases}$
- (20) $\begin{cases} y' = \frac{y}{\lg x} + \sin x \\ y(\frac{\pi}{6}) = 1 \end{cases}$

1.5 Equazioni di Bernoulli

1.5.1 Esercizi svolti

Esercizio 65. Risolvere il seguente problema di Cauchy

$$\begin{cases} y' = -\frac{1}{t}y - \frac{2}{t^2}y^2 \\ y(1) = 2. \end{cases}$$

Svolgimento. È un'equazione di Bernoulli. Poniamo $v=y^{1-2}=\frac{1}{y} \implies y=\frac{1}{v}, \ y'=-\frac{v'}{v^2}, \ \text{per cui l'equazione diventa} \ -\frac{v'}{v^2}=-\frac{1}{tv}-\frac{2}{t^2v^2} \iff v'=\frac{v}{t}+\frac{2}{t^2}, \ \text{e quindi il problema da risolvere si trasforma in}$

 $\begin{cases} v' = \frac{v}{t} + \frac{2}{t^2} \\ v(1) = \frac{1}{2}. \end{cases}$

L'equazione è lineare. L'equazione omogenea associata ha soluzione $v_{om}(t)=ct$. Cerchiamo una soluzione dell'equazione non omogenea della forma $v_p(t)=c(t)t$, per cui $v_p'(t)=c'(t)t+c(t)$, e quindi $c'(t)t+c(t)=c(t)+\frac{2}{t^2}\iff c(t)=\int\frac{2}{t^3}\,dt=-\frac{1}{t^2}$. Allora $v_p(t)=-\frac{1}{t}$ e $v_{gen}(t)=ct-\frac{1}{t}$. Usando la condizione iniziale, si ottiene $c=\frac{3}{2}$, per cui $v_{Cauchy}(t)=\frac{3}{2}t-\frac{1}{t}=\frac{3t^2-2}{2t}$. Allora $y_{Cauchy}(t)=\frac{2t}{3t^2-2}$. L'intervallo di esistenza è $t>\sqrt{\frac{2}{3}}$.

Esercizio 66. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y' = -\frac{1}{t}y + y^2t \log t \\ y(1) = \frac{1}{2}. \end{cases}$$

Svolgimento. È un'equazione di Bernoulli. Poniamo $v=y^{1-2}=\frac{1}{y} \implies y=\frac{1}{v}, \ y'=-\frac{v'}{v^2},$ per cui l'equazione diventa $-\frac{v'}{v^2}=-\frac{1}{tv}+\frac{t\log t}{v^2} \iff v'=\frac{v}{t}-t\log t,$ e quindi il problema da risolvere si trasforma in

$$\begin{cases} v' = \frac{v}{t} - t \log t \\ v(1) = 2. \end{cases}$$

L'equazione è lineare. L'equazione omogenea associata ha soluzione $v_{om}(t) = ct$. Cerchiamo una soluzione dell'equazione non omogenea della forma $v_p(t) = c(t)t$, per cui $v_p'(t) = c'(t)t + c(t)$, e quindi $c'(t)t + c(t) = c(t) - t \log t \iff c(t) = -\int \log t \, dt = -t \log t + t$. Allora $v_p(t) = t^2(1 - \log t)$ e $v_{gen}(t) = ct + t^2(1 - \log t)$. Usando la condizione iniziale, si ottiene c = 1, per cui $v_{Cauchy}(t) = t + t^2(1 - \log t)$. Allora $v_{Cauchy}(t) = t + t^2(1 - \log t)$. L'intervallo di esistenza si determina numericamente.

Esercizio 67. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y' = y - (t^2 + t + 1)y^2 \\ y(0) = 1. \end{cases}$$

36

Svolgimento. È un'equazione di Bernoulli. Poniamo $v=y^{1-2}=\frac{1}{y} \implies y=\frac{1}{v}, \ y'=-\frac{v'}{v^2},$ per cui l'equazione diventa $-\frac{v'}{v^2}=\frac{1}{v}-\frac{t^2+t+1}{v^2} \iff v'=-v+t^2+t+1,$ e quindi il problema da risolvere si trasforma in

 $\begin{cases} v' = -v + t^2 + t + 1 \\ v(0) = 1. \end{cases}$

L'equazione è lineare. L'equazione omogenea associata ha soluzione $v_{om}(t) = ce^{-t}$. Cerchiamo una soluzione dell'equazione non omogenea della forma $v_p(t) = c(t)e^{-t}$, per cui $v_p'(t) = c'(t)e^{-t} - c(t)e^{-t}$, e quindi $c'(t)e^{-t} - c(t)e^{-t} = -c(t)e^{-t} + t^2 + t + 1 \iff c(t) = \int (t^2 + t + 1)e^t \, dt = (t^2 + t + 1)e^t - \int (2t + 1)e^t \, dt = (t^2 + t + 1)e^t - (2t + 1)e^t + 2e^t = (t^2 - t + 2)e^t$. Allora $v_p(t) = t^2 - t + 2$ e $v_{gen}(t) = ce^{-t} + t^2 - t + 2$. Usando la condizione iniziale, si ottiene c = -1, per cui $v_{Cauchy}(t) = -e^{-t} + t^2 - t + 2$. Allora $v_{Cauchy}(t) = \frac{1}{t^2 - t + 2 - e^{-t}}$. L'intervallo di esistenza si determina numericamente.

Esercizio 68. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y' = ty + y^2 \\ y(1) = 1. \end{cases}$$

Svolgimento. È un'equazione di Bernoulli. Poniamo $v=y^{1-2}=\frac{1}{y} \implies y=\frac{1}{v}, \ y'=-\frac{v'}{v^2}$, per cui l'equazione diventa $-\frac{v'}{v^2}=\frac{t}{v}+\frac{1}{v^2} \iff v'=-tv-1$, e quindi il problema da risolvere si trasforma in

$$\begin{cases} v' = -tv - 1 \\ v(1) = 1. \end{cases}$$

L'equazione è lineare. L'equazione omogenea associata ha soluzione $v_{om}(t) = ce^{-t^2/2}$. Cerchiamo una soluzione dell'equazione non omogenea della forma $v_p(t) = c(t)e^{-t^2/2}$, per cui $v_p'(t) = c'(t)e^{-t^2/2} - tc(t)e^{-t^2/2} - tc(t)e^{-t^2/2} - tc(t)e^{-t^2/2} - 1 \iff c(t) = -\int_1^t e^{s^2/2} ds$. Allora $v_p(t) = -e^{-t^2/2} \int_1^t e^{s^2/2} ds$ e $v_{gen}(t) = ce^{-t^2/2} - e^{-t^2/2} \int_1^t e^{s^2/2} ds$. Usando la condizione iniziale, si ottiene $c = e^{1/2}$, per cui $v_{Cauchy}(t) = e^{(1-t^2)/2} - e^{-t^2/2} \int_1^t e^{s^2/2} ds$. Allora $v_{Cauchy}(t) = e^{(1-t^2)/2} - e^{-t^2/2} \int_1^t e^{s^2/2} ds$. L'intervallo di esistenza si determina numericamente.

Esercizio 69. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y' = 4y + 2e^t y^{1/2} \\ y(0) = 4. \end{cases}$$

Svolgimento. È un'equazione di Bernoulli. Poniamo $v=y^{1-1/2}=\sqrt{y} \implies y=v^2, y'=2vv'$, per cui l'equazione diventa $2vv'=4v^2+2e^tv \iff v'=2v+e^t$, e quindi il problema da risolvere si trasforma in

$$\begin{cases} v' = 2v + e^t \\ v(0) = 2. \end{cases}$$

L'equazione è lineare. L'equazione omogenea associata ha soluzione $v_{om}(t) = ce^{2t}$. Cerchiamo una soluzione dell'equazione non omogenea della forma $v_p(t) = c(t)e^{2t}$, per cui $v'_p(t) = c'(t)e^{2t} + 2c(t)e^{2t}$,

e quindi $c'(t)e^{2t} + 2c(t)e^{2t} = 2c(t)e^{2t} + e^t \iff c(t) = \int e^{-t} dt = -e^{-t}$. Allora $v_p(t) = -e^t$ e $v_{gen}(t) = ce^{2t} - e^t$. Usando la condizione iniziale, si ottiene c = 3, per cui $v_{Cauchy}(t) = 3e^{2t} - e^t$. Allora $y_{Cauchy}(t) = (3e^{2t} - e^t)^2 = 9e^{4t} - 6e^{3t} + e^{2t}$, $t \in \mathbb{R}$.

Esercizio 70. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y' = \frac{2}{t}y + 4t^2y^{1/2} \\ y(1) = 0. \end{cases}$$

Svolgimento. È un'equazione di Bernoulli. Poniamo $v=y^{1-1/2}=\sqrt{y} \implies y=v^2, \, y'=2vv',$ per cui l'equazione diventa $2vv'=\frac{2}{t}v^2+4t^2v \iff v'=\frac{v}{t}+2t^2,$ e quindi il problema da risolvere si trasforma in

$$\begin{cases} v' = \frac{v}{t} + 2t^2 \\ v(1) = 0. \end{cases}$$

L'equazione è lineare. L'equazione omogenea associata ha soluzione $v_{om}(t) = ct$. Cerchiamo una soluzione dell'equazione non omogenea della forma $v_p(t) = c(t)t$, per cui $v_p'(t) = c'(t)t + c(t)$, e quindi $c'(t)t + c(t) = c(t) + 2t^2 \iff c(t) = \int 2t \, dt = t^2$. Allora $v_p(t) = t^3$ e $v_{gen}(t) = ct + t^3$. Usando la condizione iniziale, si ottiene c = -1, per cui $v_{Cauchy}(t) = t^3 - t$. Allora $y_{Cauchy}(t) = (t^3 - t)^2 = t^6 - 2t^4 + t^2$, t > 0.

Esercizio 71. Risolvere il seguente problema di Cauchy

$$\begin{cases} y' = \frac{1}{2t}y + ty^{1/3} \\ y(1) = 8. \end{cases}$$

Svolgimento. È un'equazione di Bernoulli. Poniamo $v=y^{1-1/3}=y^{2/3} \implies y=v^{3/2}, \ y'=\frac{3}{2}v^{1/2}v',$ per cui l'equazione diventa $\frac{3}{2}v^{1/2}v'=\frac{1}{2t}v^{3/2}+tv^{1/2} \iff v'=\frac{v}{3t}+\frac{2}{3}t,$ e quindi il problema da risolvere si trasforma in

$$\begin{cases} v' = \frac{v}{3t} + \frac{2}{3}t \\ v(1) = 4. \end{cases}$$

L'equazione è lineare. L'equazione omogenea associata ha soluzione $\int \frac{dv}{v} = \int \frac{dt}{3t} \iff \log|v| = \frac{1}{3}\log|t| + \widetilde{c} \iff v_{om}(t) = ct^{1/3}$. Cerchiamo una soluzione dell'equazione non omogenea della forma $v_p(t) = c(t)t^{1/3}$, per cui $v_p'(t) = c'(t)t^{1/3} + \frac{1}{3}c(t)t^{-2/3}$, e quindi $c'(t)t^{1/3} + \frac{1}{3}c(t)t^{-2/3} = \frac{1}{3}c(t)t^{-2/3} + \frac{2}{3}t \iff c(t) = \int \frac{2}{3}t^{2/3} dt = \frac{2}{5}t^{5/3}$. Allora $v_p(t) = \frac{2}{5}t^2$ e $v_{gen}(t) = ct^{1/3} + \frac{2}{5}t^2$. Usando la condizione iniziale, si ottiene $c = \frac{18}{5}$, per cui $v_{Cauchy}(t) = \frac{18}{5}t^{1/3} + \frac{2}{5}t^2$. Allora $v_{Cauchy}(t) = \left(\frac{18}{5}t^{1/3} + \frac{2}{5}t^2\right)^{3/2}$, t > 0.

Esercizio 72. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y' = -\frac{1+t}{2t}y + \frac{e^t}{2t}\frac{1}{y} \\ y(1) = \sqrt{e}. \end{cases}$$

Svolgimento. È un'equazione di Bernoulli. Poniamo $v=y^{1+1}=y^2 \implies y=\sqrt{v}, \ y'=\frac{1}{2}v^{-1/2}v',$ per cui l'equazione diventa $\frac{1}{2}v^{-1/2}v'=-\frac{1+t}{2t}v^{1/2}+\frac{e^t}{2t}v^{-1/2}\iff v'=-\frac{1+t}{t}v+\frac{e^t}{t},$ e quindi il problema da risolvere si trasforma in

 $\begin{cases} v' = -\frac{1+t}{t}v + \frac{e^t}{t} \\ v(1) = e. \end{cases}$

L'equazione è lineare. L'equazione omogenea associata ha soluzione $\int \frac{dv}{v} = -\int \frac{1+t}{t} dt \iff \log|v| = -\log|t| - t + \widetilde{c} \iff v_{om}(t) = ce^{-\log|t| - t} = \frac{c}{t}e^{-t}$. Cerchiamo una soluzione dell'equazione non omogenea della forma $v_p(t) = \frac{c(t)}{t}e^{-t}$, per cui $v_p'(t) = \frac{c'(t)}{t}e^{-t} - \frac{t+1}{t^2}e^{-t}c(t)$, e quindi $\frac{c'(t)}{t}e^{-t} - \frac{t+1}{t^2}e^{-t}c(t) = -\frac{t+1}{t} \cdot \frac{c(t)}{t}e^{-t} + \frac{e^t}{t} \iff c(t) = \int e^{2t} dt = \frac{1}{2}e^{2t}$. Allora $v_p(t) = \frac{e^t}{2t} e^{-t} e^{-t} + \frac{e^t}{2t}$. Usando la condizione iniziale, si ottiene $c = \frac{e^2}{2}$, per cui $v_{Cauchy}(t) = \frac{1}{2t}e^{2-t} + \frac{e^t}{2t} = \frac{1}{2t}(e^{2-t} + e^t)$. Allora $v_{Cauchy}(t) = \sqrt{\frac{1}{2t}(e^{2-t} + e^t)}$, t > 0.

Esercizio 73. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y' = -\frac{1+t}{2t}y + \frac{e^t}{2t}\frac{1}{y} \\ y(1) = -\sqrt{e}. \end{cases}$$

Svolgimento. È un'equazione di Bernoulli. Poniamo $v=y^{1+1}=y^2 \implies y=-\sqrt{v}, \ y'=-\frac{1}{2}v^{-1/2}v',$ per cui l'equazione diventa $-\frac{1}{2}v^{-1/2}v'=\frac{1+t}{2t}v^{1/2}-\frac{e^t}{2t}v^{-1/2}\iff v'=-\frac{1+t}{t}v+\frac{e^t}{t},$ e quindi il problema da risolvere si trasforma in

$$\begin{cases} v' = -\frac{1+t}{t}v + \frac{e^t}{t} \\ v(1) = e. \end{cases}$$

L'equazione è lineare. L'equazione omogenea associata ha soluzione $\int \frac{dv}{v} = -\int \frac{1+t}{t} dt \iff \log|v| = -\log|t| - t + \widetilde{c} \iff v_{om}(t) = ce^{-\log|t| - t} = \frac{c}{t}e^{-t}$. Cerchiamo una soluzione dell'equazione non omogenea della forma $v_p(t) = \frac{c(t)}{t}e^{-t}$, per cui $v_p'(t) = \frac{c'(t)}{t}e^{-t} - \frac{t+1}{t^2}e^{-t}c(t)$, e quindi $\frac{c'(t)}{t}e^{-t} - \frac{t+1}{t^2}e^{-t}c(t) = -\frac{t+1}{t} \cdot \frac{c(t)}{t}e^{-t} + \frac{e^t}{t} \iff c(t) = \int e^{2t} dt = \frac{1}{2}e^{2t}$. Allora $v_p(t) = \frac{e^t}{2t}$ e $v_{gen}(t) = \frac{c}{t}e^{-t} + \frac{e^t}{2t}$. Usando la condizione iniziale, si ottiene $c = \frac{e^2}{2}$, per cui $v_{Cauchy}(t) = \frac{1}{2t}e^{2-t} + \frac{e^t}{2t} = \frac{1}{2t}(e^{2-t} + e^t)$. Allora $v_{Cauchy}(t) = -\sqrt{\frac{1}{2t}(e^{2-t} + e^t)}$, t > 0.

Esercizio 74. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y' = -\frac{1+t}{2t}y + \frac{e^t}{2t}\frac{1}{y} \\ \lim_{t \to 0} y(t) \in \mathbb{R}. \end{cases}$$

Svolgimento. È un'equazione di Bernoulli. Poniamo $v=y^{1+1}=y^2 \implies y=\pm \sqrt{v}, \ y'=\pm \frac{1}{2}v^{-1/2}v',$ per cui l'equazione diventa $\pm \frac{1}{2}v^{-1/2}v'=-\frac{1+t}{2t}(\pm v^{1/2})\pm \frac{e^t}{2t}v^{-1/2} \iff v'=-\frac{1+t}{t}v+\frac{e^t}{t},$ e quindi il problema da risolvere si trasforma in

$$\begin{cases} v' = -\frac{1+t}{t}v + \frac{e^t}{t} \\ \lim_{t \to 0} v(t) \in [0, \infty). \end{cases}$$

L'equazione è lineare. L'equazione omogenea associata ha soluzione $\int \frac{dv}{v} = -\int \frac{1+t}{t} \, dt \iff \log |v| = -\log |t| - t + \widetilde{c} \iff v_{om}(t) = ce^{-\log |t| - t} = \frac{c}{t}e^{-t}.$ Cerchiamo una soluzione dell'equazione non omogenea della forma $v_p(t) = \frac{c(t)}{t}e^{-t}$, per cui $v_p'(t) = \frac{c'(t)}{t}e^{-t} - \frac{t+1}{t^2}e^{-t}c(t)$, e quindi $\frac{c'(t)}{t}e^{-t} - \frac{t+1}{t^2}e^{-t}c(t) = -\frac{t+1}{t} \cdot \frac{c(t)}{t}e^{-t} + \frac{e^t}{t} \iff c(t) = \int e^{2t} \, dt = \frac{1}{2}e^{2t}.$ Allora $v_p(t) = \frac{e^t}{2t}$ e $v_{gen}(t) = \frac{c}{t}e^{-t} + \frac{e^t}{2t} = \frac{1}{2t}(2ce^{-t} + e^t).$ Usando la condizione iniziale, si ottiene $\lim_{t\to 0} \frac{2ce^{-t} + e^t}{2t} = \lim_{t\to 0} \frac{2c(1-t+o(t))+1+t+o(t)}{2t} = \lim_{t\to 0} \frac{2c+1+t(1-2c)+o(t)}{2t} = \begin{cases} 1 & c = -\frac{1}{2}, \\ \frac{t}{T} & c \neq -\frac{1}{2}, \end{cases}$ per cui $v_{Cauchy}(t) = \frac{e^t-e^{-t}}{2t}.$ Allora $v_{Cauchy}(t) = \frac{e^t-e^{-t}}{2t}, t > 0.$

Esercizio 75. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y' = \frac{y}{t} - y^3 \\ y(1) = \sqrt{3}. \end{cases}$$

Svolgimento. È un'equazione di Bernoulli. Poniamo $v=y^{1-3}=y^{-2} \implies y=v^{-1/2}, y'=-\frac{1}{2}v^{-3/2}v',$ per cui l'equazione diventa $-\frac{1}{2}v^{-3/2}v'=\frac{1}{t}v^{-1/2}-v^{-3/2} \iff v'=-\frac{2}{t}v+2,$ e quindi il problema da risolvere si trasforma in

$$\begin{cases} v' = -\frac{2}{t}v + 2\\ v(1) = \frac{1}{3}. \end{cases}$$

L'equazione è lineare. L'equazione omogenea associata ha soluzione $\int \frac{dv}{v} = -\int \frac{2}{t} \, dt \iff \log |v| = -\log t^2 + \widetilde{c} \iff v_{om}(t) = \frac{c}{t^2}.$ Cerchiamo una soluzione dell'equazione non omogenea della forma $v_p(t) = \frac{c(t)}{t^2}, \text{ per cui } v_p'(t) = \frac{c'(t)}{t^2} - \frac{2}{t^3}c(t), \text{ e quindi } \frac{c'(t)}{t^2} - \frac{2}{t^3}c(t) = -\frac{2}{t^3}c(t) + 2 \iff c(t) = \int 2t^2 \, dt = \frac{2}{3}t^3.$ Allora $v_p(t) = \frac{2}{3}t \text{ e } v_{gen}(t) = \frac{c}{t^2} + \frac{2}{3}t.$ Usando la condizione iniziale, si ottiene $c = -\frac{1}{3}, \text{ per cui } v_{Cauchy}(t) = \frac{2}{3}t - \frac{1}{3t^2} = \frac{2t^3 - 1}{3t^2}.$ Allora $v_{Cauchy}(t) = \frac{1}{\sqrt{2}}t - \frac{1}{\sqrt{2}}t - \frac{1}{3}t^2 = \frac{2t^3 - 1}{3t^2}$. Allora $v_{Cauchy}(t) = \frac{t\sqrt{3}}{\sqrt{2}t^3 - 1}, t > \frac{1}{\sqrt[3]{2}}.$

1.5.2 Esercizi proposti

Esercizio 76. Determinare la soluzione generale delle seguenti equazioni

- (1) $y' = 2ty + y^3$,
- $(2) y' = ty + ty^3,$
- $(3) y' = -ty + ty^3,$

(4)
$$y' = \frac{1}{t}y - \frac{1}{t}y^3$$
,

(5)
$$y' = -\frac{1}{t+1}y - \frac{(t+1)^3}{2}y^3$$
,

(6)
$$y' = -\frac{1}{t}y + y^2 \log t$$
,

(7)
$$y' = -\frac{1}{t}y + \frac{1}{t}y^2$$
,

(8)
$$y' = \frac{1}{t}y - \frac{1}{t}y^2$$
,

(9)
$$y' = \frac{1}{t}y + \frac{1}{t}y^2$$
,

(10)
$$y' = -\frac{1}{t}y - y^2$$
,

(11)
$$y' = -y - ty^2$$
,

$$(12) \ y' = \frac{1}{2}ty - ty^2,$$

(13)
$$y' = 2y - e^t y^2$$
,

$$(14) y' = y \cos t - y^2 \sin t \cos t,$$

$$(15) \ y' = \frac{1}{t}y + \frac{1}{y},$$

$$(16) \ y' = \frac{1}{2t}y + \frac{1}{2y},$$

$$(17) \ y' = \frac{1}{2}y - \frac{2t}{y},$$

$$(18) \ y' = -\frac{1}{4t^{3/2}}y + \frac{1}{4t^{3/2}y},$$

(19)
$$y' = -y + \frac{\cos t}{y}$$
,

(20)
$$y' = -\frac{t}{t^2 + 1}y - \frac{1}{(t^2 + 1)^2y}$$
,

(21)
$$y' = \frac{1}{2t}y - \frac{t^2 - 1}{2tu}$$
,

(22)
$$y' = \frac{1}{4}y \operatorname{tg} t - \frac{\sin t}{4y^3}$$
,

(23)
$$y' = -\frac{1}{2t}y - \frac{\operatorname{tg} t}{2t^3 y^5},$$

(24)
$$y' = \frac{2}{t}y + 2t\sqrt{y}$$
,

(25)
$$y' = \frac{4}{t}y + 2t\sqrt{y}$$
,

(26)
$$y' = -2y + \sqrt{y}\sin t$$
,

(27)
$$y' = \frac{2t}{3(t^2 - 1)}y + \frac{2t}{3\sqrt{y}},$$

$$(28) \ y' = y - ty^{1/3},$$

$$(29) \ y' = 2ty + 2ty^{1/3},$$

(30)
$$y' = \frac{t}{t^2 - 1}y + ty^{3/2}$$
,

(31)
$$y' = \frac{3t}{2(t^2 - 1)}y + \frac{3}{2}ty^{3/2}$$
,

(32)
$$y' = -\frac{2}{t}y + \frac{2\log t}{t}y^{3/2}$$
.

2 Teorema di esistenza e unicità locale

2.1 Integrali di funzioni a valori vettoriali

IntVett1 Definizione 2.1. Sia $f:[a,b] \to \mathbb{R}^N$. Essa si dice integrabile secondo Riemann in [a,b] se $t \in [a,b] \to v \cdot f(t) \in \mathbb{R}$ è \mathbb{R} -integrabile, per ogni $v \in \mathbb{R}^N$.

IntVett2 Teorema 2.2. Sia $f \in \mathcal{R}([a,b];\mathbb{R}^N)$. Allora $\exists ! I \in \mathbb{R}^N$ tale che $I \cdot v = \int_a^b v \cdot f(t) \, dt$, per ogni $v \in \mathbb{R}^N$. Poniamo $\int_a^b f(t) \, dt := I$. Se $f = (f_1, \dots, f_N)$, allora $\int_a^b f(t) \, dt = \left(\int_a^b f_1(t) \, dt, \dots, \int_a^b f_N(t) \, dt\right)$.

Dim. Poiché $v \in \mathbb{R}^N \to \int_a^b v \cdot f(t) dt \in \mathbb{R}$ è un funzionale lineare, esiste un'unico $I \in \mathbb{R}^N$ tale che $I \cdot v = \int_a^b v \cdot f(t) dt$, per ogni $v \in \mathbb{R}^N$.

Inoltre, se $v=e_k$, un vettore della base canonica di \mathbb{R}^N , allora $I \cdot e_k = \int_a^b e_k \cdot f(t) \, dt = \int_a^b f_k(t) \, dt$, da cui si ha la tesi.

IntVett3 Teorema 2.3. Siano $f, g \in \Re([a, b]; \mathbb{R}^N), \alpha, \beta \in \mathbb{R}$. Allora

- (1) $\alpha f + \beta g \in \mathcal{R}([a,b];\mathbb{R}^N)$ $e \int_a^b (\alpha f + \beta g) = \alpha \int_a^b f + \beta \int_a^b g$,
- (2) $f \cdot g \in \mathcal{R}([a, b]; \mathbb{R})$.

Dim. (1) Poiché, per ogni $v \in \mathbb{R}^N$, si ha $v \cdot (\alpha f + \beta g) = \alpha(v \cdot f) + \beta(v \cdot g)$, la tesi segue dall'analoga proprietà per funzioni scalari.

(2) Siano $f = (f_1, \ldots, f_N)$ e $g = (g_1, \ldots, g_N)$, per cui $f \cdot g = \sum_{i=1}^N f_i g_i$. Allora la tesi segue dai teoremi di integrabilità del prodotto e della combinazione lineare di funzioni scalari integrabili. \square

IntVett4 Teorema 2.4. Siano $f \in \mathcal{R}([a,b];\mathbb{R}^N)$, $K := \overline{f([a,b])}$, $\varphi \in C^0(K;\mathbb{R}^M)$. Allora

- (1) $\varphi \circ f \in \mathcal{R}([a,b]; \mathbb{R}^M)$
- (2) $||f|| \in \mathcal{R}([a,b];\mathbb{R}), \ e \left\| \int_a^b f(t) \, dt \right\| \le \int_a^b ||f(t)|| \ dt.$

Dim. (1) Poiché ogni componente di f è limitata, f([a,b]) è limitato, e quindi K è compatto, e φ è uniformemente continua su K. Sia $\varepsilon > 0$, e sia $\delta_{\varepsilon} \in (0,\varepsilon)$ tale che, per ogni $x,y \in K$, $||x-y||_{\infty} < \varepsilon$, si ha $||\varphi(x)-\varphi(y)||_{\infty} < \varepsilon$. Poiché, posto $f=(f_1,\ldots,f_N)$, si ha $f_k \in \mathcal{R}([a,b])$, per ogni $k=1,\ldots,N$, ne segue che esiste $\mathcal{D}_{\varepsilon}=\{a=x_0< x_1<\ldots< x_n=b\}$ tale che $S(f_k,\mathcal{D}_{\varepsilon})-s(f_k,\mathcal{D}_{\varepsilon})<\delta_{\varepsilon}^2$, per ogni $k=1,\ldots,N$. Ricordiamo che, se $g:E\to\mathbb{R}$, si pone $\mathrm{osc}_E g=\mathrm{sup}_E g-\mathrm{inf}_E g$. Siano $\mathcal{A}:=\{i\in\{1,\ldots,N\}:\mathrm{osc}_{[x_{i-1},x_i]}f_k<\delta_{\varepsilon},\forall k=1,\ldots,N\}$, e $\mathcal{B}:=\{1,\ldots,N\}\setminus\mathcal{A}$. Allora, per ogni $i\in\mathcal{A},\ h\in\{1,\ldots,M\}$, si ha $\mathrm{osc}_{[x_{i-1},x_i]}\varphi_h\circ f_k\leq \varepsilon$; mentre, se $i\in\mathcal{B}$, possiamo scrivere, per ogni $h\in\{1,\ldots,M\}$, $\mathrm{osc}_{[x_{i-1},x_i]}\varphi_h\circ f_k\leq 2\,\mathrm{sup}_K\,||\varphi_h|\leq 2\,\mathrm{sup}_K\,||\varphi||_{\infty}$. Osserviamo ora che

$$\delta_{\varepsilon} \sum_{i \in \mathcal{B}} (x_{i} - x_{i-1}) \overset{(a)}{\leq} \sum_{i \in \mathcal{B}} (x_{i} - x_{i-1}) \operatorname{osc}_{[x_{i-1}, x_{i}]} f_{k_{i}} \leq \sum_{i \in \mathcal{B}} (x_{i} - x_{i-1}) \sum_{k=1}^{N} \operatorname{osc}_{[x_{i-1}, x_{i}]} f_{k}$$

$$= \sum_{k=1}^{N} \sum_{i \in \mathcal{B}} (x_{i} - x_{i-1}) \operatorname{osc}_{[x_{i-1}, x_{i}]} f_{k} \leq \sum_{k=1}^{n} [S(f_{k}, \mathcal{D}_{\varepsilon}) - s(f_{k}, \mathcal{D}_{\varepsilon})] < N\delta_{\varepsilon}^{2},$$

dove in (a) si è usato il fatto che $i \in \mathcal{B} \implies$ esiste $k_i \in \{1, \dots, N\}$ tale che $\operatorname{osc}_{[x_{i-1}, x_i]} f_{k_i} \geq \delta_{\varepsilon}$. Quindi, $\sum_{i \in \mathcal{B}} (x_i - x_{i-1}) < n\delta_{\varepsilon} < n\varepsilon$. Ma allora, per ogni $h \in \{1, \dots, m\}$, si ha

$$\sum_{i=1}^{p} (x_i - x_{i-1}) \operatorname{osc}_{[x_{i-1}, x_i]} \varphi_h \circ f = \sum_{i \in \mathcal{A}} (x_i - x_{i-1}) \operatorname{osc}_{[x_{i-1}, x_i]} \varphi_h \circ f + \sum_{i \in \mathcal{B}} (x_i - x_{i-1}) \operatorname{osc}_{[x_{i-1}, x_i]} \varphi_h \circ f$$

$$< \varepsilon \sum_{i \in \mathcal{A}} (x_i - x_{i-1}) + 2 \sup_{K} \|\varphi\|_{\infty} \sum_{i \in \mathcal{B}} (x_i - x_{i-1})$$

$$\leq \varepsilon (b - a) + 2 \sup_{K} \|\varphi\|_{\infty} \cdot N\varepsilon = \varepsilon (b - a + 2N \sup_{K} \|\varphi\|_{\infty}),$$

e, per l'arbitrarietà di $\varepsilon > 0$, segue che $\varphi_h \circ f \in \mathcal{R}([a,b])$, per ogni $h \in \{1,\ldots,m\}$, e quindi che $\varphi \circ f \in \mathcal{R}([a,b];\mathbb{R}^M)$.

(2) Poiché $\varphi: x \in \mathbb{R}^N \to \|x\| \in \mathbb{R}$ è continua, da (1) segue che $\|f\| = \varphi \circ f \in \mathcal{R}([a,b])$. Posto $v:=\int_a^b f(t)\,dt$, supponiamo che $v\neq 0$, altrimenti non c'è niente da dimostrare. Allora $\left\|\int_a^b f(t)\,dt\right\|^2 = \|v\|^2 = v\cdot v = v\cdot \int_a^b f(t)\,dt = \int_a^b v\cdot f(t)\,dt \leq \int_a^b \|v\|\cdot \|f(t)\|\,dt = \|v\|\cdot \int_a^b \|f(t)\|\,dt$. Dividendo per $\|v\|\neq 0$, otteniamo $\left\|\int_a^b f(t)\,dt\right\| = \|v\| \leq \int_a^b \|f(t)\|\,dt$.

IntVett5 Proposizione 2.5. Siano $f:[a,b] \to \mathbb{R}^N$ limitata, $c \in (a,b)$. Allora

- $(1) f \in \mathcal{R}([a,b];\mathbb{R}^N) \iff f \in \mathcal{R}([a,c];\mathbb{R}^N) e f \in \mathcal{R}([c,b];\mathbb{R}^N),$
- (2) $f \in \mathcal{R}([a,b];\mathbb{R}^N) \implies \int_a^b f = \int_a^c f + \int_c^b f$.

Dim. Passando alle componenti, ci si riduce all'analogo teorema per funzioni scalari.

IntVett6 Proposizione 2.6. Siano $f \in \mathcal{R}([a,b];\mathbb{R}^N), c \in [a,b], F(x) := \int_a^x f(t) dt, per ogni <math>x \in [a,b].$

- (1) Posto $L := \sup_{t \in [a,b]} \|f(t)\| < \infty$, si ha $\|F(x) F(y)\| \le L|x-y|$, per ogni $x, y \in [a,b]$.
- (2) Se $f \ \dot{e} \ continua \ in \ x_0 \in [a,b]$, allora esiste $F'(x_0) = f(x_0)$.

Dim.

- (1) Si ha $||F(x) F(y)|| = \left| \int_y^x f(t) dt \right| \le \left| \int_y^x ||f(t)|| dt \right| \le L|x y|$.
- (2) Segue dall'analogo teorema per funzioni scalari, pur di passare alle componenti. $\hfill\Box$

2.2 Teorema di esistenza e unicità locale

EsistLoc1 Definizione 2.7 (Soluzione dell'equazione differenziale). Siano $A \subset \mathbb{R}^{N+1}$ un aperto, $f: A \to \mathbb{R}^N$. Si dice soluzione dell'equazione differenziale ordinaria in forma normale y' = f(x,y) una funzione $y: I \to \mathbb{R}^N$, derivabile nell'intervallo $I \subset \mathbb{R}$, e tale che $\begin{cases} (x,y(x)) \in A, & x \in I, \\ y'(x) = f(x,y(x)), & x \in I. \end{cases}$

EsistLoc4 Definizione 2.8 (Soluzione del problema di Cauchy). Siano $A \subset \mathbb{R}^{N+1}$ un aperto, $f: A \to \mathbb{R}^N$, $(x_0, y_0) \in A$. Si dice soluzione del problema di Cauchy per l'equazione differenziale ordinaria in forma normale y' = f(x, y) con dato iniziale $(x_0, y_0) \in A$ una funzione $y: I \to \mathbb{R}^N$, derivabile

nell'intervallo
$$I \subset \mathbb{R}$$
, e tale che
$$\begin{cases} (x, y(x)) \in A, & x \in I, \\ y'(x) = f(x, y(x)), & x \in I, \\ y(x_0) = y_0. \end{cases}$$

EsistLoc5

Proposizione 2.9. Siano $A \subset \mathbb{R}^{N+1}$ un aperto, $f \in C^0(A; \mathbb{R}^N)$, $(x_0, y_0) \in A$, $y : I \to \mathbb{R}^N$ tale che $(x, y(x)) \in A$, per ogni $x \in I$. Sono equivalenti

(1)
$$y \in C^1(I; \mathbb{R}^N)$$
 è soluzione di $\begin{cases} y'(x) = f(x, y(x)), & x \in I, \\ y(x_0) = y_0, \end{cases}$

(2) $y \in C^0(I; \mathbb{R}^N)$ e tale che $y(x) = y_0 + \int_{x_0}^x f(t, y(t)) dt$, per ogni $x \in I$.

Dim.

- (1) \Longrightarrow (2) Poiché y soddisfa y'(x) = f(x, y(x)), per ogni $x \in I$, e $y(x_0) = y_0$, integrando membro a membro otteniamo $y(x) y(x_0) = \int_{x_0}^x f(t, y(t)) dt$, e quindi la tesi.
- (2) \Longrightarrow (1) Poiché $t \in I \to f(t, y(y)) \in \mathbb{R}^N$ è continua, per il teorema fondamentale del calcolo integrale esiste y'(x) = f(x, y(x)), per ogni $x \in I$, per cui $y \in C^1(I; \mathbb{R}^N)$ ed è soluzione di y' = f(x, y). Infine $y(x_0) = y_0 + 0 = y_0$.

EsistLoc6

Proposizione 2.10 (Esistenza e unicità in un rettangolo). Siano $R := \{(x,y) \in \mathbb{R}^{N+1} : |x - x_0| \le a, \|y - y_0\| \le b\}, \ f \in C^0(R; \mathbb{R}^N), \ L > 0 \ tale \ che \ \|f(x,y_1) - f(x,y_2)\| \le L \ \|y_1 - y_2\|, \ per \ ogni \ (x,y_1), (x,y_2) \in R.$ Siano $M := \max_{(x,y) \in R} \|f(x,y)\| \ e \ \delta := \min \{a, \frac{b}{M}\}.$ Allora esiste un'unica $y \in C^0([x_0 - \delta, x_0 + \delta]; \mathbb{R}^N)$ tale che $y(x) = y_0 + \int_{x_0}^x f(t,y(t)) \ dt, \ per \ ogni \ x \in [x_0 - \delta, x_0 + \delta].$

Dim.

(\exists) Osserviamo preliminarmente che, se $\varphi \in C^0([x_0 - \delta, x_0 + \delta]; \mathbb{R}^N)$ e $\|\varphi(x) - y_0\| \leq b$, per ogni $x \in [x_0 - \delta, x_0 + \delta]$, allora $(T\varphi)(x) \equiv \psi(x) := y_0 + \int_{x_0}^x f(t, \varphi(t)) dt$ è tale che $\psi \in C^0([x_0 - \delta, x_0 + \delta]; \mathbb{R}^N)$ e $\|\psi(x) - y_0\| \leq \left|\int_{x_0}^x \|f(t, \varphi(t))\| dt\right| \leq M|x - x_0| \leq M\delta \leq b$.

Osserviamo, inoltre, che la tesi è dimostrata se facciamo vedere che esiste $y \in C^0([x_0 - \delta, x_0 + \delta]; \mathbb{R}^N)$ che è punto unito [cioè Ty = y] della trasformazione $T : \varphi \in C^0([x_0 - \delta, x_0 + \delta]; \mathbb{R}^N) \to \psi \in C^0([x_0 - \delta, x_0 + \delta]; \mathbb{R}^N)$. Per far ciò, usiamo il metodo delle approssimazioni successive.

Poniamo, per ogni $x \in [x_0 - \delta, x_0 + \delta],$

$$y_0(x) := y_0,$$

$$y_1(x) := y_0 + \int_{x_0}^x f(t, y_0(t)) dt,$$

$$\dots$$

$$y_n(x) := y_0 + \int_{x_0}^x f(t, y_{n-1}(t)) dt, \quad n \ge 2.$$

Poiché $y_0 \in C^0([x_0 - \delta, x_0 + \delta]; \mathbb{R}^N)$ e $||y_0(x) - y_0|| \le b$, per ogni $x \in [x_0 - \delta, x_0 + \delta]$, per quanto già dimostrato si ha $y_1 \in C^0([x_0 - \delta, x_0 + \delta]; \mathbb{R}^N)$ e $||y_1(x) - y_0|| \le b$, per ogni $x \in [x_0 - \delta, x_0 + \delta]$, e, successivamente, $y_n \in C^0([x_0 - \delta, x_0 + \delta]; \mathbb{R}^N)$ e $||y_n(x) - y_0|| \le b$, per ogni $x \in [x_0 - \delta, x_0 + \delta]$ e n > 2.

Dimostriamo ora che $\{y_n\}$ converge uniformemente in $[x_0-\delta,x_0+\delta]$. Osserviamo che ciò equivale

a dimostrare che $y_0 + \sum_{k=1}^n (y_k - y_{k-1})$ converge uniformemente in $[x_0 - \delta, x_0 + \delta]$. Ora

$$\begin{aligned} \|y_1(x) - y_0(x)\| &\leq M|x - x_0|, \\ \|y_2(x) - y_1(x)\| &\leq \left| \int_{x_0}^x \|f(t, y_1(t)) - f(t, y_0(t))\| \ dt \right| \leq L \left| \int_{x_0}^x \|y_1(t) - y_0(t)\| \ dt \right| \\ &\leq L M \left| \int_{x_0}^x |t - x_0| \ dt \right| = M \frac{L}{2} |x - x_0|^2, \end{aligned}$$

e, se supponiamo che $||y_n(x) - y_{n-1}(x)|| \le M \frac{L^{n-1}}{n!} |x - x_0|^n$, si ha

$$||y_{n+1}(x) - y_n(x)|| \le \left| \int_{x_0}^x ||f(t, y_n(t)) - f(t, y_{n-1}(t))|| dt \right| \le L \left| \int_{x_0}^x ||y_n(t) - y_{n-1}(t)|| dt \right|$$

$$\le M \frac{L^n}{n!} \left| \int_{x_0}^x |t - x_0|^n dt \right| = M \frac{L^n}{(n+1)!} |x - x_0|^{n+1}.$$

Ma allora $\sup_{|x-x_0| \leq \delta} \|y_n(x) - y_{n-1}(x)\| \leq M \frac{L^{n-1}}{n!} \delta^n$, e per il criterio di Weierstrass la serie $y_0 = \sum_{k=1}^{\infty} (y_k - y_{k-1})$ converge uniformemente in $[x_0 - \delta, x_0 + \delta]$, cioè $\{y_n\}$ converge uniformemente in $[x_0 - \delta, x_0 + \delta]$, e indichiamo con $y \in C^0([x_0 - \delta, x_0 + \delta]; \mathbb{R}^N)$ il limite.

Allora, da $||y_n(x) - y_0|| \le b$, per ogni $x \in [x_0 - \delta, x_0 + \delta]$, $n \in \mathbb{N}$, segue $||y(x) - y_0|| \le b$, per ogni $x \in [x_0 - \delta, x_0 + \delta]$.

Inoltre, da

$$\left| \int_{x_0}^{x} \|f(t, y(t)) - f(t, y_n(t))\| dt \right| \le L \left| \int_{x_0}^{x} \|y(t) - y_n(t)\| dt \right| \le L \sup_{|x - x_0| \le \delta} \|y(x) - y_n(x)\| \cdot |x - x_0| \le L\delta \cdot \sup_{|x - x_0| \le \delta} \|y(x) - y_n(x)\| \to 0,$$

segue che, passando al limite in $y_n(x) = y_0 + \int_{x_0}^x f(t, y_{n-1}(t)) dt$, si ottiene $y(x) = y_0 + \int_{x_0}^x f(t, y(t)) dt$, cioè y è punto unito di T, cioè la tesi.

(!) Supponiamo, per assurdo, che esistono $y_1, y_2 \in C^0([x_0 - \delta, x_0 + \delta]; \mathbb{R}^N)$ tali che $(x, y_i(x)) \in A$ e $y_i(x) = y_0 + \int_{x_0}^x f(t, y_i(t)) dt$, per ogni $x \in [x_0 - \delta, x_0 + \delta]$, i = 1, 2, e $y_1 \neq y_2$. Posto, allora, $x_1 := \sup\{x \in [x_0, x_0 + \delta] : y_1(t) = y_2(t), \forall t \in [x_0, x]\}$, si ha $x_1 \in [x_0, x_0 + \delta)$. Sia $\varepsilon > 0$ tale che $x_1 + \varepsilon < x_0 + \delta$, per cui, per ogni $x \in [x_1, x_1 + \varepsilon]$, si ha $y_1(x) - y_2(x) = \int_{x_0}^x [f(t, y_1(t)) - f(t, y_2(t))] dt + \int_{x_1}^x [f(t, y_1(t)) - f(t, y_2(t))] dt = \int_{x_1}^x [f(t, y_1(t)) - f(t, y_2(t))] dt$. Posto $K_{\varepsilon} := \sup_{x \in [x_1, x_1 + \varepsilon]} \|y_1(x) - y_2(x)\| > 0$, si ha $\|y_1(x) - y_2(x)\| \leq \int_{x_1}^x \|f(t, y_1(t)) - f(t, y_2(t))\| dt \leq L \int_{x_1}^x \|y_1(t) - y_2(t)\| dt \leq L K_{\varepsilon}(x - x_1) \leq L K_{\varepsilon}\varepsilon$, da cui segue $K_{\varepsilon} \leq L K_{\varepsilon}\varepsilon$, cioè $\varepsilon \geq \frac{1}{L}$, che contrasta con l'arbitrarietà di $\varepsilon > 0$.

EsistLoc7

Proposizione 2.11 (Esistenza e unicità locale). Siano $A \subset \mathbb{R}^{N+1}$ un aperto, $f \in C^0(A; \mathbb{R}^N)$ e localmente Lipschitziana in A rispetto ad y, uniformemente in x [cioè per ogni $(x_0, y_0) \in A$, esistono $U \in \mathcal{W}(x_0, y_0)$, L > 0, tali che $||f(x, y_1) - f(x, y_2)|| \leq L ||y_1 - y_2||$, per ogni $(x, y_1), (x, y_2) \in U$. Allora, per ogni $(x_0, y_0) \in A$, esistono $\delta > 0$ e un'unica $y \in C^1([x_0 - \delta, x_0 + \delta]; \mathbb{R}^N)$ tali che $y(x_0) = x_0$ e y'(x) = f(x, y(x)), per ogni $x \in [x_0 - \delta, x_0 + \delta]$.

Dim. Poiché U è aperto, esistono a,b>0 tali che $R:=\left\{(x,y)\in\mathbb{R}^{N+1}:|x-x_0|\leq a,\|y-y_0\|\leq b\right\}\subset U.$ Allora la tesi segue dalla Proposizione 2.10.

Si può dare una dimostrazione alternativa delle due Proposizioni precedenti.

EsistLoc8

Proposizione 2.12. Siano $A \subset \mathbb{R}^{N+1}$ un aperto, $f \in C^0(A; \mathbb{R}^N)$ e localmente Lipschitziana in A rispetto ad y, uniformemente in x [cioè per ogni $(x_0, y_0) \in A$, esistono $U \in \mathcal{W}(x_0, y_0), L > 0$, tali che $||f(x,y_1)-f(x,y_2)|| \le L ||y_1-y_2||$, per ogni $(x,y_1),(x,y_2) \in U$. Allora, per ogni $(x_0,y_0) \in A$, esistono $\delta > 0$ e un'unica $y \in C^1([x_0 - \delta, x_0 + \delta]; \mathbb{R}^N)$ tali che $y(x_0) = x_0$ e y'(x) = f(x, y(x)), per ogni $x \in [x_0 - \delta, x_0 + \delta]$.

Dim. Sia $(x_0, y_0) \in A$, e siano $U \in \mathcal{W}(x_0, y_0), L > 0$, tali che $||f(x, y_1) - f(x, y_2)|| \le L ||y_1 - y_2||$, per ogni $(x, y_1), (x, y_2) \in U$.

Siano a, b > 0 tali che $R := \{(x, y) \in \mathbb{R}^{N+1} : |x - x_0| \le a, ||y - y_0|| \le b\} \subset U$ e poniamo $M := \{(x, y) \in \mathbb{R}^{N+1} : |x - x_0| \le a, ||y - y_0|| \le b\}$ $\max_{(x,y)\in R} \|f(x,y)\|, \ \delta := \min\{a, \frac{b}{M}\}, \ e\ I_{\delta} := [x_0 - \delta, x_0 + \delta].$ Introduciamo $X := \{z \in C^0(I_{\delta}; \mathbb{R}^N) : x \in \mathbb{R}^N\}$ $||z(x) - y_0|| \le b, \forall x \in I_\delta\}$, con la metrica $d(u, v) := \sup_{x \in I_\delta} ||u(x) - v(x)||$, per ogni $u, v \in X$. Dimostriamo che X è un sottoinsieme chiuso di $(C^0(I_\delta; \mathbb{R}^N), ||\cdot||_\infty)$, e quindi è uno spazio me-

trico completo. Infatti, se $\{z_k\} \subset X$ è tale che $z_k \to z \in C^0(I_\delta; \mathbb{R}^N)$ nella norma $\|\cdot\|_{\infty}$, allora $||z(x) - y_0|| = \lim_{k \to \infty} ||z_k - y_0|| \le b$, e quindi $z \in X$.

Osserviamo ora che, se $z \in X$, allora $(Tz)(x) := y_0 + \int_{x_0}^x f(t, z(t)) dt$ è tale che $Tz \in X$. Infatti $Tz \in C^0(I_\delta; \mathbb{R}^N)$, per il teorema fondamentale del calcolo. Inoltre $\|(Tz)(x) - y_0\| = \left\| \int_{x_0}^x f(t, z(t)) dt \right\| \le C^0(I_\delta; \mathbb{R}^N)$
$$\begin{split} \left| \int_{x_0}^x \|f(t,z(t))\| \ dt \right| &\leq M|x-x_0| \leq M\delta \leq b, \, \text{per cui } Tz \in X. \\ \text{Ma allora } T:z \in X \to Tz \in X. \, \, \text{Inoltre, se } u,v \in X, \, \text{si ha, per ogni } x \in I_\delta, \end{split}$$

$$\begin{aligned} \|(Tu)(x) - (Tv)(x)\| &= \left\| \int_{x_0}^x [f(t, u(t)) - f(t, v(t))] \, dt \right\| \le \left| \int_{x_0}^x \|f(t, u(t)) - f(t, v(t))\| \, dt \right| \\ &\le L \left| \int_{x_0}^x \|u(t) - v(t)\| \, dt \right| \le L d(u, v) |x - x_0|, \\ \|(T^2u)(x) - (T^2v)(x)\| \le L \left| \int_{x_0}^x \|(Tu)(t) - (Tv)(t)\| \, dt \right| \le L^2 d(u, v) \left| \int_{x_0}^x |t - x_0| \, dt \right| \\ &= L^2 d(u, v) \cdot \frac{1}{2} |x - x_0|^2, \end{aligned}$$

e se supponiamo che $\|(T^k u)(x) - (T^k v)(x)\| \le L^k d(u,v) \cdot \frac{1}{k!} |x - x_0|^k$, per ogni $x \in I_\delta$, allora, per ogni $x \in I_{\delta}$, si ha

$$\begin{split} \left\| (T^{k+1}u)(x) - (T^{k+1}v)(x) \right\| & \leq L \Big| \int_{x_0}^x \left\| (T^ku)(t) - (T^kv)(t) \right\| \, dt \Big| \leq L^{k+1}d(u,v) \cdot \frac{1}{k!} \Big| \int_{x_0}^x |t - x_0|^k \, dt \Big| \\ & = L^{k+1}d(u,v) \cdot \frac{1}{k!} \cdot \frac{1}{k+1} |x - x_0|^{k+1} = L^{k+1}d(u,v) \cdot \frac{1}{(k+1)!} |x - x_0|^{k+1}. \end{split}$$

Quindi $d(T^k u, T^k v) \leq \frac{L^k \delta^k}{k!} d(u, v)$, per ogni $u, v \in X$. Poiché $\lim_{k \to \infty} \frac{L^k \delta^k}{k!} = 0$, esiste $k_0 \in \mathbb{N}$ tale che $\kappa := \frac{L^{k_0} \delta^{k_0}}{k_0!} < 1$, per cui $d(T^{k_0} u, T^{k_0} v) \leq \kappa d(u, v)$, per ogni $u, v \in X$. Quindi, per il teorema delle contrazioni, esiste un'unica $\varphi \in X$ tale che $T\varphi = \varphi$, cioè φ è soluzione del problema di Cauchy, ed è l'unica in X.

Dimostriamo che φ è l'unica soluzione del problema di Cauchy definita in I_{δ} , cioè se $\psi \in$ $C^0(I_\delta;\mathbb{R}^N)$ è tale che $(x,\psi(x))\in A$ e $\psi(x)=y_0+\int_{x_0}^x f(t,\psi(t))\,dt$, per ogni $x\in I_\delta$ [e ψ non necessariamente soddisfa $\|\psi(x)_k - y_0\| \le b$, per ogni $x \in I_\delta$, si ha che $\varphi \equiv \psi$ in I_δ .

Intanto, $\|\psi(x_0) - y_0\| = 0$, e quindi, per la continuità di ψ in I_{δ} , esiste $\delta_1 \in (0, \delta]$ tale che $\|\psi(x) - y_0\| \le b$, per ogni $x \in I_{\delta_1} := [x_0 - \delta_1, x_0 + \delta_1]$, e quindi [per l'unicità in $\{z \in C^0(I_{\delta_1}; \mathbb{R}^N) : \|z(x) - y_0\| \le b, \forall x \in I_{\delta_1}\}$] $\psi(x) = \varphi(x)$, per ogni $x \in I_{\delta_1}$.

Sia $D:=\{x\in I_\delta: \psi(x)=\varphi(x)\}$. Allora $x_0\in D$; inoltre D è chiuso, perché φ,ψ sono continue. Dimostriamo che D è aperto. Sia $x_1\in D$, per cui $\psi(x_1)=\varphi(x_1)=:y_1$. Allora, applicando la prima parte della prova con $(x_1,y_1)\in A$ al posto di $(x_0,y_0)\in A$, si ottiene l'esistenza di $\alpha,\beta>0$ tali che $\{(x,y)\in\mathbb{R}^{N+1}:|x-x_1|\leq\alpha,\|y-y_1\|\leq\beta\}\subset A$, e di un'unica $\omega\in C^0([x_1-\alpha,x_1+\alpha];\mathbb{R}^N)$ tale che, per ogni $x\in[x_1-\alpha,x_1+\alpha]$, si ha $\|\omega(x)-y_1\|\leq\beta$ e $\omega(x)=y_1+\int_{x_1}^x f(t,\omega(t))\,dt$. Per quanto visto poco sopra, esiste $\alpha_1\in(0,\alpha]$ tale che $\varphi(x)=\omega(x)=\psi(x)$, per ogni $x\in[x_1-\alpha_1,x_1+\alpha_1]$. Ma allora $[x_1-\alpha_1,x_1+\alpha_1]\subset D$, per cui D è aperto. Poiché $D\neq\emptyset$, deve essere $D=I_\delta$, da cui segue la tesi.

EsistLoc9

Proposizione 2.13. Siano $A \subset \mathbb{R}^{N+1}$ un aperto, $f \in C^0(A; \mathbb{R}^N)$ tale che $\frac{\partial f}{\partial y_1}, \dots \frac{\partial f}{\partial y_N} \in C^0(A; \mathbb{R}^N)$ [in particolare, $f \in C^1(A; \mathbb{R}^N)$]. Allora, per ogni $(x_0, y_0) \in A$, esistono $\delta > 0$ e un'unica $y \in C^1([x_0 - \delta, x_0 + \delta]; \mathbb{R}^N)$ tali che $y(x_0) = x_0$ e y'(x) = f(x, y(x)), per ogni $x \in [x_0 - \delta, x_0 + \delta]$.

Dim. Sia $(x_0, y_0) \in A$, e siano a, b > 0 tali che $R := \{(x, y) \in \mathbb{R}^{N+1} : |x - x_0| \le a, ||y - y_0|| \le b\} \subset A$. Poiché, per ogni $i \in \{1, \dots, N\}$, la funzione $(x, y) \in R \to \left(\sum_{j=1}^N \left|\frac{\partial f_i}{\partial y_j}(x, y)\right|\right)^{1/2} \in \mathbb{R}$ è continua sul compatto R, per il teorema di Weierstrass esiste $L_i := \max_{(x,y) \in R} \left(\sum_{j=1}^N \left|\frac{\partial f_i}{\partial y_j}(x, y)\right|\right)^{1/2}$. Poniamo $L := \left(\sum_{i=1}^N L_i^2\right)^{1/2}$.

Siano ora $(x, y_1), (x, y_2) \in R$. Dal teorema del valor medio segue che $||f(x, y_1) - f(x, y_2)|| \le \max_{t \in [0,1]} ||\frac{\partial f}{\partial y}(x, (1-t)y_1 + ty_2)|| \cdot ||y_1 - y_2|| \le L ||y_1 - y_2||$. Quindi f è localmente Lipschitziana rispetto ad y, uniformemente in x. Per la Proposizione 2.11 si ha la tesi.

EsistLoc10

Proposizione 2.14 (Regolarità della soluzione). Siano $A \subset \mathbb{R}^{N+1}$ un aperto, $k \in \mathbb{N}$, $f \in C^k(A; \mathbb{R}^N)$. Allora, per ogni $(x_0, y_0) \in A$, esistono $\delta > 0$ e un'unica $y \in C^{k+1}([x_0 - \delta, x_0 + \delta]; \mathbb{R}^N)$ tali che $y(x_0) = x_0$ e y'(x) = f(x, y(x)), per ogni $x \in [x_0 - \delta, x_0 + \delta]$.

Dim. Per k=1 segue dalla Proposizione 2.13 che esistono $\delta>0$ e un'unica $y\in C^1([x_0-\delta,x_0+\delta];\mathbb{R}^N)$ tali che $y(x_0)=x_0$ e y'(x)=f(x,y(x)), per ogni $x\in [x_0-\delta,x_0+\delta]$. Ma allora $y'\in C^1([x_0-\delta,x_0+\delta];\mathbb{R}^N)$, perché composizione di funzioni C^1 , e quindi $y\in C^2([x_0-\delta,x_0+\delta];\mathbb{R}^N)$.

Procediamo allora per induzione. Supponiamo di aver dimostrato la Proposizione per un certo $k \in \mathbb{N}$, e dimostriamo che il risultato è vero per k+1. Sia, allora, $f \in C^{k+1}(A; \mathbb{R}^N)$, per cui $f \in C^k(A; \mathbb{R}^N)$, e per ipotesi induttiva, $y \in C^{k+1}([x_0 - \delta, x_0 + \delta]; \mathbb{R}^N)$. Ma allora $y' \in C^{k+1}([x_0 - \delta, x_0 + \delta]; \mathbb{R}^N)$, come composizione di funzioni C^{k+1} , e quindi $y \in C^{k+2}([x_0 - \delta, x_0 + \delta]; \mathbb{R}^N)$. La tesi segue.

EsistLoc11

Definizione 2.15 (Soluzione dell'equazione differenziale). Siano $A \subset \mathbb{R}^{N+1}$ un aperto, $f: A \to \mathbb{R}$. Si dice soluzione dell'equazione differenziale ordinaria di ordine N in forma normale $y^{(N)} = f(x,y,y',y'',\ldots,y^{(N-1)})$ una funzione $y:I\to\mathbb{R}$, derivabile N volte nell'intervallo $I\subset\mathbb{R}$, e tale che $\begin{cases} (x,y(x),y'(x),\ldots,y^{(N-1)}(x))\in A, & x\in I, \\ y^{(N)}(x)=f(x,y(x),y'(x),y''(x),\ldots,y^{(N-1)}(x)), & x\in I. \end{cases}$

EsistLoc12

Definizione 2.16 (Soluzione del problema di Cauchy). Siano $A \subset \mathbb{R}^{N+1}$ un aperto, $f: A \to \mathbb{R}$, $(x_0, y_0, y_0', y_0'', \dots, y_0^{(N-1)}) \in A$. Si dice soluzione del problema di Cauchy per l'equazione differenziale ordinaria di ordine N in forma normale $y^{(N)} = f(x, y, y', y'', \dots, y^{(N-1)})$ con dato iniziale

 $(x_0,y_0,y_0',y_0'',\dots,y_0^{(N-1)}) \in A \text{ una funzione } y:I\to\mathbb{R}, \text{ derivabile } N \text{ volte nell'intervallo } I\subset\mathbb{R}, \text{ extraction} \\ \{ (x,y(x),y'(x),\dots,y^{(N-1)}(x))\in A, & x\in I, \\ y^{(N)}(x)=f(x,y(x),y'(x),y''(x),\dots,y^{(N-1)}(x)), & x\in I, \\ y(x_0)=y_0,\ y'(x_0)=y_0',\dots,\ y^{(N-1)}(x_0)=y_0^{(N-1)}. \end{cases}$

EsistLoc13

Proposizione 2.17. Siano $A \subset \mathbb{R}^{N+1}$ un aperto, $f: A \to \mathbb{R}$, $y: I \to \mathbb{R}$, derivabile N volte nell'intervallo $I \subset \mathbb{R}$. Sono equivalenti

(1) $y \ \hat{e} \ solutione \ di \ y^{(N)} = f(x, y, y', y'', \dots, y^{(N-1)}),$

(1)
$$y \in soluzione \ di \ y^{(v)} = f(x, y, y, y, \dots, y^{(v)}),$$

(2) $(y, y', y'', \dots, y^{(N-1)}) : I \to \mathbb{R}^N \ \dot{e} \ soluzione \ di \begin{cases} z'_0 = z_1 \\ z'_1 = z_2 \\ \dots \\ z'_{N-1} = f(x, z_0, z_1, \dots, z_{N-1}). \end{cases}$

EsistLoc14

Proposizione 2.18. Siano $A \subset \mathbb{R}^{N+1}$ un aperto, $f: A \to \mathbb{R}$, $y: I \to \mathbb{R}$, derivabile N volte nell'intervallo $I \subset \mathbb{R}$, $(x_0, y_0, y'_0, y''_0, \dots, y_0^{(N-1)}) \in A$. Sono equivalenti

- (1) $y \ \dot{e} \ solutione \ di \begin{cases} y^{(N)} = f(x, y, y', y'', \dots, y^{(N-1)}) \\ y(x_0) = y_0, \ y'(x_0) = y'_0, \dots, \ y^{(N-1)}(x_0) = y_0^{(N-1)}, \end{cases}$
- (2) $(y, y', y'', \dots, y^{(N-1)}): I \to \mathbb{R}^N$ è soluzione di $\begin{cases} z'_0 = z_1 \\ z'_1 = z_2 \\ \dots \\ z'_{N-1} = f(x, z_0, z_1, \dots, z_{N-1}) \\ z_0(x_0) = y_0, \ z_1(x_0) = y'_0, \dots, \ z_{N-1}(x_0) = y_0^{(N-1)}. \end{cases}$

EsistLoc15

Proposizione 2.19 (Esistenza ed unicità locale). Siano $A \subset \mathbb{R}^{N+1}$ un aperto, $f \in C^0(A; \mathbb{R})$ e localmente Lipschitziana in A rispetto ad $(y_0, y_1, \ldots, y_{N-1})$, uniformemente in x [cioè per ogni $(x_0, y_0, y_1, \ldots, y_{N-1}) \in A$, esistono $U \in W(x_0, y_0, y_1, \ldots, y_{N-1})$, L > 0, tali che $|f(x, u_0, u_1, \ldots, u_{N-1}) - f(x, v_0, v_1, \ldots, v_{N-1})| \le L \sum_{k=0}^{N-1} |u_k - v_k|$, per ogni $(x, u_0, u_1, \ldots, u_{N-1})$, $(x, v_0, v_1, \ldots, v_{N-1}) \in U$.

Allora, per ogni $(x_0, y_0, y'_0, y''_0, \ldots, y''_0) \in A$, esistono $\delta > 0$ e un'unica $y \in C^N([x_0 - \delta, x_0 + \delta]; \mathbb{R})$ tali che, per ogni $x \in [x_0 - \delta, x_0 + \delta]$, si ha

$$\begin{cases} (x, y(x), y'(x), \dots, y^{(N-1)}(x)) \in A, \\ y^{(N)}(x) = f(x, y(x), y'(x), y''(x), \dots, y^{(N-1)}(x)), \\ y(x_0) = y_0, \ y'(x_0) = y'_0, \dots, \ y^{(N-1)}(x_0) = y_0^{(N-1)}. \end{cases}$$

3 Equazioni differenziali lineari

3.1 Equazioni differenziali lineari a coefficienti continui

Definizione 3.1. Siano $I \subset \mathbb{R}$ un intervallo, $b, a_0, a_1, \ldots, a_{N-1} : I \to \mathbb{R}$. Si dice equazione differenziale lineare di ordine N l'equazione $(Ly)(x) := y^{(N)}(x) + a_{N-1}(x)y^{(N-1)}(x) + \ldots + a_1(x)y'(x) + a_0(x)y(x) = b(x)$. Se $b \equiv 0$, l'equazione si dice omogenea.

EqLin2 Proposizione 3.2.

- (1) Siano y_1, y_2 soluzioni di Ly = 0, $c_1, c_2 \in \mathbb{R}$. Allora $c_1y_1 + c_2y_2$ è soluzione di Ly = 0. Quindi l'insieme delle soluzioni di Ly = 0 forma uno \mathbb{R} -spazio vettoriale.
- (2) Sia φ soluzione dell'equazione Ly = b. Allora ψ è soluzione dell'equazione $Ly = b \iff \psi \varphi$ è soluzione dell'equazione Ly = 0.

EqLin3 Proposizione 3.3. Siano $I \subset \mathbb{R}$ un intervallo, $b, a_0, a_1, \ldots, a_{N-1} \in C^0(I), x_0 \in I, (y_0, y'_0, \ldots, y_0^{(N-1)}) \in \mathbb{R}^N$. Allora esiste un'unica $y \in C^N(I)$ tale che Ly = b e $y^{(k)}(x_0) = y_0^{(k)}$, per ogni $k = 0, 1, \ldots, N-1$.

Dim. Primo metodo. Posto $f(x, y_0, y_1, \ldots, y_{N-1}) := b(x) - a_0(x)y_0 - a_1(x)y_1 \ldots - a_{N-1}y_{N-1}$, l'equazione differenziale si riscrive $y^{(N)} = f(x, y, y', \ldots, y^{(N-1)})$, con $f \in C^0(I \times \mathbb{R}^N)$ e $\frac{\partial f}{\partial y_k} = -a_k(x)$, per ogni $k \in \{0, 1, \ldots, N-1\}$, e quindi f è localmente Lipschitziana in $(y_0, y_1, \ldots, y_{N-1})$, uniformemente in x. Per la Proposizione 2.19, esiste un'unica soluzione locale y dell'equazione differenziale che soddisfa le condizioni iniziali. Per la Proposizione ??, y è soluzione in I.

Secondo metodo. Posto $u(x) := \begin{pmatrix} y(x) \\ y'(x) \\ \vdots \\ y^{(N-1)}(x) \end{pmatrix}$, si ha

$$\begin{cases} u'_1(x) &= y'(x) = u_2(x) \\ u'_2(x) &= y''(x) = u_3(x) \\ \vdots \\ u'_{N-1}(x) &= y^{(N-1)}(x) = u_N(x) \\ u'_N(x) &= y^{(N)}(x) = b(x) - a_0(x)y(x) - a_1(x)y'(x) \dots - a_{N-1}y^{(N-1)} \\ &= b(x) - a_0(x)u_1 - a_1(x)u_2 \dots - a_{N-1}u_N \end{cases}$$

e quindi, posto $B(x) := \begin{pmatrix} 0 \\ \vdots \\ 0 \\ b(x) \end{pmatrix}, A(x) := \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & & & & & \\ 0 & 0 & 0 & \dots & 1 \\ -a_0(x) & -a_1(x) & -a_2(x) & \dots & -a_{N-1}(x) \end{pmatrix}$, l'equazione Luce la gi rienzia d'altre d

ne Ly = b si riscrive u'(x) = A(x)u(x) + B(x), a cui si può applicare la Proposizione 2.13, e quindi esiste un'unica soluzione locale u dell'equazione differenziale che soddisfa le condizioni iniziali. Per la Proposizione ??, u è soluzione in I, e quindi esiste un'unica $y \in C^N(I)$ soluzione di Ly = b.

EqLin4 Proposizione 3.4. Siano $I \subset \mathbb{R}$ un intervallo, $a_0, a_1, \ldots, a_{N-1} \in C^0(I)$, $y \in C^N(I)$ soluzione di Ly = 0, $x_0 \in I$ tale che $y(x_0) = y'(x_0) = \ldots = y^{(N-1)}(x_0) = 0$. Allora $y \equiv 0$.

Dim. Segue dalla Proposizione 3.3.

EqLin5

Proposizione 3.5. Siano $I \subset \mathbb{R}$ un intervallo, $a_0, a_1, \ldots, a_{N-1} \in C^0(I)$, $x_0 \in I$, e definiamo l'applicazione $T: (y_0, y_0', \ldots, y_0^{(N-1)}) \in \mathbb{R}^N \to y \in C^N(I)$, dove y è l'unica soluzione di Ly = 0, tale che $y(x_0) = y_0, y'(x_0) = y_0', \ldots, y^{(N-1)}(x_0) = y_0^{(N-1)}$. Allora T è un isomorfismo di spazi vettoriali. In particolare, l'insieme delle soluzioni di Ly = 0 forma uno \mathbb{R} -spazio vettoriale di dimensione N.

Dim. Siano $\widetilde{u} := (u_0, u'_0, \dots, u_0^{(N-1)}), \ \widetilde{v} := (v_0, v'_0, \dots, v_0^{(N-1)}) \in \mathbb{R}^N, \ \alpha, \beta \in \mathbb{R}, \ \text{e siano} \ u, v, w \in C^N(I) \ \text{le soluzioni di}$

$$\begin{cases} Lu = 0 \\ u(x_0) = u_0 \end{cases} \qquad \begin{cases} Lv = 0 \\ v(x_0) = v_0 \end{cases} \qquad \begin{cases} Lw = 0 \\ w(x_0) = \alpha u_0 + \beta v_0 \end{cases} \\ \dots \\ u^{(N-1)}(x_0) = u_0^{(N-1)}, \qquad v^{(N-1)}(x_0) = v_0^{(N-1)}, \qquad w^{(N-1)}(x_0) = \alpha u_0^{(N-1)} + \beta v_0^{(N-1)}. \end{cases}$$
Dobbiamo dimostrare che T è lineare, cioè $T(\alpha \widetilde{u} + \beta \widetilde{v}) = \alpha T(\widetilde{u}) + \beta T(\widetilde{v})$, cioè $w(x) = \alpha u(x) + \beta v(x)$, per agri $x \in I$. Intente $I(\alpha v + \beta v) = \alpha I(x) + \beta I(x) = 0$. Incltre $I(\alpha v + \beta v) = \alpha I(x) + \beta I(x) = 0$.

Dobbiamo dimostrare che T è lineare, cioè $T(\alpha \tilde{u} + \beta \tilde{v}) = \alpha T(\tilde{u}) + \beta T(\tilde{v})$, cioè $w(x) = \alpha u(x) + \beta v(x)$, per ogni $x \in I$. Intanto $L(\alpha u + \beta v) = \alpha L(u) + \beta L(v) = 0$. Inoltre $(\alpha u + \beta v)(x_0) = \alpha u_0 + \beta v_0 = w(x_0)$, $(\alpha u + \beta v)'(x_0) = \alpha u'_0 + \beta v'_0 = w'(x_0)$, ..., $(\alpha u + \beta v)^{(N-1)}(x_0) = \alpha u_0^{(N-1)} + \beta v_0^{(N-1)} = w^{(N-1)}(x_0)$. Allora, per l'unicità della soluzione [Proposizione 3.3] si ha $w = \alpha u + \beta v$, cioè T è lineare.

Dimostriamo che T è iniettiva. Infatti, se $u := T(\widetilde{u}) = 0$, allora $u_0 = u(x_0) = 0$, $u'_0 = u'(x_0) = 0$, \dots , $u_0^{(N-1)} = u^{(N-1)}(x_0) = 0$, per cui $\widetilde{u} = 0$.

Infine dimostriamo che T è suriettiva. Infatti, se $u \in C^N(I)$ è tale che Lu = 0, allora, posto $u_0 := u(x_0), \ u'_0 := u'(x_0), \ \dots, \ u_0^{(N-1)} := u^{(N-1)}(x_0), \ \widetilde{u} := (u_0, u'_0, \dots, u_0^{(N-1)}) \in \mathbb{R}^N, \ v := T(\widetilde{u}), \ \text{si}$ ha Lv = 0, e $v(x_0) = u_0 = u(x_0), \ v'(x_0) = u'_0 = u'(x_0), \ \dots, \ v^{(N-1)}(x_0) = u_0^{(N-1)} = u^{(N-1)}(x_0), \ \text{e}$ per l'unicità della soluzione [Proposizione 3.3] si ha v = u, cioè $u = T(\widetilde{u})$.

EqLin6

Definizione 3.6. Siano $I \subset \mathbb{R}$ un intervallo, $a_0, a_1, \ldots, a_{N-1} \in C^0(I)$. Allora, $y_1, \ldots, y_k \in C^N(I)$, soluzioni di Ly = 0, si dicono linearmente indipendenti se $c_1y_1 + \ldots + c_ky_k = 0 \implies c_1 = \ldots = c_k = 0$. Si dice sistema fondamentale di soluzioni un insieme di N soluzioni indipendenti.

EqLin7

EqLin8

Proposizione 3.8. Siano $I \subset \mathbb{R}$ un intervallo, $a_0, a_1, \ldots, a_{N-1} \in C^0(I)$, $y_1, \ldots, y_N \in C^N(I)$, soluzioni di Ly = 0. Allora y_1, \ldots, y_N sono linearmente indipendenti $\iff \det W(x) \neq 0$, per ogni $x \in I$.

Dim.

(\Longrightarrow) Se esistesse $x_0 \in I$ tale che det $W(x_0) = 0$, allora esisterebbe $(c_1, \ldots, c_N) \neq (0, \ldots, 0) \in \mathbb{R}^N$ tale che $W(x_0)(c_1, \ldots, c_N)^T = (0, \ldots, 0)^T$, per cui, posto $u(x) := c_1 y_1(x) + \ldots + c_N y_N(x)$, si avrebbe $u(x_0) = u'(x_0) = \ldots = u^{(N-1)}(x_0) = 0$, e per la Proposizione 3.4 si avrebbe $u \equiv 0$, cioè y_1, \ldots, y_N non sarebbero linearmente indipendenti.

(\Leftarrow) Se y_1, \ldots, y_N fossero linearmente dipendenti, esisterebbe $(c_1, \ldots, c_N) \neq (0, \ldots, 0) \in \mathbb{R}^N$ tale che $c_1y_1(x)+\ldots+c_Ny_N(x)=0$, per ogni $x \in I$. Derivando, si otterrebbe $c_1y_1'(x)+\ldots+c_Ny_N'(x)=0$, \ldots , $c_1y_1^{(N-1)}(x)+\ldots+c_Ny_N^{(N-1)}(x)=0$, e quindi det W(x)=0, per ogni $x \in I$.

EqLin9

Proposizione 3.9. Siano $I \subset \mathbb{R}$ un intervallo, $a_0, a_1, \dots, a_{N-1} \in C^0(I), y_1, \dots, y_N \in C^N(I),$ soluzioni di Ly = 0, W loro matrice Wronskiana, $w(x) := \det W(x), x \in I$. Allora

- (1) w soddisfa l'equazione differenziale $w'(x) = -a_{N-1}(x)w(x)$, per ogni $x \in I$,
- (2) fissato $x_0 \in I$, si ha $w(x) = w(x_0) \exp(-\int_{x_0}^x a_{N-1}(t) dt)$, $x \in I$.

Dim.

(1) Si ha

$$\begin{split} w'(x) &\stackrel{(a)}{=} \det \begin{pmatrix} y_1'(x) & \dots & y_N'(x) \\ y_1'(x) & \dots & y_N'(x) \\ \vdots & & & \\ y_1^{(N-1)}(x) & \dots & y_N^{(N-1)}(x) \end{pmatrix} + \det \begin{pmatrix} y_1(x) & \dots & y_N(x) \\ y_1''(x) & \dots & y_N''(x) \\ \vdots & & & \\ y_1^{(N-1)}(x) & \dots & y_N^{(N-1)}(x) \end{pmatrix} \\ & + \dots + \det \begin{pmatrix} y_1(x) & \dots & y_N(x) \\ y_1'(x) & \dots & y_N'(x) \\ \vdots & & & \\ y_1^{(N)}(x) & \dots & y_N'(x) \\ \vdots & & & \\ y_1^{(N)}(x) & \dots & y_N'(x) \\ \vdots & & & \\ y_1'(x) & \dots & y_N'(x) \\ \vdots & & & \\ y_1^{(k)}(x) & \dots & y_N(x) \\ y_1'(x) & \dots & y_N(x) \\ \vdots & & & \\ y_1^{(N-1)}(x) & \dots & y_N'(x) \\ & \vdots & & \\ y_1^{(N-1)}(x) & \dots & y_N'(x) \\ \end{pmatrix} = -a_{N-1}(x) \det \begin{pmatrix} y_1(x) & \dots & y_N(x) \\ y_1'(x) & \dots & y_N'(x) \\ \vdots & & & \\ y_1^{(N-1)}(x) & \dots & y_N'(x) \\ & \vdots & & \\ y_1^{(N-1)}(x) & \dots & y_N'(x) \end{pmatrix} = -a_{N-1}(x) w(x), \end{split}$$

dove si sono usate: in (a) la formula di derivazione di un determinante, e in (b) la formula $y_i^{(N)}(x) = -\sum_{k=0}^{N-1} a_k(x) y_i^{(k)}(x)$.

(2) Segue da (1). \Box

EqLin10

Osservazione 3.10. Un sistema fondamentale di soluzioni per Ly=0 si ottiene risolvendo i problemi di Cauchy seguenti, per $i=1,\ldots,N,$

$$\begin{cases} Ly = 0 \\ y(x_0) = \delta_{0,i-1} \\ \vdots \\ y^{(N-1)}(x_0) = \delta_{N-1,i-1}. \end{cases}$$

Infatti la matrice Wronskiana di queste soluzioni è $W(x_0) = I$, e quindi non è singolare, e le soluzioni sono linearmente indipendenti.

EqLin11

Proposizione 3.11 (Metodo di d'Alembert di riduzione dell'ordine). Siano $I \subset \mathbb{R}$ un intervallo, $a_0, a_1, \ldots, a_{N-1} \in C^0(I)$, $a_N \equiv 1$, $(Ly)(x) := \sum_{k=0}^N a_k(x)y^{(k)}(x)$, $e \ u \neq 0$ soluzione di Ly = 0. Poniamo, per ogni $k = 0, \ldots, N$, $b_k(x) := \sum_{i=k}^N \binom{i}{k} a_i(x)u^{(i-k)}(x)$, $e \ sia\ (L^*z)(x) := \sum_{k=0}^{N-1} b_{k+1}(x)z^{(k)}(x)$. Sia $\{v_1, \ldots, v_{N-1}\}$ un sistema fondamentale di soluzioni dell'equazione $L^*z = 0$, $e \ poniamo$, per ogni $k = 1, \ldots, N-1$, $y_k(x) := u(x) \int v_k(x)$, $e \ sia\ y_N := u$. Allora $\{y_1, \ldots, y_N\}$ è un sistema fondamentale di soluzioni dell'equazione Ly = 0.

Dim. Cerchiamo soluzioni di Ly = 0 della forma y = uw. Si ha

$$Ly = \sum_{k=0}^{N} a_k y^{(k)} = \sum_{k=0}^{N} a_k \sum_{j=0}^{k} \binom{k}{j} w^{(j)} u^{(k-j)} = \sum_{j=0}^{N} w^{(j)} \sum_{k=j}^{N} \binom{k}{j} a_k u^{(k-j)} = \sum_{j=0}^{N} w^{(j)} b_j$$
$$= b_0 w + \sum_{j=1}^{N} b_j w^{(j)} \stackrel{(a)}{=} \sum_{j=1}^{N} b_j w^{(j)},$$

dove in (a) si è usato il fatto che $b_0 = \sum_{i=0}^N a_i u^{(i)} = 0$. Poniamo $w := \int v_i$, per $i = 1, \ldots, N-1$, ottenendo $Ly_i = \sum_{j=1}^N b_j v_i^{(j-1)} = \sum_{k=0}^{N-1} b_{k+1} v_i^{(k)} = L^* v_i = 0$. Poichè $Ly_N = Lu = 0$, abbiamo dimostrato che y_1, \ldots, y_N sono soluzioni di Ly = 0. Dimostriamo che sono linearmente indipendenti. Infatti, se $0 = c_1 y_1 + \ldots + c_N y_N = u \left(c_1 \int v_1 + \ldots + c_{N-1} \int v_{N-1} + c_N \right)$, allora $c_1 \int v_1 + \ldots + c_{N-1} \int v_{N-1} + c_N = 0$, e derivando si ha $c_1 v_1 + \ldots + c_{N-1} v_{N-1} = 0$, che implica $c_1 = c_2 = \ldots = c_{N-1} = 0$, e quindi anche $c_N = 0$, cioè la tesi.

EqLin12

Corollario 3.12. Siano $I \subset \mathbb{R}$ un intervallo, $a_0, a_1 \in C^0(I)$, u soluzione di $Ly := y'' + a_1 y' + a_0 y = 0$, v soluzione di $v' + (a_1 + 2\frac{u'}{u})v = 0$. Allora $y_1 := u$ e $y_2 := u \cdot \int v$ sono un sistema fondamentale di soluzioni dell'equazione Ly = 0.

Dim. Usiamo la Proposizione 3.11. Poiché $b_1 := \sum_{i=1}^2 \binom{i}{1} a_i u^{i-1} = a_1 u + 2u', b_2 = \binom{2}{2} a_2 u = u$, si ha $L^*v = (a_1 u + 2u')v + uv' = 0 \implies v' + (a_1 + 2\frac{u'}{u})v = 0$, e la tesi segue.

EqLin13

Proposizione 3.13 (Soluzione del problema non omogeneo). Siano $I \subset \mathbb{R}$ un intervallo, $b, a_0, a_1, \ldots, a_{N-1} \in C^0(I), y_1, \ldots, y_N$ un sistema fondamentale di soluzioni di Ly = 0. Allora una soluzione di Ly = b è data da $\varphi = \sum_{i=1}^N \varphi_i y_i$, dove $\varphi_1, \ldots, \varphi_N \in C^1(I)$ soddisfano il sistema

$$\begin{cases} y_1(x)\varphi'_1(x) + \ldots + y_N(x)\varphi'_N(x) = 0 \\ y'_1(x)\varphi'_1(x) + \ldots + y'_N(x)\varphi'_N(x) = 0 \\ \vdots \\ y_1^{(N-1)}(x)\varphi'_1(x) + \ldots + y_N^{(N-1)}(x)\varphi'_N(x) = b(x). \end{cases}$$

Dim. Poiché y_1, \ldots, y_N sono un sistema fondamentale, la matrice Wronskiana

$$W(x) := \begin{pmatrix} y_1(x) & \dots & y_N(x) \\ y'_1(x) & \dots & y'_N(x) \\ \vdots & & & \\ y_1^{(N-1)}(x) & \dots & y_N^{(N-1)}(x) \end{pmatrix}$$

è non singolare, per ogni $x \in I$, e quindi il sistema suddetto ha una sola soluzione $\begin{pmatrix} \varphi_1'(x) \\ \vdots \\ \varphi_N'(x) \end{pmatrix} =$

$$W(x)^{-1}\begin{pmatrix}0\\\vdots\\b(x)\end{pmatrix}, \text{ e quindi}\begin{pmatrix}\varphi_1(x)\\\vdots\\\varphi_N(x)\end{pmatrix}=\int_{x_0}^xW(t)^{-1}\begin{pmatrix}0\\\vdots\\b(t)\end{pmatrix}dt\in C^1(I;\mathbb{R}^N). \text{ Verifichiamo ora che }\varphi$$
 è soluzione di $Ly=b.$ Intanto

$$\varphi' = \sum \varphi_i' y_i + \sum \varphi_i y_i' = \sum \varphi_i y_i',$$

$$\varphi'' = \sum \varphi_i' y_i' + \sum \varphi_i y_i'' = \sum \varphi_i y_i'',$$

$$\vdots$$

$$\varphi^{(N-1)} = \sum \varphi_i' y_i^{(N-2)} + \sum \varphi_i y_i^{(N-1)} = \sum \varphi_i y_i^{(N-1)},$$

$$\varphi^{(N)} = \sum \varphi_i' y_i^{(N-1)} + \sum \varphi_i y_i^{(N)} = b + \sum \varphi_i y_i^{(N-1)},$$

e quindi
$$L\varphi = a_0\varphi + \ldots + a_{N-1}\varphi^{(N-1)} + \varphi^{(N)} = \sum \varphi_i(a_0y_i + a_1y_i' + \ldots + a_{N-1}y_i^{(N-1)} + y_i^{(N)}) + b = b.$$

Osservazione 3.14. Il metodo di variazione delle costanti fu usato per la prima volta da Johann Bernoulli (nel 1697) per risolvere equazioni lineari del primo ordine, e in seguito da Lagrange (nel 1774) per risolvere equazioni lineari del secondo ordine.

EqLin13a Proposizione 3.15. Siano $I \subset \mathbb{R}$ un intervallo, $b, a_0, a_1, \ldots, a_{N-1} \in C^0(I), y_1, \ldots, y_N$ un sistema fondamentale di soluzioni di Ly = 0, W la relativa matrice Wronskiana. Poniamo, per ogni $x, t \in I$,

$$K(x,t) := \frac{1}{\det W(t)} \det \begin{pmatrix} y_1(t) & \dots & y_N(t) \\ y'_1(t) & \dots & y'_N(t) \\ \vdots & & & \\ y_1^{(N-2)}(t) & \dots & y_N^{(N-2)}(t) \\ y_1(x) & \dots & y_N(x) \end{pmatrix},$$

che si dice nucleo risolvente dell'equazione differenziale. Allora, per ogni $x_0 \in I$, una soluzione di Ly = b è data da $\varphi(x) = \int_{x_0}^x K(x,t)b(t) dt$, $x \in I$.

Dim. Poniamo $v:=\begin{pmatrix}0&\dots&0&1\end{pmatrix}^T,$ e osserviamo che dalla dimostrazione della Proposizione 3.13 segue che una soluzione di Ly=b è data da

$$\varphi(x) = \sum_{i=1}^{N} \varphi_i(x) y_i(x) = \int_{x_0}^{x} (y_1(x) \quad y_2(x) \quad \dots \quad y_N(x))^T W(t)^{-1} v b(t) dt.$$

Poniamo
$$A_i(x) := (-1)^{N+i} \det \begin{pmatrix} y_1(x) & \dots & y_{i-1}(x) & y_{i+1}(x) & \dots & y_N(x) \\ y_1'(x) & \dots & y_{i-1}'(x) & y_{i+1}'(x) & \dots & y_N'(x) \\ \vdots & & & & & \\ y_1^{(N-2)}(x) & \dots & y_{i-1}^{(N-2)}(x) & y_{i+1}^{(N-2)}(x) & \dots & y_N^{(N-2)}(x) \end{pmatrix}, \text{ per cui}$$

$$W(t)^{-1}v = \frac{1}{\det W(t)} (A_1(t) \quad A_2(t) \quad \dots \quad A_N(t))^T e$$

$$K(x,t) := (y_1(x) \quad y_2(x) \quad \dots \quad y_N(x))^T W(t)^{-1} v = \frac{1}{\det W(t)} \sum_{i=1}^N y_i(x) A_i(t)$$

$$= \frac{1}{\det W(t)} \det \begin{pmatrix} y_1(t) & \dots & y_N(t) \\ y_1'(t) & \dots & y_N'(t) \\ \vdots & & & \\ y_1^{(N-2)}(t) & \dots & y_N^{(N-2)}(t) \\ y_1(x) & \dots & y_N(x) \end{pmatrix},$$

da cui segue la tesi.

EqLin13b **Proposizione 3.16** (Proprietà del nucleo risolvente). Siano $I \subset \mathbb{R}$ un intervallo, $b, a_0, a_1, \ldots, a_{N-1} \in$ $C^0(I), y_1, \ldots, y_N$ un sistema fondamentale di soluzioni di Ly = 0, W la relativa matrice Wronskia $na, K il nucleo risolvente. Allora, per ogni <math>t \in I$, si ha

(1) $K(\cdot,t) \in C^N(I)$, e soddisfa Ly=0

(2)
$$\frac{\partial^j}{\partial x^j} K(x,t) \big|_{x=t} = 0, \ j = 0, \dots, N-2, \ e \ \frac{\partial^{N-1}}{\partial x^{N-1}} K(x,t) \big|_{x=t} = 1,$$

(3)
$$\frac{\partial^j}{\partial x^j}K(x,t) \in C^1(I \times I), j = 0, \dots, N-1, e \frac{\partial^N}{\partial x^N}K(x,t) \in C^0(I \times I).$$

Dim. Usiamo le notazioni della dimostrazione della Proposizione 3.15.

(1) Segue dalla relazione $K(x,t) = \frac{1}{\det W(t)} \sum_{i=1}^{N} y_i(x) A_i(t)$.

(2) Per ogni
$$j = 0, ..., N - 2$$
, si ha $\frac{\partial^{j}}{\partial x^{j}} K(x,t) \big|_{x=t} = \frac{1}{\det W(t)} \det \begin{pmatrix} y_{1}(t) & ... & y_{N}(t) \\ y'_{1}(t) & ... & y'_{N}(t) \\ \vdots & & & \\ y_{1}^{(N-2)}(t) & ... & y_{N}^{(N-2)}(t) \\ y_{1}^{(j)}(t) & ... & y_{N}^{(j)}(t) \end{pmatrix} = 0,$
mentre $\frac{\partial^{N-1}}{\partial x^{N-1}} K(x,t) \big|_{x=t} = \frac{1}{\det W(t)} \det \begin{pmatrix} y_{1}(t) & ... & y_{N}(t) \\ y'_{1}(t) & ... & y'_{N}(t) \\ \vdots & & & \\ y_{1}^{(N-2)}(t) & ... & y_{N}^{(N-2)}(t) \\ y_{1}^{(N-1)}(t) & ... & y_{N}^{(N-1)}(t) \end{pmatrix} = \frac{1}{\det W(t)} W(t) = 1.$

mentre
$$\frac{\partial^{N-1}}{\partial x^{N-1}}K(x,t)\big|_{x=t} = \frac{1}{\det W(t)} \det \begin{pmatrix} y_1(t) & \dots & y_N(t) \\ y_1'(t) & \dots & y_N'(t) \\ \vdots & & & \\ y_1^{(N-2)}(t) & \dots & y_N^{(N-2)}(t) \\ y_1^{(N-1)}(t) & \dots & y_N^{(N-1)}(t) \end{pmatrix} = \frac{1}{\det W(t)}W(t) = 1.$$

(3) Poiché $A_j \in C^2(I)$ e det $W \in C^1(I)$ si ha, per ogni $j = 0, \dots, N-1, \frac{\partial^j}{\partial x^j} K(x,t) = \frac{1}{\det W(t)} \sum_{i=1}^N y_i^{(j)}(x) A_i(t) \in C^1(I \times I)$, mentre $\frac{\partial^N}{\partial x^N} K(x,t) = \frac{1}{\det W(t)} \sum_{i=1}^N y_i^{(N)}(x) A_i(t) \in C^0(I \times I)$.

Corollario 3.17. Siano $I \subset \mathbb{R}$ un intervallo, $b, a_0, a_1 \in C^0(I)$, y_1, y_2 soluzioni linearmente indi-EqLin14 pendenti di $Ly := y'' + a_1y' + a_0y = 0$. Allora una soluzione di Ly = b è data da

$$\varphi(x) := \int_{x_0}^x \frac{y_1(t)y_2(x) - y_2(t)y_1(x)}{y_1(t)y_2'(t) - y_2(t)y_1'(t)} b(t) dt.$$

Dim. Poiché

EqLinCost1

$$\begin{split} \begin{pmatrix} \varphi_1'(x) \\ \varphi_2'(x) \end{pmatrix} &= W(x)^{-1} \begin{pmatrix} 0 \\ b(x) \end{pmatrix} = \frac{1}{y_1(x)y_2'(x) - y_2(x)y_1'(x)} \begin{pmatrix} y_2'(x) & -y_2(x) \\ -y_1'(x) & y_1(x) \end{pmatrix} \begin{pmatrix} 0 \\ b(x) \end{pmatrix} \\ &= \frac{1}{y_1(x)y_2'(x) - y_2(x)y_1'(x)} \begin{pmatrix} -y_2(x)b(x) \\ y_1(x)b(x) \end{pmatrix}, \end{split}$$

si ha $\varphi(x) = \varphi_1(x)y_1(x) + \varphi_2(x)y_2(x) = \int_{x_0}^x \frac{-y_2(t)b(t)y_1(x) + y_1(t)b(t)y_2(x)}{y_1(t)y_2'(t) - y_2(t)y_1'(t)} dt$.

EqLin15 Proposizione 3.18 (Equazione di Riccati, 1723). Siano $I \subset \mathbb{R}$ un intervallo, $a \in C^1(I)$, $a \neq 0$, $b, c \in C^0(I)$, y soluzione dell'equazione differenziale di Riccati $y'(x) = a(x)y(x)^2 + b(x)y(x) + c(x)$. Allora $z(x) := \exp(-\int a(x)y(x) dx)$ è soluzione dell'equazione differenziale lineare $z''(x) - (b(x) + \frac{a'(x)}{a(x)})z'(x) + a(x)c(x)z(x) = 0$.

Dim. Infatti, $z'(x) = -a(x)y(x) \exp(-\int a(x)y(x) dx) = -a(x)y(x)z(x)$, $z''(x) = -a'(x)y(x)z(x) - a(x)y'(x)z(x) + a(x)^2y(x)^2z(x)$, per cui

$$z''(x) - \left(b(x) + \frac{a'(x)}{a(x)}\right)z'(x) + a(x)c(x)z(x)$$

$$= \left(-a'(x)y(x) - a(x)y'(x) + a(x)^2y(x)^2\right)z(x) + \left(b(x) + \frac{a'(x)}{a(x)}\right)a(x)y(x)z(x) + a(x)c(x)z(x)$$

$$= z(x)\left(-a'(x)y(x) - a(x)y'(x) + a(x)^2y(x)^2 + a(x)b(x)y(x) + a'(x)y(x) + a(x)c(x)\right)$$

$$= z(x)a(x)\left(a(x)y(x)^2 + b(x)y(x) + c(x) - y'(x)\right) = 0.$$

EqLin16 Proposizione 3.19. Siano $I \subset \mathbb{R}$ un intervallo, $a,b,c \in C^0(I)$. Allora la sostituzione $z(x) := \exp(\int y(x) dx)$ trasforma l'equazione differenziale lineare a(x)z''(x) + b(x)z'(x) + c(x)z(x) = 0 nell'equazione differenziale di Riccati $a(x)y'(x) + a(x)y(x)^2 + b(x)y(x) + c(x) = 0$.

Dim. Si ha z'(x) = y(x)z(x), $z''(x) = y'(x)z(x) + y(x)^2z(x)$, e quindi $0 = a(x)z''(x) + b(x)z'(x) + c(x)z(x) = z(x)(a(x)y'(x) + a(x)y(x)^2 + b(x)y(x) + c(x))$. Poiché $z(x) \neq 0$, per ogni $x \in I$, si ha la tesi.

3.2 Equazioni differenziali lineari a coefficienti costanti

Definizione 3.20. Siano $I \subset \mathbb{R}$ un intervallo, $a_0, a_1, \dots, a_{N-1} \in \mathbb{R}$, $f \in C^0(I)$. Si dice equazione differenziale di ordine $N \in \mathbb{N}$ a coefficienti costanti l'equazione

$$(Ly)(x) := y^{(N)} + a_{N-1}y^{(N-1)} + \ldots + a_1y' + a_0y = f(x).$$

L'equazione si dice omogenea se $f\equiv 0,$ altrimenti si dice non omogenea.

Si dice polinomio caratteristico dell'equazione il polinomio $p(\lambda) = \lambda^N + a_{N-1}\lambda^{N-1} + \ldots + a_1\lambda + a_0$. Si dice equazione caratteristica associata l'equazione $p(\lambda) = 0$.

Si dice soluzione complessa di Ly=0 una $y:I\to\mathbb{C}$ tale che $y^{(N)}(x)+a_{N-1}y^{(N-1)}(x)+\ldots+a_1y'(x)+a_0y(x)=0.$

EqLinCost2

Proposizione 3.21 (Soluzione generale dell'equazione non omogenea). La soluzione generale y_{gen} dell'equazione differenziale $y^{(N)} + a_{N-1}y^{(N-1)} + \ldots + a_1y' + a_0 = f$ è data da $y_{gen} = y_{om} + y_p$, dove y_{om} è la soluzione generale dell'equazione omogenea associata $y^{(N)} + a_{N-1}y^{(N-1)} + \ldots + a_1y' + a_0 = 0$, e y_p è una (qualunque) soluzione dell'equazione non omogenea.

Dim. È conseguenza della Proposizione 3.2 (2).

EqLinCost3

Proposizione 3.22. Siano $a_0, a_1, \ldots, a_{N-1} \in \mathbb{R}, \ y : I \to \mathbb{C}$. Allora $y \in soluzione complessa di <math>Ly = 0 \iff \operatorname{Re} y, \operatorname{Im} y \ sono \ soluzioni \ di \ Ly = 0$.

Dim. Poiché Re $y'(x) = (\operatorname{Re} y)'(x)$ e Im $y'(x) = (\operatorname{Im} y)'(x)$, la tesi segue dalla linearità dell'equazione differenziale.

EqLinCost4

Proposizione 3.23. Siano $a_0, a_1, \ldots, a_{N-1} \in \mathbb{R}$, $\lambda \in \mathbb{C}$, $y(x) := e^{\lambda x}$, $x \in \mathbb{R}$. Allora $y \in soluzione$ complessa di $Ly = 0 \iff p(\lambda) = 0$.

Dim. Poiché, per ogni $k \in \mathbb{N} \cup \{0\}$, si ha $y^{(k)}(x) = \lambda^k y(x)$, ne segue $(Ly)(x) = \lambda^N y(x) + a_{N-1}\lambda^{n-1}y(x) + \ldots + a_1\lambda y(x) + a_0y(x) = p(\lambda)y(x)$, e poiché $y(x) \neq 0$, per ogni $x \in \mathbb{R}$, la tesi segue.

EqLinCost5

Proposizione 3.24. Siano $a_0, a_1, \ldots, a_{N-1} \in \mathbb{R}$, $\lambda \in \mathbb{C}$ radice di $p(\lambda) = 0$, di molteplicità $m \in \mathbb{N}$. Allora, per ogni $k \in \{0, \ldots, m-1\}$, $y_k(x) := x^k e^{\lambda x}$ è soluzione di Ly = 0.

Dim. Poiché $\frac{d^j}{dx^j}(x^ke^{\lambda x}) = \sum_{i=0}^j \binom{j}{i} \frac{d^i}{dx^i}(x^k)\lambda^{j-i}e^{\lambda x} = e^{\lambda x} \sum_{i=0}^j \binom{j}{i} \frac{d^i}{dx^i}(x^k)\lambda^{j-i}$, si ha

$$(Ly_k)(x) = \sum_{j=0}^{N} a_j \frac{d^j}{dx^j} (x^k e^{\lambda x}) = e^{\lambda x} \sum_{j=0}^{N} a_j \sum_{i=0}^{j} \binom{j}{i} \frac{d^i}{dx^i} (x^k) \lambda^{j-i}$$

$$= e^{\lambda x} \sum_{i=0}^{N} \left(\sum_{j=i}^{N} a_j \binom{j}{i} \lambda^{j-i} \right) \frac{d^i}{dx^i} (x^k) = e^{\lambda x} \sum_{i=0}^{N} \frac{1}{i!} \left(\sum_{j=i}^{N} a_j \frac{j!}{(j-i)!} \lambda^{j-i} \right) \frac{d^i}{dx^i} (x^k)$$

$$= e^{\lambda x} \sum_{i=0}^{N} \frac{1}{i!} p^{(i)}(\lambda) \frac{d^i}{dx^i} (x^k) = e^{\lambda x} \sum_{i=0}^{k} \frac{1}{i!} p^{(i)}(\lambda) \frac{d^i}{dx^i} (x^k) \stackrel{(a)}{=} 0,$$

dove in (a) si è usato il fatto che λ è radice di molteplicità m e quindi $p^{(k)}(\lambda) = 0$, per ogni $k \in \{0, \dots, m-1\}$.

EqLinCost6

Corollario 3.25. Siano $a_0, a_1, \ldots, a_{N-1} \in \mathbb{R}$, $\lambda = \alpha \pm i\beta \in \mathbb{C}$ radici di $p(\lambda) = 0$, di molteplicità $m \in \mathbb{N}$. Allora, per ogni $k \in \{0, \ldots, m-1\}$, $y_k(x) := x^k e^{\alpha x} \cos \beta x$ e $z_k(x) := x^k e^{\alpha x} \sin \beta x$ sono soluzioni di Ly = 0. Esse si dicono soluzioni fondamentali dell'equazione differenziale.

Dim. Segue dalle Proposizioni 3.22 e 3.24 e da $e^{\lambda x} = e^{\alpha x}(\cos \beta x + i \sin \beta x)$.

EqLinCost7

Teorema 3.26 (Soluzione generale dell'equazione omogenea). Siano $a_0, a_1, \ldots, a_{N-1} \in \mathbb{R}$. Allora la soluzione generale y_{om} dell'equazione differenziale $Ly := y^{(N)} + a_{N-1}y^{(N-1)} + \ldots + a_1y' + a_0 = 0$ è combinazione lineare a coefficienti reali delle soluzioni fondamentali.

Dim. Siano $\lambda_1, \ldots, \lambda_q \in \mathbb{C}$ tutte le radici del polinomio caratteristico, rispettivamente di molteplicità m_1, \ldots, m_q , per cui $m_1 + \ldots + m_q = N$. Allora $y_{jk}(x) := x^k e^{\lambda_j x}$, $j = 1, \ldots, q$, $k = 0, \ldots, m_j$, sono N soluzioni di Ly = 0. Dimostriamo che sono \mathbb{R} -linearmente indipendenti. Siano quindi $c_{jk} \in \mathbb{R}$ non tutte nulle e tali che $\sum_{jk} c_{jk} y_{jk} = 0$ e troveremo un assurdo. Infatti,

$$0 = \sum_{jk} c_{jk} y_{jk} = \sum_{jk} c_{jk} x^k e^{\lambda_j x} =: \sum_{j=1}^q p_j(x) e^{\lambda_j x}, \tag{*}$$

dove $p_j(x) := \sum_{k=0}^{m_j} c_{jk} x^k$ è un polinomio di grado $r_j \leq m_j - 1$. Moltiplichiamo (*) per $e^{-\lambda_q x}$ e deriviamo $r_q + 1$ volte, ottenendo

$$0 = \sum_{i=1}^{q-1} p_{1j}(x)e^{(\lambda_j - \lambda_q)x}, \tag{**}$$

dove p_{1j} è un polinomio di grado r_j in quanto $\frac{d}{dx}(p_j(x)e^{(\lambda_j-\lambda_q)x})=(p_j(x)(\lambda_j-\lambda_q)+p_j'(x))e^{(\lambda_j-\lambda_q)x}$ e $p_j(x)(\lambda_j-\lambda_q)+p_j'(x)$ è un polinomio di grado r_j , e così via. Moltiplichiamo (**) per $e^{(\lambda_q-\lambda_{q-1})x}$ e deriviamo $r_{q-1}+1$ volte, ottenendo $0=\sum_{j=1}^{q-2}p_{2j}(x)e^{(\lambda_j-\lambda_{q-1})x}$, dove p_{2j} è un polinomio di grado r_j . Procedendo così si ottiene alla fine $0=p_{q-1,1}(x)e^{(\lambda_1-\lambda_2)x}$, dove $p_{q-1,1}$ è un polinomio di grado r_1 . Ma questo è assurdo.

Passiamo alla soluzione dell'equazione lineare non omogenea.

EqLinCost8

Proposizione 3.27 (Principio di sovrapposizione degli effetti). Sia $Ly := y^{(N)} + a_{N-1}y^{(N-1)} + \ldots + a_1y' + a_0 = f$, con $f = f_1 + f_2$. Siano y_{p1} , y_{p2} soluzioni delle equazioni differenziali $Ly = f_1$ e $Ly = f_2$, rispettivamente. Allora $y_p = y_{p1} + y_{p2}$ è soluzione dell'equazione differenziale Ly = f.

Dim. Segue dalla linearità dell'equazione differenziale.

EqLinCost9

Teorema 3.28 (Soluzione dell'equazione non omogenea in casi particolari). Siano $a_0, a_1, \ldots, a_{N-1} \in \mathbb{R}$, $Ly := y^{(N)} + a_{N-1}y^{(N-1)} + \ldots + a_1y' + a_0 = f$, con $f(x) = p_k(x)e^{\alpha x}\sin(\beta x)$, oppure $f(x) = p_k(x)e^{\alpha x}\cos(\beta x)$, dove $\alpha, \beta \in \mathbb{R}$, e p_k è un polinomio di grado $k \geq 0$. Allora una soluzione dell'equazione differenziale non omogenea è data da

$$y_p(x) = x^r e^{\alpha x} (q_k(x)\cos(\beta x) + \widetilde{q}_k(x)\sin(\beta x)),$$

dove q_k, \widetilde{q}_k sono polinomi di grado $k, e r \in \{0, 1, ..., N\}$ è tale che

- (1) se $\alpha \pm i\beta$ non sono radici del polinomio caratteristico, allora r = 0,
- (2) se $\alpha \pm i\beta$ sono radici del polinomio caratteristico di molteplicità $m \in \{1, \dots, N\}$, allora r = m.

Dim. Poiché $e^{\alpha x}\sin(\beta x)=\frac{1}{2i}e^{(\alpha+i\beta)x}-\frac{1}{2i}e^{(\alpha-i\beta)x}$, e $e^{\alpha x}\cos(\beta x)=\frac{1}{2}e^{(\alpha+i\beta)x}+\frac{1}{2}e^{(\alpha-i\beta)x}$, per la Proposizione 3.27 possiamo trattare i casi $f(x)=p_k(x)e^{(\alpha\pm i\beta)x}$ separatamente. Sia $\lambda:=\alpha+i\beta$ e scriviamo $f(x)=e^{\lambda x}\sum_{\ell=0}^kb_\ell x^\ell$. Cerchiamo una soluzione particolare nella forma $y(x)=x^re^{\lambda x}\sum_{\ell=0}^ky_\ell x^\ell=e^{\lambda x}\sum_{\ell=0}^ky_\ell x^{\ell+r}$. Allora, indicato con p il polinomio caratteristico dell'equazione omogenea, si ha

$$(Ly)(x) = \sum_{\ell=0}^{k} y_{\ell} L(x^{\ell+r} e^{\lambda x}) \stackrel{(a)}{=} \sum_{\ell=0}^{k} y_{\ell} e^{\lambda x} \sum_{j=0}^{N} \frac{1}{j!} p^{(j)}(\lambda) \frac{d^{j}}{dx^{j}} (x^{\ell+r}) \stackrel{(b)}{=} e^{\lambda x} \sum_{\ell=0}^{k} y_{\ell} \sum_{j=r}^{N} \frac{1}{j!} p^{(j)}(\lambda) \frac{d^{j}}{dx^{j}} (x^{\ell+r}),$$

dove si è usato in (a) una relazione provata nella dimostrazione della Proposizione 3.24, e in (b) il fatto che $p^{(j)}(\lambda) = 0$, per ogni $j = 0, \ldots, r-1$. Posto $g(x) := \sum_{\ell=0}^k y_\ell \sum_{j=r}^N \frac{1}{j!} p^{(j)}(\lambda) \frac{d^j}{dx^j}(x^{\ell+r})$, che è un polinomio di grado $\leq k$, si avrà

$$Ly = f \iff e^{\lambda x} g(x) = e^{\lambda x} \sum_{\ell=0}^{k} b_{\ell} x^{\ell}$$

$$\iff g(x) = \sum_{\ell=0}^{k} b_{\ell} x^{\ell} \iff \frac{g^{(\ell)}(0)}{\ell!} = b_{\ell}, \quad \ell = 0, \dots, k$$

$$\iff b_{\ell} = \frac{1}{\ell!} \sum_{h=0}^{k} y_{h} \sum_{j=r}^{N} \frac{1}{j!} p^{(j)}(\lambda) \frac{d^{j+\ell}}{dx^{j+\ell}} (x^{h+r})|_{x=0}, \quad \ell = 0, \dots, k.$$

Posto $c_{\ell h} := \frac{1}{\ell!} \sum_{j=r}^N \frac{1}{j!} p^{(j)}(\lambda) \frac{d^{j+\ell}}{dx^{j+\ell}} (x^{h+r})|_{x=0}, \ \ell, h=0,\ldots,k,$ si ha $Ly=f \iff b_\ell = \sum_{h=0}^k c_{\ell h} y_h,$ $\ell=0,\ldots,k.$ Ora, se $h<\ell$, poiché $(h+r)-(j+\ell)=r-j+h-\ell<0$, si ha $c_{\ell h}=0$, mentre se $h=\ell$, poiché $(h+r)-(j+\ell)=r-j\geq 0 \iff j=r,$ si ha $c_{\ell \ell}=\frac{1}{\ell!}\frac{1}{r!}p^{(r)}(\lambda)(r+\ell)!\neq 0$ [perché r=m]. Quindi, per ogni $\ell=0,\ldots,k$, si ha $b_\ell=c_{\ell \ell}y_\ell+\sum_{h=\ell+1}^k c_{\ell h}y_h,$ che è un sistema triangolare di equazioni lineari nelle incognite y_0,\ldots,y_k , che può essere risolto iterativamente a partire da y_k risalendo fino a y_0 . Ciò significa che esiste un'unica y nella forma cercata che è soluzione di Ly=f.

EqLinCost10

Teorema 3.29 (Soluzione dell'equazione non omogenea nel caso generale). Siano $I \subset \mathbb{R}$ un intervallo, $a_0, a_1, \ldots, a_{N-1} \in \mathbb{R}$, $f \in C^0(I)$, $Ly := y^{(N)} + a_{N-1}y^{(N-1)} + \ldots + a_1y' + a_0$.

Allora, una soluzione particolare di Ly=f è data da $y_p(x)=\int_{x_0}^x y_N(x-t)f(t)\,dt$, dove y_N è la soluzione del problema di Cauchy

$$\begin{cases} Ly = 0 \\ y(0) = 0, \ y'(0) = 0, \ \dots, y^{(N-2)}(0) = 0, \ y^{(N-1)}(0) = 1. \end{cases}$$

Dim. Siano y_1, \ldots, y_N le soluzioni indipendenti dell'equazione Ly=0, ottenute in questo modo: y_k è soluzione del problema di Cauchy

$$\begin{cases} Ly = 0 \\ y^{(i)}(0) = 0, & i \neq k - 1 \\ y^{(k-1)}(0) = 1, & i = k - 1. \end{cases}$$

Sia

$$W(x) = \begin{pmatrix} y_1(x) & y_2(x) & \dots & y_N(x) \\ y'_1(x) & y'_2(x) & \dots & y'_N(x) \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(N-1)}(x) & y_2^{(N-1)}(x) & \dots & y_N^{(N-1)}(x) \end{pmatrix}$$

la matrice Wronskiana dell'equazione Ly=0, e sia K(x,t) il nucleo risolvente dell'equazione differenziale. Allora K(x,t)=K(x-t,0), per ogni $t\in\mathbb{R}$. Infatti, posto $\widetilde{K}(x,t):=K(x-t,0)$ e usando la Proposizione 3.16, si ha, per ogni $t\in\mathbb{R}$ fissato, che $K(\cdot,t),\widetilde{K}(\cdot,t)$ sono soluzioni dell'equazione differenziale Ly=0 [che è a coefficienti costanti] ed inoltre, per ogni $j=0,\ldots,N-2$, si

ha $\frac{\partial^j}{\partial x^j}\widetilde{K}(x,t)\big|_{x=t}=\frac{\partial^j}{\partial x^j}K(0,0)=0=\frac{\partial^j}{\partial x^j}K(x,t)\big|_{x=t},$ e $\frac{\partial^{N-1}}{\partial x^{N-1}}\widetilde{K}(x,t)\big|_{x=t}=\frac{\partial^{N-1}}{\partial x^{N-1}}K(0,0)=1=\frac{\partial^N}{\partial x^{N-1}}K(x,t)\big|_{x=t},$ e la tesi segue dall'unicità della soluzione del problema di Cauchy.

Allora, posto $v := \begin{pmatrix} 0 & \dots & 0 & 1 \end{pmatrix}^T$ si ha $K(x,t) = K(x-t,0) = \begin{pmatrix} y_1(x-t) & \dots & y_N(x-t) \end{pmatrix}^T W(0)^{-1}v = y_N(x-t)$, e la tesi segue dalla Proposizione 3.15.

3.3 Esercizi: Equazioni differenziali lineari omogenee

Esercizio 77. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'' - 3y' + 2y = 0 \\ y(0) = 0, \ y'(0) = 1. \end{cases}$$

Svolgimento. L'equazione caratteristica $\lambda^2-3\lambda+2=0$ ha radici $\lambda=1,\,\lambda=2.$

Quindi, $y_{qen}(t) = ae^t + be^{2t}$.

Dalle condizioni iniziali otteniamo

$$\begin{cases} 0 = y_{gen}(0) = a + b \\ 1 = y'_{gen}(0) = a + 2b \end{cases} \iff \begin{cases} b = -a = 1 \\ a = -1. \end{cases}$$

Allora $y_{Cauchy}(t) = -e^t + e^{2t}, t \in \mathbb{R}.$

Esercizio 78. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'' - y' - 2y = 0 \\ y(0) = 1, \ y'(0) = 0. \end{cases}$$

Svolgimento. L'equazione caratteristica $\lambda^2 - \lambda - 2 = 0$ ha radici $\lambda = -1$, $\lambda = 2$.

Quindi, $y_{gen}(t) = ae^{-t} + be^{2t}$.

Dalle condizioni iniziali otteniamo

$$\begin{cases} 1 = y_{gen}(0) = a + b \\ 0 = y_{gen}'(0) = -a + 2b \end{cases} \iff \begin{cases} a = 2b = \frac{2}{3} \\ b = \frac{1}{3}. \end{cases}$$

Allora $y_{Cauchy}(t) = \frac{2}{3}e^{-t} + \frac{1}{3}e^{2t}, t \in \mathbb{R}.$

Esercizio 79. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'' + 3y' + 2y = 0 \\ y(1) = 0, \ y'(1) = 1. \end{cases}$$

Svolgimento. L'equazione caratteristica $\lambda^2 + 3\lambda + 2 = 0$ ha radici $\lambda = -1$, $\lambda = -2$.

Quindi, $y_{gen}(t) = ae^{-t} + be^{-2t}$.

Dalle condizioni iniziali otteniamo

$$\begin{cases} 0 = y_{gen}(1) = \frac{a}{e} + \frac{b}{e^2} \\ 1 = y'_{gen}(1) = -\frac{a}{e} - \frac{2b}{e^2} \end{cases} \iff \begin{cases} b = -ae = -e^2 \\ a = e. \end{cases}$$

Allora $y_{Cauchy}(t) = e^{1-t} - e^{2(1-t)}, t \in \mathbb{R}.$

Esercizio 80. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'' - 4y' + 4y = 0 \\ y(0) = 1, \ y'(0) = 0. \end{cases}$$

Svolgimento. L'equazione caratteristica $\lambda^2 - 4\lambda + 4 = 0$ ha radice (doppia) $\lambda = 2$.

Quindi, $y_{qen}(t) = (a+bt)e^{2t}$.

La soluzione $y(t) = te^{2t}$ si può ottenere con il metodo di variazione delle costanti. Cerchiamo una seconda soluzione, indipendente da $y(t) = e^{2t}$, nella forma $y(t) = c(t)e^{2t}$. Allora $y'(t) = c'(t)e^{2t} + 2c(t)e^{2t}$ e $y''(t) = c''(t)e^{2t} + 4c'(t)e^{2t} + 4c(t)e^{2t}$, per cui $0 = c''(t)e^{2t} + 4c'(t)e^{2t} + 4c(t)e^{2t} - 4(c'(t)e^{2t} + 2c(t)e^{2t}) + 4c(t)e^{2t} = c''(t)e^{2t} \iff c''(t) = 0 \iff c(t) = a + bt$. Quindi $y(t) = (a + bt)e^{2t}$ è soluzione dell'equazione differenziale, e te^{2t} è una soluzione indipendente da $y(t) = e^{2t}$.

Dalle condizioni iniziali otteniamo

$$\begin{cases} 1 = y_{gen}(0) = a \\ 0 = y'_{gen}(0) = 2a + b \end{cases} \iff \begin{cases} a = 1 \\ b = -2. \end{cases}$$

Allora $y_{Cauchy}(t) = (1 - 2t)e^{2t}, t \in \mathbb{R}.$

Esercizio 81. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'' + 2y' + y = 0 \\ y(0) = 1, \ y'(0) = 1. \end{cases}$$

Svolgimento. L'equazione caratteristica $\lambda^2 + 2\lambda + 1 = 0$ ha radice (doppia) $\lambda = -1$.

Quindi, $y_{gen}(t) = (a+bt)e^{-t}$.

Dalle condizioni iniziali otteniamo

$$\begin{cases} 1 = y_{gen}(0) = a \\ 1 = y'_{gen}(0) = b - a \end{cases} \iff \begin{cases} a = 1 \\ b = 2. \end{cases}$$

Allora $y_{Cauchy}(t) = (1+2t)e^{-t}, t \in \mathbb{R}.$

Esercizio 82. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'' + 4y = 0 \\ y(0) = 0, \ y'(0) = 1. \end{cases}$$

Svolgimento. L'equazione caratteristica $\lambda^2 + 4 = 0$ ha radici $\lambda = \pm 2i$.

Quindi, $y_{aen}(t) = a\cos 2t + b\sin 2t$.

Dalle condizioni iniziali otteniamo

$$\begin{cases} 0 = y_{gen}(0) = a \\ 1 = y'_{gen}(0) = (-2a\sin 2t + 2b\cos 2t)\big|_{t=0} = 2b. \end{cases}$$

Allora $y_{Cauchy}(t) = \frac{1}{2}\sin 2t, t \in \mathbb{R}.$

Esercizio 83. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'' + y = 0 \\ y(0) = 1, \ y'(0) = 2. \end{cases}$$

Svolgimento. L'equazione caratteristica $\lambda^2 + 1 = 0$ ha radici $\lambda = \pm i$.

Quindi, $y_{gen}(t) = a\cos t + b\sin t$.

Dalle condizioni iniziali otteniamo

$$\begin{cases} 1 = y_{gen}(0) = a \\ 2 = y'_{gen}(0) = (-a\sin t + b\cos t)\big|_{t=0} = b. \end{cases}$$

Allora $y_{Cauchy}(t) = \cos t + 2\sin t, t \in \mathbb{R}$.

Esercizio 84. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'' - 2y' + 2y = 0 \\ y(0) = 1, \ y'(0) = 0. \end{cases}$$

Svolgimento. L'equazione caratteristica $\lambda^2 - 2\lambda + 2 = 0$ ha radici $\lambda = 1 \pm i$.

Quindi, $y_{qen}(t) = (a\cos t + b\sin t)e^t$.

Dalle condizioni iniziali otteniamo

$$\begin{cases} 1 = y_{gen}(0) = a \\ 0 = y'_{gen}(0) = (-a\sin t + b\cos t + a\cos t + b\sin t)e^t\big|_{t=0} = a + b \end{cases}$$

che ha soluzione a = 1, b = -1.

Allora $y_{Cauchy}(t) = (\cos t - \sin t)e^t$, $t \in \mathbb{R}$.

Esercizio 85. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'' - 4y' + 5y = 0 \\ y(0) = 1, \ y'(0) = 0. \end{cases}$$

Svolgimento. L'equazione caratteristica $\lambda^2 - 4\lambda + 5 = 0$ ha radici $\lambda = 2 \pm i$.

Quindi, $y_{gen}(t) = (a\cos t + b\sin t)e^{2t}$.

Dalle condizioni iniziali otteniamo

$$\begin{cases} 1 = y_{gen}(0) = a \\ 0 = y'_{gen}(0) = (-a\sin t + b\cos t + 2a\cos t + 2b\sin t)e^{2t}\big|_{t=0} = b + 2a \end{cases}$$

che ha soluzione a = 1, b = -2.

Allora $y_{Cauchy}(t) = (\cos t - 2\sin t)e^{2t}, t \in \mathbb{R}.$

Esercizio 86. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'' - 4y' + 13y = 0 \\ y(0) = 1, \ y'(0) = 0. \end{cases}$$

Svolgimento. L'equazione caratteristica $\lambda^2 - 4\lambda + 13 = 0$ ha radici $\lambda = 2 \pm 3i$.

Quindi, $y_{gen}(t) = (a\cos 3t + b\sin 3t)e^{2t}$.

Dalle condizioni iniziali otteniamo

$$\begin{cases} 1 = y_{gen}(0) = a \\ 0 = y'_{gen}(0) = (-3a\sin 3t + 3b\cos 3t + 2a\cos 3t + 2b\sin 3t)e^{2t}\big|_{t=0} = 3b + 2a, \end{cases}$$

che ha soluzione $a=1,\ b=-\frac{2}{3}.$ Allora $y_{Cauchy}(t)=(\cos 3t-\frac{2}{3}\sin 3t)e^{2t},\ t\in\mathbb{R}.$

Esercizio 87. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'' - y' + y = 0 \\ y(0) = 1, \ y'(0) = 0. \end{cases}$$

Svolgimento. L'equazione caratteristica $\lambda^2 - \lambda + 1 = 0$ ha radici $\lambda = \frac{1}{2} \pm i \frac{\sqrt{3}}{2}$.

Quindi, $y_{gen}(t) = (a\cos\frac{\sqrt{3}}{2}t + b\sin\frac{\sqrt{3}}{2}t)e^{t/2}$.

$$\begin{cases} 1 = y_{gen}(0) = a \\ 0 = y'_{gen}(0) = (-a\frac{\sqrt{3}}{2}\sin\frac{\sqrt{3}}{2}t + b\frac{\sqrt{3}}{2}\cos\frac{\sqrt{3}}{2}t + \frac{a}{2}\cos\frac{\sqrt{3}}{2}t + \frac{b}{2}\sin\frac{\sqrt{3}}{2}t)e^{t/2}|_{t=0} = \frac{b\sqrt{3}}{2} + \frac{a}{2}, \end{cases}$$

che ha soluzione $a=1, b=-\frac{1}{\sqrt{3}}$.

Allora $y_{Cauchy}(t) = (\cos \frac{\sqrt{3}}{2}t - \frac{1}{\sqrt{3}}\sin \frac{\sqrt{3}}{2}t)e^{t/2}, t \in \mathbb{R}.$

Esercizio 88. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y''' + y' = 0 \\ y(0) = 1, \ y'(0) = 1, \ y''(0) = -1. \end{cases}$$

Svolgimento. L'equazione caratteristica $\lambda^3 + \lambda = 0$ ha radici $\lambda = 0$, $\lambda = \pm i$.

Quindi, $y_{qen}(t) = a\cos t + b\sin t + c$.

Dalle condizioni iniziali otteniamo

$$\begin{cases} 1 = y_{gen}(0) = a + c \\ 1 = y'_{gen}(0) = (-a\sin t + b\cos t)\big|_{t=0} = b \\ -1 = y''_{gen}(0) = (-a\cos t - b\sin t)\big|_{t=0} = -a, \end{cases}$$

che ha soluzione a = 1, b = 1, c = 2.

Allora $y_{Cauchy}(t) = \cos t + \sin t + 2, t \in \mathbb{R}$.

Esercizio 89. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y''' + 3y'' + 3y' + y = 0 \\ y(0) = 1, \ y'(0) = 0, \ y''(0) = 2. \end{cases}$$

Svolgimento. L'equazione caratteristica $\lambda^3 + 3\lambda^2 + 3\lambda + 1 = 0$ ha radice tripla $\lambda = -1$. Quindi, $y_{gen}(t) = (a + bt + ct^2)e^{-t}$.

Dalle condizioni iniziali otteniamo

$$\begin{cases} 1 = y_{gen}(0) = a \\ 0 = y'_{gen}(0) = (b + 2ct - a - bt - ct^2)e^{-t}\big|_{t=0} = -a + b \\ 2 = y''_{gen}(0) = (2c - b - 2ct - b - 2ct + a + bt + ct^2)e^{-t}\big|_{t=0} = a - b + 2c, \end{cases}$$

che ha soluzione a = 1, b = 1, c = 1.

Allora $y_{Cauchy}(t) = (1 + t + t^2)e^{-t}, t \in \mathbb{R}.$

Esercizio 90. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y^{(4)} - 2y'' + y = 0 \\ y(0) = 1, \ y'(0) = 1, \ y''(0) = 2, \ y'''(0) = 1. \end{cases}$$

Svolgimento. L'equazione caratteristica $\lambda^4 - 2\lambda^2 + 1 = 0$ ha radici doppie $\lambda = 1$ e $\lambda = -1$. Quindi, $y_{gen}(t) = (a+bt)e^t + (c+dt)e^{-t}$.

Dalle condizioni iniziali otteniamo

$$\begin{cases} 1 = y_{gen}(0) = a + c \\ 1 = y'_{gen}(0) = (a + b + bt)e^{t} + (-c + d - dt)e^{-t}\big|_{t=0} = a + b - c + d \\ 2 = y''_{gen}(0) = (a + 2b + bt)e^{t} + (c - 2d + dt)e^{-t}\big|_{t=0} = a + 2b + c - 2d \\ 1 = y'''_{gen}(0) = (a + 3b + bt)e^{t} + (-c + 3d - dt)e^{-t}\big|_{t=0} = a + 3b - c + 3d, \end{cases}$$

che ha soluzione $a=1,\ b=\frac{1}{4},\ c=0,\ d=-\frac{1}{4}.$ Allora $y_{Cauchy}(t)=(1+\frac{1}{4}t)e^t-\frac{1}{4}e^{-t},\ t\in\mathbb{R}.$

3.4 Esercizi: Equazioni differenziali lineari non omogenee

3.4.1 Metodo dei coefficienti indeterminati

Esercizio 91. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'' + 3y' + 2y = e^t \\ y(0) = 0, \ y'(0) = 1. \end{cases}$$

Svolgimento. Risolviamo dapprima l'equazione omogenea associata. L'equazione caratteristica $\lambda^2 + 3\lambda + 2 = 0$ ha radici $\lambda = -1$, $\lambda = -2$. Quindi,

$$y_{om}(t) = ae^{-t} + be^{-2t}.$$

Cerchiamo una soluzione particolare, dell'equazione non omogenea, della forma $y_p(t) = ce^t$. Allora $ce^t + 3ce^t + 2ce^t = e^t \iff 6c = 1 \iff c = \frac{1}{6}$.

Quindi $y_{gen}(t) = ae^{-t} + be^{-2t} + \frac{1}{6}e^{t}$.

Dalle condizioni iniziali otteniamo

$$\begin{cases} 0 = y_{gen}(0) = a + b + \frac{1}{6} \\ 1 = y'_{gen}(0) = -a - 2b + \frac{1}{6} \end{cases} \iff \begin{cases} b = -a - \frac{1}{6} = -\frac{2}{3} \\ a = \frac{1}{2}. \end{cases}$$

Allora $y_{Cauchy}(t) = \frac{1}{2}e^{-t} - \frac{2}{3}e^{-2t} + \frac{1}{6}e^{t}, t \in \mathbb{R}.$

Esercizio 92. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'' + 3y' + 2y = t^2 \\ y(0) = 0, \ y'(0) = 1. \end{cases}$$

Svolgimento. Risolviamo dapprima l'equazione omogenea associata. L'equazione caratteristica $\lambda^2 + 3\lambda + 2 = 0$ ha radici $\lambda = -1$, $\lambda = -2$. Quindi,

$$y_{om}(t) = a_1 e^{-t} + a_2 e^{-2t}$$
.

Cerchiamo una soluzione particolare, dell'equazione non omogenea, della forma $y_p(t) = a + bt + ct^2$. Allora $2c + 3(b + 2ct) + 2(a + bt + ct^2) = t^2$, che, per il principio d'identità dei polinomi, fornisce

$$\begin{cases} 2c = 1 \iff c = \frac{1}{2} \\ 2b + 6c = 0 \iff b = -3c = -\frac{3}{2} \\ 2a + 3b + 2c = 0 \iff a = -\frac{3}{2}b - c = \frac{7}{4}. \end{cases}$$

Quindi $y_{gen}(t) = a_1 e^{-t} + a_2 e^{-2t} + \frac{7}{4} - \frac{3}{2}t + \frac{1}{2}t^2$.

Dalle condizioni iniziali otteniamo

$$\begin{cases} 0 = y_{gen}(0) = a_1 + a_2 + \frac{7}{4} \\ 1 = y'_{gen}(0) = -a_1 - 2a_2 - \frac{3}{2} \end{cases} \iff \begin{cases} a_2 = -a_1 - \frac{7}{4} = -\frac{3}{4} \\ a_1 = -1. \end{cases}$$

Allora $y_{Cauchy}(t) = -e^{-t} - \frac{3}{4}e^{-2t} + \frac{7}{4} - \frac{3}{2}t + \frac{1}{2}t^2, t \in \mathbb{R}.$

Esercizio 93 (Principio di sovrapposizione degli effetti). Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'' + 3y' + 2y = t^2 + e^t \\ y(0) = 0, \ y'(0) = 1. \end{cases}$$

Svolgimento. Risolviamo dapprima l'equazione omogenea associata. L'equazione caratteristica $\lambda^2 + 3\lambda + 2 = 0$ ha radici $\lambda = -1$, $\lambda = -2$. Quindi,

$$y_{om}(t) = a_1 e^{-t} + a_2 e^{-2t}$$

Cerchiamo una soluzione particolare, dell'equazione non omogenea, della forma $y_p(t) = a + bt + ct^2 + \alpha e^t$ [principio di sovrapposizione degli effetti]. Allora $2c + 3(b + 2ct) + 2(a + bt + ct^2) + 6\alpha e^t = t^2 + e^t$, che fornisce

$$\begin{cases} 6\alpha = 1 \iff \alpha = \frac{1}{6} \\ 2c = 1 \iff c = \frac{1}{2} \\ 2b + 6c = 0 \iff b = -3c = -\frac{3}{2} \\ 2a + 3b + 2c = 0 \iff a = -\frac{3}{2}b - c = \frac{7}{4}. \end{cases}$$

Quindi $y_{gen}(t) = a_1 e^{-t} + a_2 e^{-2t} + \frac{1}{6} e^t + \frac{7}{4} - \frac{3}{2} t + \frac{1}{2} t^2$.

Dalle condizioni iniziali otteniamo

$$\begin{cases} 0 = y_{gen}(0) = a_1 + a_2 + \frac{1}{6} + \frac{7}{4} \\ 1 = y'_{gen}(0) = -a_1 - 2a_2 + \frac{1}{6} - \frac{3}{2} \end{cases} \iff \begin{cases} a_2 = -a_1 - \frac{23}{12} = -\frac{7}{3} \\ a_1 = \frac{5}{12}. \end{cases}$$

Allora $y_{Cauchy}(t) = \frac{5}{12}e^{-t} - \frac{7}{3}e^{-2t} + \frac{1}{6}e^{t} + \frac{7}{4} - \frac{3}{2}t + \frac{1}{2}t^{2}, t \in \mathbb{R}.$

Esercizio 94 (Principio di sovrapposizione degli effetti). Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'' + y' - 2y = e^{-t} + 2t \\ y(0) = 1, \ y'(0) = \frac{1}{2}. \end{cases}$$

Svolgimento. Risolviamo dapprima l'equazione omogenea associata. L'equazione caratteristica $\lambda^2 + \lambda - 2 = 0$ ha radici $\lambda = -2$, $\lambda = 1$. Quindi,

$$y_{om}(t) = ae^{-2t} + be^t.$$

Cerchiamo una soluzione particolare, dell'equazione non omogenea, della forma $y_p(t) = c_1 e^{-t} + c_2 t + c_3$. Allora $y_p'(t) = -c_1 e^{-t} + c_2$ e $y_p''(t) = c_1 e^{-t}$, per cui $c_1 e^{-t} - c_1 e^{-t} + c_2 - 2(c_1 e^{-t} + c_2 t + c_3) = e^{-t} + 2t \iff -2c_1 e^{-t} - 2c_2 t + c_2 - 2c_3 = e^{-t} + 2t \iff c_1 = -\frac{1}{2}, c_2 = -1, c_3 = \frac{1}{2}c_2 = -\frac{1}{2}.$ Quindi $y_{gen}(t) = ae^{-2t} + be^t - \frac{1}{2}e^{-t} - t - \frac{1}{2}.$

Dalle condizioni iniziali otteniamo

$$\begin{cases} 1 = y_{gen}(0) = a + b - 1 \\ \frac{1}{2} = y'_{gen}(0) = -2a + b - \frac{1}{2} \end{cases} \iff \begin{cases} b = 2 - a = \frac{5}{3} \\ a = \frac{1}{3}. \end{cases}$$

Allora $y_{Cauchy}(t) = \frac{1}{3}e^{-2t} + \frac{5}{3}e^t - \frac{1}{2}e^{-t} - t - \frac{1}{2}, t \in \mathbb{R}.$

Esercizio 95 (Principio di sovrapposizione degli effetti e risonanza). Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'' + y' - 2y = e^t + \sin t \\ y(0) = \frac{9}{10}, \ y'(0) = \frac{1}{30}. \end{cases}$$

Svolgimento. Risolviamo dapprima l'equazione omogenea associata. L'equazione caratteristica $\lambda^2 + \lambda - 2 = 0$ ha radici $\lambda = -2$, $\lambda = 1$. Quindi,

$$y_{om}(t) = ae^{-2t} + be^t.$$

Cerchiamo una soluzione particolare, dell'equazione non omogenea, della forma $y_p(t) = c_1 t e^t + c_2 \cos t + c_3 \sin t$. Allora $y_p'(t) = c_1 e^t + c_1 t e^t - c_2 \sin t + c_3 \cos t$ e $y_p''(t) = 2c_1 e^t + c_1 t e^t - c_2 \cos t - c_3 \sin t$, per cui $2c_1 e^t + c_1 t e^t - c_2 \cos t - c_3 \sin t + c_1 e^t + c_1 t e^t - c_2 \sin t + c_3 \cos t - 2(c_1 t e^t + c_2 \cos t + c_3 \sin t) = e^t + \sin t \iff 3c_1 e^t + (c_3 - 3c_2) \cos t - (c_2 + 3c_3) \sin t = e^t + \sin t$, che equivale a $c_1 = \frac{1}{3}$ e

$$\begin{cases} c_3 - 3c_2 = 0 \\ c_2 - 3c_3 = -1 \end{cases} \iff \begin{cases} c_3 = 3c_2 = -\frac{3}{10} \\ c_2 = -\frac{1}{10}. \end{cases}$$

Quindi $y_{gen}(t) = ae^{-2t} + be^t + \frac{1}{3}te^t - \frac{1}{10}\cos t - \frac{3}{10}\sin t$. Dalle condizioni iniziali otteniamo

$$\begin{cases} \frac{9}{10} = y_{gen}(0) = a + b - \frac{1}{10} \\ \frac{1}{30} = y'_{gen}(0) = -2a + b + \frac{1}{3} - \frac{3}{10} \end{cases} \iff \begin{cases} b = 1 - a = \frac{2}{3} \\ a = \frac{1}{3}. \end{cases}$$

Allora $y_{Cauchy}(t) = \frac{1}{3}e^{-2t} + \frac{2}{3}e^t + \frac{1}{3}te^t - \frac{1}{10}\cos t - \frac{3}{10}\sin t, \ t \in \mathbb{R}.$

Esercizio 96. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'' + 3y' + 2y = t^2 e^t \\ y(0) = -\frac{2}{27}, \ y'(0) = -\frac{23}{27}. \end{cases}$$

Svolgimento. Risolviamo dapprima l'equazione omogenea associata. L'equazione caratteristica $\lambda^2 + 3\lambda + 2 = 0$ ha radici $\lambda = -1$, $\lambda = -2$. Quindi,

$$y_{om}(t) = a_1 e^{-t} + a_2 e^{-2t}.$$

Cerchiamo una soluzione particolare, dell'equazione non omogenea, della forma $y_p(t) = (a + bt + ct^2)e^t$. Allora $y_p'(t) = (b + 2ct + a + bt + ct^2)e^t = (a + b + (b + 2c)t + ct^2)e^t$, e $y_p''(t) = (b + 2c + 2ct + a + b + (b + 2c)t + ct^2)e^t = (a + 2b + 2c + (b + 4c)t + ct^2)e^t$, per cui $(a + 2b + 2c + (b + 4c)t + ct^2)e^t + 3(a + b + (b + 2c)t + ct^2)e^t + 2(a + bt + ct^2)e^t = t^2e^t$, che fornisce

$$\begin{cases} 6c = 1 \iff c = \frac{1}{6} \\ 6b + 10c = 0 \iff b = -\frac{5}{3}c = -\frac{5}{18} \\ 6a + 5b + 2c = 0 \iff a = -\frac{5}{6}b - \frac{1}{3}c = \frac{19}{108}. \end{cases}$$

Quindi $y_{gen}(t) = a_1 e^{-t} + a_2 e^{-2t} + \left(\frac{19}{108} - \frac{5}{18}t + \frac{1}{6}t^2\right)e^t$. Dalle condizioni iniziali otteniamo

$$\begin{cases} -\frac{2}{27} = y_{gen}(0) = a_1 + a_2 + \frac{19}{108} \\ -\frac{23}{27} = y'_{gen}(0) = -a_1 - 2a_2 + \frac{19}{108} - \frac{5}{18} \end{cases} \iff \begin{cases} a_2 = -a_1 - \frac{1}{4} = 1 \\ a_1 = -\frac{5}{4}. \end{cases}$$

Allora
$$y_{Cauchy}(t) = -\frac{5}{4}e^{-t} + e^{-2t} + \left(\frac{19}{108} - \frac{5}{18}t + \frac{1}{6}t^2\right)e^t$$
, $t \in \mathbb{R}$.

Esercizio 97. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'' + 3y' + 2y = \cos t \\ y(0) = \frac{1}{10}, \ y'(0) = -\frac{1}{5}. \end{cases}$$

Svolgimento. Risolviamo dapprima l'equazione omogenea associata. L'equazione caratteristica $\lambda^2 + 3\lambda + 2 = 0$ ha radici $\lambda = -1$, $\lambda = -2$. Quindi,

$$y_{om}(t) = a_1 e^{-t} + a_2 e^{-2t}$$
.

Cerchiamo una soluzione particolare, dell'equazione non omogenea, della forma $y_p(t) = a\cos t + b\sin t$. Allora $y_p'(t) = -a\sin t + b\cos t$, e $y_p''(t) = -a\cos t - b\sin t$, per cui $-a\cos t - b\sin t + 3(-a\sin t + b\cos t) + 2(a\cos t + b\sin t) = \cos t$, che fornisce

$$\begin{cases} a+3b=1\\ -3a+b=0 \end{cases} \iff \begin{cases} b=3a=\frac{3}{10}\\ a=\frac{1}{10}. \end{cases}$$

Quindi $y_{gen}(t) = a_1 e^{-t} + a_2 e^{-2t} + \frac{1}{10} \cos t + \frac{3}{10} \sin t$.

Dalle condizioni iniziali otteniamo

$$\begin{cases} \frac{1}{10} = y_{gen}(0) = a_1 + a_2 + \frac{1}{10} \\ -\frac{1}{5} = y'_{gen}(0) = -a_1 - 2a_2 + \frac{3}{10} \end{cases} \iff \begin{cases} a_2 = -a_1 = \frac{1}{2} \\ a_1 = -\frac{1}{2}. \end{cases}$$

Allora $y_{Cauchy}(t) = -\frac{1}{2}e^{-t} + \frac{1}{2}e^{-2t} + \frac{1}{10}\cos t + \frac{3}{10}\sin t, t \in \mathbb{R}.$

Esercizio 98 (Risonanza). Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'' + 3y' + 2y = e^{-t} \\ y(0) = 0, \ y'(0) = 0. \end{cases}$$

Svolgimento. Risolviamo dapprima l'equazione omogenea associata. L'equazione caratteristica $\lambda^2 + 3\lambda + 2 = 0$ ha radici $\lambda = -1$, $\lambda = -2$. Quindi,

$$y_{om}(t) = a_1 e^{-t} + a_2 e^{-2t}.$$

Cerchiamo una soluzione particolare, dell'equazione non omogenea, della forma $y_p(t)=cte^{-t}$. Allora $y_p'(t)=(c-ct)e^{-t}$, e $y_p''(t)=(-c-c+ct)e^{-t}=(-2c+ct)e^{-t}$, per cui $(-2c+ct)e^{-t}+3(c-ct)e^{-t}+2cte^{-t}=e^{-t}$, che fornisce c=1.

Quindi $y_{gen}(t) = a_1 e^{-t} + a_2 e^{-2t} + t e^{-t}$.

Dalle condizioni iniziali otteniamo

$$\begin{cases} 0 = y_{gen}(0) = a_1 + a_2 \\ 0 = y'_{gen}(0) = -a_1 - 2a_2 + 1 \end{cases} \iff \begin{cases} a_2 = -a_1 = 1 \\ a_1 = -1. \end{cases}$$

Allora $y_{Cauchy}(t) = -e^{-t} + e^{-2t} + te^{-t}, t \in \mathbb{R}.$

Esercizio 99 (Risonanza). Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'' - 4y' + 4y = e^{2t} \\ y(0) = 1, \ y'(0) = 0. \end{cases}$$

Svolgimento. Risolviamo dapprima l'equazione omogenea associata. L'equazione caratteristica $\lambda^2 - 4\lambda + 4 = 0$ ha radice (doppia) $\lambda = 2$. Quindi,

$$y_{om}(t) = (a_1 + a_2 t)e^{2t}$$
.

Cerchiamo una soluzione particolare, dell'equazione non omogenea, della forma $y_p(t)=ct^2e^{2t}$. Allora $y_p'(t)=c(2t+2t^2)e^{2t}$, e $y_p''(t)=c(2+4t+4t+4t^2)e^{2t}=c(2+8t+4t^2)e^{2t}$, per cui $c(2+8t+4t^2)e^{2t}-4c(2t+2t^2)e^{2t}+4ct^2e^{2t}=e^{2t}$, che fornisce $c=\frac{1}{2}$.

Quindi $y_{gen}(t) = (a_1 + a_2t + \frac{1}{2}t^2)e^{2t}$.

Dalle condizioni iniziali otteniamo

$$\begin{cases} 1 = y_{gen}(0) = a_1 \\ 0 = y'_{gen}(0) = a_2 + 2a_1 \end{cases} \iff \begin{cases} a_1 = 1 \\ a_2 = -2a_1 = -2. \end{cases}$$

Allora $y_{Cauchy}(t) = (1 - 2t + \frac{1}{2}t^2)e^{2t}, t \in \mathbb{R}.$

Esercizio 100. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'' + 4y = \cos t \\ y(0) = 0, \ y'(0) = 1. \end{cases}$$

Svolgimento. Risolviamo dapprima l'equazione omogenea associata. L'equazione caratteristica $\lambda^2 + 4 = 0$ ha radici $\lambda = \pm 2i$. Quindi,

$$y_{om}(t) = a_1 \cos 2t + a_2 \sin 2t.$$

Cerchiamo una soluzione particolare, dell'equazione non omogenea, della forma $y_p(t) = a \cos t + b \sin t$. Allora $y_p'(t) = -a \sin t + b \cos t$, e $y_p''(t) = -a \cos t - b \sin t$, per cui $-a \cos t - b \sin t + 4(a \cos t + b \sin t) = \cos t$, che fornisce

$$\begin{cases} 3a = 1 \\ 3b = 0 \end{cases} \iff \begin{cases} a = \frac{1}{3} \\ b = 0. \end{cases}$$

Quindi $y_{gen}(t) = a_1 \cos 2t + a_2 \sin 2t + \frac{1}{3} \cos t$.

Dalle condizioni iniziali otteniamo

$$\begin{cases} 0 = y_{gen}(0) = a_1 + \frac{1}{3} \\ 1 = y'_{gen}(0) = 2a_2 \end{cases} \iff \begin{cases} a_1 = -\frac{1}{3} \\ a_2 = \frac{1}{2}. \end{cases}$$

Allora $y_{Cauchy}(t) = -\frac{1}{3}\cos 2t + \frac{1}{2}\sin 2t + \frac{1}{3}\cos t, t \in \mathbb{R}.$

Esercizio 101. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'' + 4y = e^{-t} \\ y(0) = 0, \ y'(0) = 0. \end{cases}$$

Svolgimento. Risolviamo dapprima l'equazione omogenea associata. L'equazione caratteristica $\lambda^2 + 4 = 0$ ha radici $\lambda = \pm 2i$. Quindi,

$$y_{om}(t) = a_1 \cos 2t + a_2 \sin 2t.$$

Cerchiamo una soluzione particolare, dell'equazione non omogenea, della forma $y_p(t) = ae^{-t}$. Allora $ae^{-t} + 4ae^{-t} = e^{-t}$, che fornisce $a = \frac{1}{5}$.

Quindi $y_{gen}(t) = a_1 \cos 2t + a_2 \sin 2t + \frac{1}{5}e^{-t}$.

Dalle condizioni iniziali otteniamo

$$\begin{cases} 0 = y_{gen}(0) = a_1 + \frac{1}{5} \\ 0 = y'_{gen}(0) = 2a_2 - \frac{1}{5} \end{cases} \iff \begin{cases} a_1 = -\frac{1}{5} \\ a_2 = \frac{1}{10}. \end{cases}$$

Allora $y_{Cauchy}(t) = -\frac{1}{5}\cos 2t + \frac{1}{10}\sin 2t + \frac{1}{5}e^{-t}, t \in \mathbb{R}.$

Esercizio 102. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'' + 4y = t^2 \\ y(0) = 0, \ y'(0) = 1. \end{cases}$$

Svolgimento. Risolviamo dapprima l'equazione omogenea associata. L'equazione caratteristica $\lambda^2 + 4 = 0$ ha radici $\lambda = \pm 2i$. Quindi,

$$y_{om}(t) = a_1 \cos 2t + a_2 \sin 2t.$$

Cerchiamo una soluzione particolare, dell'equazione non omogenea, della forma $y_p(t) = a + bt + ct^2$. Allora $2c + 4(a + bt + ct^2) = t^2$, che fornisce

$$\begin{cases} 4c = 1 \iff c = \frac{1}{4} \\ 4b = 0 \iff b = 0 \\ 4a + 2c = 0 \iff a = -\frac{c}{2} = -\frac{1}{8}. \end{cases}$$

Quindi $y_{gen}(t) = a_1 \cos 2t + a_2 \sin 2t - \frac{1}{8} + \frac{1}{4}t^2$. Dalle condizioni iniziali otteniamo

$$\begin{cases} 0 = y_{gen}(0) = a_1 - \frac{1}{8} \\ 1 = y'_{gen}(0) = 2a_2 \end{cases} \iff \begin{cases} a_1 = \frac{1}{8} \\ a_2 = \frac{1}{2}. \end{cases}$$

Allora $y_{Cauchy}(t) = \frac{1}{8}\cos 2t + \frac{1}{2}\sin 2t - \frac{1}{8} + \frac{1}{4}t^2, t \in \mathbb{R}.$

Esercizio 103 (Principio di sovrapposizione degli effetti). Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'' + 4y = t^2 + e^{-t} \\ y(0) = \frac{1}{5}, \ y'(0) = 0. \end{cases}$$

Svolgimento. Risolviamo dapprima l'equazione omogenea associata. L'equazione caratteristica $\lambda^2 + 4 = 0$ ha radici $\lambda = \pm 2i$. Quindi,

$$y_{om}(t) = a_1 \cos 2t + a_2 \sin 2t.$$

Cerchiamo una soluzione particolare, dell'equazione non omogenea, della forma $y_p(t) = a + bt + ct^2 + \alpha e^{-t}$ [principio di sovrapposizione degli effetti]. Allora $2c + 4(a+bt+ct^2) + \alpha e^{-t} + 4\alpha e^{-t} = t^2 + e^{-t}$, che fornisce $\alpha = \frac{1}{5}$ e

$$\begin{cases} 4c = 1 \iff c = \frac{1}{4} \\ 4b = 0 \iff b = 0 \\ 4a + 2c = 0 \iff a = -\frac{c}{2} = -\frac{1}{8}. \end{cases}$$

Quindi $y_{gen}(t) = a_1 \cos 2t + a_2 \sin 2t - \frac{1}{8} + \frac{1}{4}t^2 + \frac{1}{5}e^{-t}$. Dalle condizioni iniziali otteniamo

$$\begin{cases} \frac{1}{5} = y_{gen}(0) = a_1 - \frac{1}{8} + \frac{1}{5} \\ 0 = y'_{gen}(0) = 2a_2 - \frac{1}{5} \end{cases} \iff \begin{cases} a_1 = \frac{1}{8} \\ a_2 = \frac{1}{10}. \end{cases}$$

Allora $y_{Cauchy}(t) = \frac{1}{8}\cos 2t + \frac{1}{10}\sin 2t - \frac{1}{8} + \frac{1}{4}t^2 + \frac{1}{5}e^{-t}, t \in \mathbb{R}.$

Esercizio 104. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'' + 4y = t^2 e^{-t} \\ y(0) = \frac{3}{125}, \ y'(0) = -\frac{3}{125}. \end{cases}$$

Svolgimento. Risolviamo dapprima l'equazione omogenea associata. L'equazione caratteristica $\lambda^2 + 4 = 0$ ha radici $\lambda = \pm 2i$. Quindi,

$$y_{om}(t) = a_1 \cos 2t + a_2 \sin 2t.$$

Cerchiamo una soluzione particolare, dell'equazione non omogenea, della forma $y_p(t) = (a + bt + ct^2)e^{-t}$. Allora $y_p'(t) = (b + 2ct - a - bt - ct^2)e^{-t} = (b - a + (2c - b)t - ct^2)e^{-t}$, e $y_p''(t) = (2c - b - 2ct - b + a - (2c - b)t + ct^2)e^{-t} = (a - 2b + 2c + (b - 4c)t + ct^2)e^{-t}$, per cui $(a - 2b + 2c + (b - 4c)t + ct^2)e^{-t} + 4(a + bt + ct^2)e^{-t} = t^2e^{-t}$, che fornisce

$$\begin{cases} 5c = 1 \iff c = \frac{1}{5} \\ 5b - 4c = 0 \iff b = \frac{4c}{5} = \frac{4}{25} \\ 5a - 2b + 2c = 0 \iff a = \frac{2b}{5} - \frac{2c}{5} = -\frac{2}{125}. \end{cases}$$

Quindi $y_{gen}(t) = a_1 \cos 2t + a_2 \sin 2t + \left(-\frac{2}{125} + \frac{4}{25}t + \frac{1}{5}t^2\right)e^{-t}$.

Dalle condizioni iniziali otteniamo

$$\begin{cases} \frac{3}{125} = y_{gen}(0) = a_1 - \frac{2}{125} \\ -\frac{3}{125} = y'_{gen}(0) = 2a_2 + \frac{4}{25} + \frac{2}{125} \end{cases} \iff \begin{cases} a_1 = \frac{1}{25} \\ a_2 = -\frac{1}{10}. \end{cases}$$

Allora $y_{Cauchy}(t) = \frac{1}{25}\cos 2t - \frac{1}{10}\sin 2t + \left(-\frac{2}{125} + \frac{4}{25}t + \frac{1}{5}t^2\right)e^{-t}, t \in \mathbb{R}.$

Esercizio 105. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'' + 4y = e^{-t} \cos t \\ y(0) = 0, \ y'(0) = \frac{1}{10}. \end{cases}$$

Svolgimento. Risolviamo dapprima l'equazione omogenea associata. L'equazione caratteristica $\lambda^2 + 4 = 0$ ha radici $\lambda = \pm 2i$. Quindi,

$$y_{om}(t) = a_1 \cos 2t + a_2 \sin 2t.$$

Cerchiamo una soluzione particolare, dell'equazione non omogenea, della forma $y_p(t) = ae^{-t}\cos t + be^{-t}\sin t$. Allora $y_p'(t) = (-a\sin t + b\cos t - a\cos t - b\sin t)e^{-t} = ((b-a)\cos t - (a+b)\sin t)e^{-t}$, e $y_p''(t) = (-(b-a)\sin t - (a+b)\cos t - (b-a)\cos t + (a+b)\sin t)e^{-t} = (2a\sin t - 2b\cos t)e^{-t}$, per cui $(2a\sin t - 2b\cos t)e^{-t} + 4(a\cos t + b\sin t)e^{-t} = e^{-t}\cos t$, che fornisce

$$\begin{cases} 4a - 2b = 1 \\ 2a + 4b = 0 \iff a = -2b \end{cases} \iff \begin{cases} b = -\frac{1}{10} \\ a = \frac{1}{5}. \end{cases}$$

Quindi $y_{gen}(t) = a_1 \cos 2t + a_2 \sin 2t + \frac{1}{5}e^{-t} \cos t - \frac{1}{10}e^{-t} \sin t$. Dalle condizioni iniziali otteniamo

$$\begin{cases} 0 = y_{gen}(0) = a_1 + \frac{1}{5} \\ \frac{1}{10} = y'_{gen}(0) = 2a_2 - \frac{1}{10} - \frac{1}{5} \end{cases} \iff \begin{cases} a_1 = -\frac{1}{5} \\ a_2 = \frac{1}{5}. \end{cases}$$

Allora $y_{Cauchy}(t) = -\frac{1}{5}\cos 2t + \frac{1}{5}\sin 2t + \frac{1}{5}e^{-t}\cos t - \frac{1}{10}e^{-t}\sin t, t \in \mathbb{R}.$

Esercizio 106 (Risonanza). Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'' + y' = t^2 + 1 \\ y(0) = 0, \ y'(0) = 0. \end{cases}$$

Svolgimento. Risolviamo dapprima l'equazione omogenea associata. L'equazione caratteristica $\lambda^2 + \lambda = 0$ ha radici $\lambda = 0$, $\lambda = -1$. Quindi,

$$y_{om}(t) = a_1 + a_2 e^{-t}.$$

Cerchiamo una soluzione particolare, dell'equazione non omogenea, della forma $y_p(t) = t(a + bt + ct^2)$. Allora $6ct + 2b + a + 2bt + 3ct^2 = t^2 + 1$, che fornisce

$$\begin{cases} 3c = 1 \iff c = \frac{1}{3} \\ 2b + 6c = 0 \iff b = -3c = -1 \\ a + 2b = 1 \iff a = 1 - 2b = 3. \end{cases}$$

Quindi $y_{gen}(t) = a_1 + a_2 e^{-t} + 3t - t^2 + \frac{1}{3}t^3$. Dalle condizioni iniziali otteniamo

$$\begin{cases} 0 = y_{gen}(0) = a_1 + a_2 \\ 0 = y'_{gen}(0) = -a_2 + 3 \end{cases} \iff \begin{cases} a_1 = -a_2 = -3 \\ a_2 = 3. \end{cases}$$

Allora $y_{Cauchy}(t) = -3 + 3e^{-t} + 3t - t^2 + \frac{1}{3}t^3, t \in \mathbb{R}.$

Esercizio 107 (Risonanza). Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'' + 4y' + 5y = te^{-2t} \sin t \\ y(0) = 1, \ y'(0) = 0. \end{cases}$$

Svolgimento. Risolviamo dapprima l'equazione omogenea associata. L'equazione caratteristica $\lambda^2 + 4\lambda + 5 = 0$ ha radici $\lambda = -2 \pm i$. Quindi,

$$y_{om}(t) = (a_1 \cos t + a_2 \sin t)e^{-2t}$$
.

Cerchiamo una soluzione particolare, dell'equazione non omogenea, della forma

$$y_p(t) = t((a+bt)\cos t + (c+dt)\sin t)e^{-2t}$$

= $((at+bt^2)\cos t + (ct+dt^2)\sin t)e^{-2t}$.

Allora

$$\begin{split} y_p'(t) &= e^{-2t} \big((a+2bt) \cos t - (at+bt^2) \sin t + (c+2dt) \sin t \\ &\quad + (ct+dt^2) \cos t - 2(at+bt^2) \cos t - 2(ct+dt^2) \sin t \big) \\ &= & [a+(-2a+2b+c)t + (-2b+d)t^2] e^{-2t} \cos t \\ &\quad + [c+(-a-2c+2d)t - (b+2d)t^2] e^{-2t} \sin t, \end{split}$$

$$y_p''(t) = e^{-2t} \left([-2a + 2b + c + 2(-2b + d)t] \cos t + [-a - 2c + 2d - 2(b + 2d)t] \sin t + [-a + (-2a + 2b + c)t + (-2b + d)t^2] \sin t + [c + (-a - 2c + 2d)t - (b + 2d)t^2] \cos t + [c + (-a - 2c + 2d)t - (b + 2d)t^2] \cos t + [c + (-a - 2c + 2d)t - (b + 2d)t^2] \sin t \right)$$

$$= [-2a + 2b + c + 2(-2b + d)t + c + (-a - 2c + 2d)t - (b + 2d)t^2 + [-a - 2c + 2d + c)t + (-2b + d)t^2)]e^{-2t} \cos t + [-a - 2c + 2d - 2(b + 2d)t - (a + (-2a + 2b + c)t - (-2b + d)t^2) + [-2(c + (-a - 2c + 2d)t - (b + 2d)t^2)]e^{-2t} \sin t$$

$$= [-4a + 2b + 2c + (3a - 8b - 4c + 4d)t + (3b - 4d)t^2]e^{-2t} \cos t + [-2a - 4c + 2d + (4a - 4b + 3c - 8d)t + (4b + 3d)t^2]e^{-2t} \sin t,$$

per cui

$$y_p'' + 4y_p' + 5y_p = [-4a + 2b + 2c + (3a - 8b - 4c + 4d)t + (3b - 4d)t^2)$$

$$+ 4(a + (-2a + 2b + c)t + (-2b + d)t^2) + 5(at + bt^2)]e^{-2t}\cos t$$

$$+ [-2a - 4c + 2d + (4a - 4b + 3c - 8d)t + (4b + 3d)t^2)$$

$$+ 4(c + (-a - 2c + 2d)t - (b + 2d)t^2) + 5(ct + dt^2)]e^{-2t}\sin t$$

$$= [2b + 2c + 4dt]e^{-2t}\cos t + [-2a + 2d - 4bt]e^{-2t}\sin t = te^{-2t}\sin t,$$

che fornisce 2b + 2c + 4dt = 0, -2a + 2d - 4bt = t, cioè

$$\begin{cases} 2b + 2c = 0 \\ 4d = 0 \\ -2a + 2d = 0 \\ -4b = 1 \end{cases} \iff \begin{cases} d = 0 \\ a = 0 \\ b = -\frac{1}{4} \\ c = -b = \frac{1}{4}. \end{cases}$$

Quindi $y_{gen}(t) = (a_1 \cos t + a_2 \sin t)e^{-2t} + \frac{1}{4}(-t^2 \cos t + t \sin t)e^{-2t}$. Dalle condizioni iniziali otteniamo

$$\begin{cases} 1 = y_{gen}(0) = a_1 \\ 0 = y'_{gen}(0) = a_2 - 2a_1 \end{cases} \iff \begin{cases} a_1 = 1 \\ a_2 = 2. \end{cases}$$

Allora $y_{Cauchy}(t) = (1 - \frac{1}{4}t^2)e^{-2t}\cos t + (2 + \frac{1}{4}t)e^{-2t}\sin t, t \in \mathbb{R}.$

Esercizio 108 (Vibrazioni forzate). Una particella materiale di massa m > 0 è attaccata ad una molla di costante elastica k > 0 e immersa in un fluido con coefficiente di attrito viscoso $b \ge 0$, ed è sottoposta ad una forza esterna $F(t) = A \cos \gamma t$.

Discutere la sua legge di moto.

Svolgimento. Dalle leggi di Newton ricaviamo l'equazione my'' = -ky - by' + F, che, ponendo $\delta := \frac{b}{2m}, \ \omega := \sqrt{\frac{k}{m}}, \ B := \frac{A}{m}$, si riscrive $y'' + 2\delta y' + \omega^2 y = B\cos\gamma t$.

- (1) Risolviamo dapprima l'equazione omogenea associata. L'equazione caratteristica $\lambda^2 + 2\delta\lambda + \omega^2 = 0$ ha radici $\lambda = -\delta \pm \sqrt{\delta^2 \omega^2}$. Quindi sono possibili tre casi:
- (1.1) se $\delta > \omega$, allora l'equazione ha due radici reali e distinte $\lambda = \lambda_1 := -\delta \sqrt{\delta^2 \omega^2} < 0$ e $\lambda = \lambda_2 = -\delta + \sqrt{\delta^2 \omega^2} < 0$, per cui $y_{om}(t) = a_1 e^{\lambda_1 t} + a_2 e^{\lambda_2 t}$,
- (1.2) se $\delta = \omega$, allora l'equazione ha una radice reale doppia $\lambda = -\delta < 0$, per cui $y_{om}(t) = (a_1 + a_2 t)e^{-\delta t}$,
- (1.3) se $\delta < \omega$, allora l'equazione ha due radici complesse coniugate $\lambda = \lambda_{1,2} := -\delta \pm i\omega'$, dove $\omega' := \sqrt{\omega^2 \delta^2}$, per cui $y_{om}(t) = (a_1 \cos \omega' t + a_2 \sin \omega' t)e^{-\delta t}$.
- (2) Cerchiamo una soluzione particolare dell'equazione non omogenea. Distinguiamo due casi: $\delta=0$ e $\delta>0$.
- (2.1) Nel caso $\delta = 0$ [che è un caso particolare di (1.3)], distinguiamo due sottocasi:
- (2.1.1) nel caso $\gamma = \omega$, cerchiamo una soluzione particolare dell'equazione omogenea nella forma $y_p(t) = ct \sin \omega t$, per cui $y_p'(t) = c \sin \omega t + ct\omega \cos \omega t$ e $y_p''(t) = 2c\omega \cos \omega t ct\omega^2 \sin \omega t$, da cui segue $2c\omega \cos \omega t ct\omega^2 \sin \omega t + ct\omega^2 \sin \omega t = B \cos \omega t$, che fornisce $c = \frac{B}{2\omega}$, e quindi $y_p(t) = \frac{B}{2\omega}t \sin \omega t$,
- (2.1.2) nel caso $\gamma \neq \omega$, cerchiamo una soluzione particolare dell'equazione omogenea nella forma $y_p(t) = c\cos\gamma t$, per cui $y_p''(t) = -c\gamma^2\cos\gamma t$, da cui segue $-c\gamma^2\cos\gamma t + c\omega^2\cos\gamma t = B\cos\gamma t$, che fornisce $c = \frac{B}{\omega^2 \gamma^2}$, e quindi $y_p(t) = \frac{B}{\omega^2 \gamma^2}\cos\gamma t$.
- (2.2) Nel caso $\delta > 0$, cerchiamo una soluzione particolare, dell'equazione non omogenea, della forma $y_p(t) = c_1 \cos \gamma t + c_2 \sin \gamma t$. Otteniamo $y_p'(t) = -c_1 \gamma \sin \gamma t + c_2 \gamma \cos \gamma t$ e $y_p''(t) = -c_1 \gamma^2 \cos \gamma t c_2 \gamma^2 \sin \gamma t$, per cui $-c_1 \gamma^2 \cos \gamma t c_2 \gamma^2 \sin \gamma t + 2\delta(-c_1 \gamma \sin \gamma t + c_2 \gamma \cos \gamma t) + \omega^2(c_1 \cos \gamma t + c_2 \sin \gamma t) = B \cos \gamma t$, da cui segue

$$\begin{cases} (\omega^2 - \gamma^2)c_1 + 2\delta\gamma c_2 = B\\ (\omega^2 - \gamma^2)c_2 - 2\delta\gamma c_1 = 0. \end{cases}$$

Sono quindi possibili due casi:

- (2.2.1) nel caso $\gamma = \omega$, si ha $c_1 = 0$, $c_2 = \frac{B}{2\delta\omega}$, e quindi $y_p(t) = \frac{B}{2\delta\omega}\sin\omega t$,
- (2.2.2) nel caso $\gamma \neq \omega$, si ha

$$\begin{cases} c_1 = \frac{(\omega^2 - \gamma^2)B}{(\omega^2 - \gamma^2)^2 + 4\delta^2 \gamma^2} \\ c_2 = \frac{2\delta\gamma B}{(\omega^2 - \gamma^2)^2 + 4\delta^2 \gamma^2}, \end{cases}$$

e quindi $y_p(t) = c_1 \cos \gamma t + c_2 \sin \gamma t = B\varrho \cos(\gamma(t-\tau))$, dove $\varrho := \frac{1}{B}\sqrt{c_1^2 + c_2^2} = \frac{1}{\sqrt{(\omega^2 - \gamma^2)^2 + 4\delta^2 \gamma^2}}$, e $\tau := \frac{1}{\gamma} \operatorname{arctg} \frac{c_2}{c_1} = \frac{1}{\gamma} \operatorname{arctg} \frac{2\delta\gamma}{\omega^2 - \gamma^2}$.

Osserviamo che, se interpretiamo $\tau(\gamma = \omega) = \frac{\pi}{2\omega}$, possiamo scrivere la soluzione particolare nella forma $y_p(t) = B\varrho\cos(\gamma(t-\tau))$, in entrambi i casi (2.2.1) e (2.2.2).

Il grafico del coefficiente di amplificazione $\varrho = \varrho(\gamma)$ ha un andamento qualitativo che dipende dal valore di $\frac{\delta}{\omega}$.

(2.2. α) Nel caso $\delta < \frac{\sqrt{2}}{2}\omega$, si ha $\varrho(0) = \frac{1}{\omega^2}$, $\varrho_{max} = \varrho(\sqrt{\omega^2 - 2\delta^2}) = \frac{1}{2\delta\sqrt{\omega^2 - \delta^2}}$ [infatti, posto $h(\gamma) := (\omega^2 - \gamma^2)^2 + 4\delta^2\gamma^2$, si ha $h'(\gamma) = -4\gamma(\omega^2 - \gamma^2) + 8\delta^2\gamma = 4\gamma(2\delta^2 - \omega^2 + \gamma^2) \ge 0 \iff \gamma \ge \sqrt{\omega^2 - 2\delta^2}$], e $\lim_{\gamma \to \infty} \varrho(\gamma) = 0$. Un grafico qualitativo è riportato in figura 2, a sinistra.

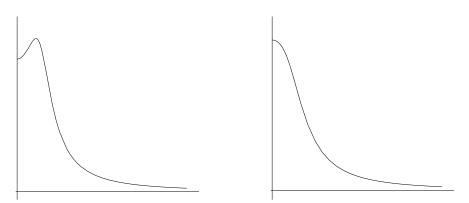


Figura 2: Vibrazioni forzate

fig:EquaDif

(2.2. β) Nel caso $\delta \geq \frac{\sqrt{2}}{2}\omega$, si ha $\varrho(0) = \frac{1}{\omega^2}$ e $\lim_{\gamma \to \infty} \varrho(\gamma) = 0$. Un grafico qualitativo è riportato in figura 2, a destra.

Vediamo un esempio numerico. Siano $\omega = 13, \ \delta = \frac{5}{\sqrt{2}}, \ \text{per cui} \ \gamma_{max} = \sqrt{\omega^2 - 2\delta^2} = 12, \ \text{e}$ $\varrho(0) = \frac{1}{169} = 0,0059\ldots, \ \text{mentre} \ \varrho(12) = \frac{1}{\sqrt{(169-144)^2 + 50\cdot 144}} = 0,0113\ldots$

Esercizio 109 (Equazione del terzo ordine). Determinare la soluzione del problema di Cauchy

$$\begin{cases} y''' + y' = t \\ y(0) = 0, \ y'(0) = 1, \ y''(0) = 0. \end{cases}$$

Svolgimento. Risolviamo dapprima l'equazione omogenea associata. L'equazione caratteristica $\lambda^3 + \lambda = 0$ ha radici $\lambda = 0$, $\lambda = \pm i$.

Quindi, $y_{om}(t) = a_1 + a_2 \sin t + a_3 \cos t$.

Cerchiamo una soluzione particolare, dell'equazione non omogenea, della forma $y_p(t) = t(a + bt) = at + bt^2$. Allora $y'_p(t) = a + 2bt$, $y''_p(t) = 2b$, $y'''_p(t) = 0$, per cui a + 2bt = t, che fornisce a = 0, $b = \frac{1}{2}$.

Quindi $y_{gen}(t) = a_1 + a_2 \sin t + a_3 \cos t + \frac{1}{2}t^2$.

Dalle condizioni iniziali otteniamo

$$\begin{cases} 0 = y_{gen}(0) = a_1 + a_3 \\ 1 = y'_{gen}(0) = a_2 \\ 0 = y''_{gen}(0) = -a_3 + 1 \end{cases} \iff \begin{cases} a_1 = -1 \\ a_2 = a_3 = 1. \end{cases}$$

Allora $y_{Cauchy}(t) = -1 + \sin t + \cos t + \frac{1}{2}t^2, t \in \mathbb{R}.$

Esercizio 110 (Equazione del terzo ordine). Determinare la soluzione del problema di Cauchy

$$\begin{cases} y''' - 3y'' + 3y' - y = 1\\ y(0) = 0, \ y'(0) = 0, \ y''(0) = 2. \end{cases}$$

Svolgimento. Risolviamo dapprima l'equazione omogenea associata. L'equazione caratteristica λ^3 – $3\lambda^2 + 3\lambda - 1 = 0$ ha radice tripla $\lambda = 1$.

Quindi, $y_{om}(t) = (a_1 + a_2t + a_3t^2)e^t$.

Cerchiamo una soluzione particolare, dell'equazione non omogenea, della forma $y_p(t) = a$. Allora $y'_{p}(t) = y''_{p}(t) = y'''_{p}(t) = 0$, per cui a = -1.

Quindi $y_{qen}(t) = (a_1 + a_2t + a_3t^2)e^t - 1.$

Dalle condizioni iniziali otteniamo

$$\begin{cases} 0 = y_{gen}(0) = a_1 - 1 \\ 0 = y'_{gen}(0) = (a_2 + 2a_3t + a_1 + a_2t + a_3t^2)e^t\big|_{t=0} = a_1 + a_2 \\ 2 = y''_{gen}(0) = (2a_3 + a_2 + 2a_3t + a_2 + 2a_3t + a_1 + a_2t + a_3t^2)e^t\big|_{t=0} = a_1 + a_2 + 2a_3 \end{cases}$$

cioè $a_1 = a_3 = 1, a_2 = -1.$

Allora
$$y_{Cauchy}(t) = (1 - t + t^2)e^t - 1, t \in \mathbb{R}.$$

Esercizio 111 (Equazione del quarto ordine). Determinare la soluzione del problema di Cauchy

$$\begin{cases} y^{(4)} - 4y'' = 12t \\ y(0) = 1, \ y'(0) = 0, \ y''(0) = 2, \ y'''(0) = 1. \end{cases}$$

Svolgimento. Risolviamo dapprima l'equazione omogenea associata. L'equazione caratteristica λ^4 – $4\lambda^2 = 0$ ha radici $\lambda = 0$ (doppia), $\lambda = \pm 2$.

Quindi, $y_{om}(t) = a_1 + a_2t + a_3e^{2t} + a_4e^{-2t}$.

Cerchiamo una soluzione particolare, dell'equazione non omogenea, della forma $y_p(t) = t^2(a + bt) = at^2 + bt^3$. Allora $y'_p(t) = 2at + 3bt^2$, $y''_p(t) = 2a + 6bt$, $y'''_p(t) = 6b$, $y^{(4)}(t) = 0$, per cui -4(2a+6bt) = 12t, e quindi a = 0, $b = -\frac{1}{2}$. Quindi $y_{gen}(t) = a_1 + a_2t + a_3e^{2t} + a_4e^{-2t} - \frac{1}{2}t^3$.

Dalle condizioni iniziali otteniamo

$$\begin{cases} 1 = y_{gen}(0) = a_1 + a_3 + a_4 \\ 0 = y'_{gen}(0) = a_2 + 2a_3e^{2t} - 2a_4e^{-2t} - \frac{3}{2}t^2\big|_{t=0} = a_2 + 2a_3 - 2a_4 \\ 2 = y''_{gen}(0) = 4a_3e^{2t} + 4a_4e^{-2t} - 3t\big|_{t=0} = 4a_3 + 4a_4 \\ 1 = y''_{gen}(0) = 8a_3e^{2t} - 8a_4e^{-2t} - 3\big|_{t=0} = 8a_3 - 8a_4 - 3 \end{cases}$$

cioè $a_1 = a_3 = \frac{1}{2}$, $a_2 = -1$, $a_4 = 0$.

Allora
$$y_{Cauchy}(t) = \frac{1}{2} - t - \frac{1}{2}t^3 + \frac{1}{2}e^{2t}, t \in \mathbb{R}.$$

Esercizio 112 (Equazione del quarto ordine). Determinare la soluzione del problema di Cauchy

$$\begin{cases} y^{(4)} + 2y'' + y = t \\ y(0) = 1, \ y'(0) = 1, \ y''(0) = 1, \ y'''(0) = 2. \end{cases}$$

Svolgimento. Risolviamo dapprima l'equazione omogenea associata. L'equazione caratteristica $\lambda^4 + 2\lambda^2 + 1 = 0$ ha radici doppie $\lambda = i$ e $\lambda = -i$.

Quindi, $y_{om}(t) = (a_1 + a_2 t) \sin t + (a_3 + a_4 t) \cos t$.

Cerchiamo una soluzione particolare, dell'equazione non omogenea, della forma $y_p(t) = a + bt$. Allora $y_p'(t) = b$, $y_p''(t) = y_p'''(t) = y_p^{(4)}(t) = 0$, per cui a + bt = t, e quindi a = 0, b = 1.

Quindi $y_{qen}(t) = (a_1 + a_2 t) \sin t + (a_3 + a_4 t) \cos t + t$.

Dalle condizioni iniziali otteniamo

$$\begin{cases} 1 = y_{gen}(0) = a_3 \\ 1 = y'_{gen}(0) = a_2 \sin t + (a_1 + a_2 t) \cos t + a_4 \cos t - (a_3 + a_4 t) \sin t + 1\big|_{t=0} = a_1 + a_4 + 1 \\ 1 = y''_{gen}(0) = a_2 \cos t - a_4 \sin t + (a_2 - a_3 - a_4 t) \cos t - (a_1 + a_4 + a_2 t) \sin t\big|_{t=0} = 2a_2 - a_3 \\ 2 = y''_{gen}(0) = -a_4 \cos t - a_2 \sin t - (2a_2 - a_3 + a_4 t) \sin t - (a_1 + 2a_4 + a_2 t) \cos t\big|_{t=0} = -a_1 - 3a_4 \end{cases}$$

cioè $a_1 = a_2 = a_3 = 1, a_4 = -1.$

LinNonOmog2

Allora
$$y_{Cauchy}(t) = (1+t)\sin t + (1-t)\cos t + t, t \in \mathbb{R}.$$

3.4.2 Metodo di variazione delle costanti

Teorema 3.30 (Soluzione dell'equazione non omogenea nel caso generale). Sia $y'' + a_1 y' + a_0 y = f$, con $a_0, a_1 \in \mathbb{R}$, $f \in C^0(I)$. Siano y_1, y_2 soluzioni indipendenti dell'equazione omogenea associata, e sia $W(t) = \det \begin{pmatrix} y_1(t) & y_2(t) \\ y_1'(t) & y_2'(t) \end{pmatrix} = y_1(t)y_2'(t) - y_2(t)y_1'(t)$ il Wronskiano. Allora una soluzione particolare dell'equazione non omogenea è data da $y_p(t) = c_1(t)y_1(t) + c_2(t)y_2(t)$, dove $c_1(t) = -\int y_2(t)\frac{f(t)}{W(t)}\,dt$, $c_2(t) = \int y_1(t)\frac{f(t)}{W(t)}\,dt$. Quindi

$$y_p(t) = \int_{t_0}^t \frac{y_1(s)y_2(t) - y_2(s)y_1(t)}{y_1(s)y_2'(s) - y_2(s)y_1'(s)} f(s) ds.$$

Teorema 3.31 (Soluzione dell'equazione non omogenea nel caso generale). Sia $y'' + a_1 y' + a_0 y = f$, con $a_0, a_1 \in \mathbb{R}$, $f \in C^0(I)$, un'equazione lineare di ordine 2, a coefficienti costanti.

Allora, una soluzione particolare dell'equazione è data da $y_p(t) = \int_{t_0}^t y_2(t-s)f(s) ds$, dove y_2 è la soluzione del problema di Cauchy

$$\begin{cases} y'' + a_1 y' + a_0 y = 0 \\ y(0) = 0, \ y'(0) = 1. \end{cases}$$

Esercizio 113 (Risonanza). Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'' + 4y' + 5y = te^{-2t} \sin t \\ y(0) = 1, \ y'(0) = 0. \end{cases}$$

Svolgimento. Risolviamo dapprima l'equazione omogenea associata. L'equazione caratteristica $\lambda^2 + 4\lambda + 5 = 0$ ha radici $\lambda = -2 \pm i$. Quindi,

$$y_{om}(t) = (a_1 \cos t + a_2 \sin t)e^{-2t}.$$

Allora la soluzione y_2 del problema di Cauchy ausiliario

$$\begin{cases} y'' + y = 0 \\ y(0) = 0, \ y'(0) = 1, \end{cases}$$

è data da $y_2(t) = e^{-2t} \sin t$. Infatti

$$\begin{cases} 0 = y_{om}(0) = a_1 \\ 1 = y'_{om}(0) = a_2 - 2a_1 \end{cases} \iff \begin{cases} a_1 = 0 \\ a_2 = 1. \end{cases}$$

Quindi, una soluzione particolare dell'equazione non omogenea è data da [vedi Teorema 3.31]

$$\begin{split} y_p(t) &= \int_0^t e^{-2(t-s)} \sin(t-s) s e^{-2s} \sin s \, ds = e^{-2t} \int_0^t s \left(\sin t \cos s - \sin s \cos t \right) \sin s \, ds \\ &= e^{-2t} \sin t \int_0^t s \cos s \sin s \, ds - e^{-2t} \cos t \int_0^t s \sin^2 s \, ds \\ &\stackrel{(a)}{=} e^{-2t} \sin t \left(-\frac{1}{4} t \cos 2t + \frac{1}{8} \sin 2t \right) - e^{-2t} \cos t \left(\frac{1}{4} t^2 - \frac{1}{4} t \sin 2t - \frac{1}{8} \cos 2t + \frac{1}{8} \right) \\ &= e^{-2t} \left(-\frac{1}{4} t \sin t \cos 2t + \frac{1}{8} \sin t \sin 2t - \frac{1}{4} t^2 \cos t + \frac{1}{4} t \sin 2t \cos t + \frac{1}{8} \cos t \cos 2t - \frac{1}{8} \cos t \right) \\ &\stackrel{(b)}{=} e^{-2t} \left(\frac{1}{4} t \sin t + \frac{1}{8} \cos t - \frac{1}{4} t^2 \cos t - \frac{1}{8} \cos t \right) \\ &= \frac{1}{4} t e^{-2t} \sin t - \frac{1}{4} t^2 e^{-2t} \cos t, \end{split}$$

dove in (a) si sono usati i risultati $\int_0^t s \cos s \sin s \, ds = \frac{1}{2} \int_0^t s \sin 2s \, ds = \frac{1}{2} \left[-\frac{1}{2} s \cos 2s + \int \frac{1}{2} \cos 2s \, ds \right]_0^t = -\frac{1}{4} t \cos 2t + \frac{1}{8} \sin 2t \, e \, \int_0^t s \sin^2 s \, ds = \frac{1}{2} \int_0^t s (1 - \cos 2s) \, ds = \frac{1}{2} \left[\frac{1}{2} s^2 - \frac{1}{2} s \sin 2s + \int \frac{1}{2} \sin 2s \, ds \right]_0^t = \frac{1}{4} t^2 - \frac{1}{4} t \sin 2t - \frac{1}{8} \cos 2t + \frac{1}{8}, \, e \, \text{in} \, (b) \, \text{si sono usate le formule} \, t \sin 2t \cos t - t \sin t \cos 2t = t \sin t \, e \cos t \cos 2t + \sin t \sin 2t = \cos t.$

Quindi

$$y_{gen}(t) = (a_1 \cos t + a_2 \sin t)e^{-2t} + \frac{1}{4}(-t^2 \cos t + t \sin t)e^{-2t}.$$

Dalle condizioni iniziali otteniamo

$$\begin{cases} 1 = y_{gen}(0) = a_1 \\ 0 = y'_{gen}(0) = a_2 - 2a_1 \end{cases} \iff \begin{cases} a_1 = 1 \\ a_2 = 2. \end{cases}$$

Allora $y_{Cauchy}(t) = (1 - \frac{1}{4}t^2)e^{-2t}\cos t + (2 + \frac{1}{4}t)e^{-2t}\sin t, t \in \mathbb{R}.$

Esercizio 114. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'' + y = \operatorname{tg} t \\ y(0) = 0, \ y'(0) = 0. \end{cases}$$

Svolgimento. Risolviamo dapprima l'equazione omogenea associata. L'equazione caratteristica $\lambda^2 + 1 = 0$ ha radici $\lambda = \pm i$. Quindi,

$$y_{om}(t) = a_1 \cos t + a_2 \sin t.$$

Allora la soluzione y_2 del problema di Cauchy ausiliario

$$\begin{cases} y'' + y = 0 \\ y(0) = 0, \ y'(0) = 1, \end{cases}$$

è data da $y_2(t) = \sin t$.

Quindi, una soluzione particolare dell'equazione non omogenea è data da [vedi Teorema 3.31]

$$y_p(t) = \int_0^t \sin(t-s) \operatorname{tg} s \, ds = \int_0^t \left(\sin t \cos s - \sin s \cos t \right) \operatorname{tg} s \, ds$$

$$= \sin t \int_0^t \sin s \, ds - \cos t \int_0^t \frac{\sin^2 s}{\cos s} \, ds$$

$$\stackrel{(a)}{=} \sin t \left(1 - \cos t \right) - \cos t \left(-\sin t + \frac{1}{2} \log \frac{1 + \sin t}{1 - \sin t} \right)$$

$$= \sin t - \frac{1}{2} \cos t \log \frac{1 + \sin t}{1 - \sin t},$$

dove in (a) si è usato il risultato $\int_0^t \frac{\sin^2 s}{\cos s} ds = \int_0^t \frac{\sin^2 s}{1-\sin^2 s} \cos s \, ds = \int_0^{\sin t} \frac{z^2}{1-z^2} \, dz = -\int_0^{\sin t} \left(1 + \frac{1}{2} \frac{1}{z-1} - \frac{1}{2} \frac{1}{z+1}\right) dz = \left[-z + \frac{1}{2} \log \left|\frac{z+1}{z-1}\right|\right]_0^{\sin t} = -\sin t + \frac{1}{2} \log \frac{1+\sin t}{1-\sin t}.$

Allora la soluzione generale è data da $y_{gen}(t) = a_1 \cos t + a_2 \sin t - \frac{1}{2} \cos t \log \frac{1+\sin t}{1-\sin t}$.

Dalle condizioni iniziali otteniamo [osserviamo che $\frac{d}{dt}\cos t\log\frac{1+\sin t}{1-\sin t} = -\sin t\log\frac{1+\sin t}{1-\sin t} + \cos t\left(\frac{\cos t}{1+\sin t} + \frac{\cos t}{1-\sin t}\right)$]

$$\begin{cases} 0 = y_{gen}(0) = a_1 \\ 0 = y'_{gen}(0) = a_2 - 1 \end{cases} \iff \begin{cases} a_1 = 0 \\ a_2 = 1. \end{cases}$$

Allora $y_{Cauchy}(t) = \sin t - \frac{1}{2}\cos t \log \frac{1+\sin t}{1-\sin t}, t \in (-\frac{\pi}{2}, \frac{\pi}{2}).$

Esercizio 115. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'' + y = |t| \\ y(0) = 0, \ y'(0) = 0. \end{cases}$$

Svolgimento. Risolviamo dapprima l'equazione omogenea associata. L'equazione caratteristica $\lambda^2 + 1 = 0$ ha radici $\lambda = \pm i$. Quindi,

$$y_{om}(t) = a_1 \cos t + a_2 \sin t.$$

Allora la soluzione y_2 del problema di Cauchy ausiliario

$$\begin{cases} y'' + y = 0 \\ y(0) = 0, \ y'(0) = 1, \end{cases}$$

è data da $y_2(t) = \sin t$.

Quindi, una soluzione particolare dell'equazione non omogenea è data da [vedi Teorema 3.31] $y_p(t) = \int_0^t \sin(t-s)|s| \, ds$. Ora, se t > 0, si ha $\int_0^t \sin(t-s)|s| \, ds = \int_0^t \sin(t-s)s \, ds = \left[s\cos(t-s) - \frac{1}{2}\sin(t-s)\right] \, ds$ $\sin(s-t)\Big]_0^t = t - \sin t$, mentre, se t < 0, si ha $\int_0^t \sin(t-s)|s| \, ds = -\int_0^t \sin(t-s)s \, ds = -(t-\sin t)$. Quindi $y_p(t) = |t| - \sin|t|$.

Allora la soluzione generale è data da $y_{gen}(t) = a_1 \cos t + a_2 \sin t + |t| - \sin |t|$.

Dalle condizioni iniziali otteniamo [osserviamo che $\frac{d}{dt}(|t| - \sin|t|) = \begin{cases} 1 - \cos t & t > 0 \\ 0 & t = 0 \end{cases}$ $-1 + \cos t & t < 0$

$$\begin{cases} 0 = y_{gen}(0) = a_1 \\ 0 = y'_{gen}(0) = a_2. \end{cases}$$

Allora $y_{Cauchy}(t) = |t| - \sin|t|, t \in \mathbb{R}$.

Esercizio 116. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'' + y = \frac{1}{\cos^3 t} \\ y(0) = 1, \ y'(0) = 0. \end{cases}$$

Svolgimento. Risolviamo dapprima l'equazione omogenea associata. L'equazione caratteristica λ^2 + 1 = 0 ha radici $\lambda = \pm i$. Quindi,

$$y_{om}(t) = a_1 \cos t + a_2 \sin t.$$

Allora la soluzione y_2 del problema di Cauchy ausiliario

$$\begin{cases} y'' + y = 0 \\ y(0) = 0, \ y'(0) = 1, \end{cases}$$

è data da $y_2(t) = \sin t$.

Quindi, una soluzione particolare dell'equazione non omogenea è data da [vedi Teorema 3.31]

$$y_p(t) = \int_0^t \sin(t - s) \frac{1}{\cos^3 s} \, ds = \int_0^t \left(\sin t \cos s - \sin s \cos t \right) \frac{1}{\cos^3 s} \, ds$$

$$= \sin t \int_0^t \frac{1}{\cos^2 s} \, ds - \cos t \int_0^t \frac{\sin s}{\cos^3 s} \, ds$$

$$= \sin t \left[\operatorname{tg} s \right]_0^t - \cos t \left[\frac{1}{2} \frac{1}{\cos^2 s} \right]_0^t$$

$$= \frac{\sin^2 t}{\cos t} - \frac{1}{2} \frac{1}{\cos t} + \frac{1}{2} \cos t = \frac{\sin^2 t}{2 \cos t}.$$

Allora la soluzione generale è data da $y_{gen}(t) = a_1 \cos t + a_2 \sin t + \frac{\sin^2 t}{2\cos t}$. Dalle condizioni iniziali otteniamo [osserviamo che $\frac{d}{dt} \frac{\sin^2 t}{2\cos t} = \frac{2\sin t \cos t \cos t + \sin t \sin^2 t}{2\cos^2 t} = \frac{\sin t(1+\cos^2 t)}{2\cos^2 t}$]

$$\begin{cases} 1 = y_{gen}(0) = a_1 \\ 0 = y'_{gen}(0) = a_2. \end{cases}$$

Allora $y_{Cauchy}(t) = \cos t + \frac{\sin^2 t}{2\cos t} = \frac{1+\cos^2 t}{2\cos t}, t \in (-\frac{\pi}{2}, \frac{\pi}{2}).$

Esercizio 117. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'' + y = \operatorname{ctg}^2 t \\ y(\frac{\pi}{2}) = 0, \ y'(\frac{\pi}{2}) = 0. \end{cases}$$

Svolgimento. Risolviamo dapprima l'equazione omogenea associata. L'equazione caratteristica λ^2 + 1=0 ha radici $\lambda=\pm i$. Quindi,

$$y_{om}(t) = a_1 \cos t + a_2 \sin t.$$

Allora la soluzione y_2 del problema di Cauchy ausiliario

$$\begin{cases} y'' + y = 0 \\ y(0) = 0, \ y'(0) = 1, \end{cases}$$

è data da $y_2(t) = \sin t$.

Quindi, una soluzione particolare dell'equazione non omogenea è data da [vedi Teorema 3.31]

$$y_p(t) = \int_{\pi/2}^t \sin(t-s) \cot^2 s \, ds = \int_{\pi/2}^t \left(\sin t \cos s - \sin s \cos t\right) \cot^2 s \, ds$$

$$= \sin t \int_{\pi/2}^t \frac{\cos^3 s}{\sin^2 s} \, ds - \cos t \int_{\pi/2}^t \frac{\cos^2 s}{\sin s} \, ds$$

$$= \sin t \int_{\pi/2}^t \frac{1 - \sin^2 s}{\sin^2 s} \cos s \, ds - \cos t \int_{\pi/2}^t \frac{\cos^2 s}{1 - \cos^2 s} \sin s \, ds$$

$$= \sin t \int_1^{\sin t} \frac{1 - z^2}{z^2} \, dz + \cos t \int_0^{\cos t} \frac{z^2}{1 - z^2} \, dz$$

$$\stackrel{(a)}{=} \sin t \left[-\frac{1}{z} - z \right]_1^{\sin t} + \cos t \left[-z + \frac{1}{2} \log \left| \frac{z + 1}{z - 1} \right| \right]_0^{\cos t}$$

$$= \sin t \left(-\frac{1}{\sin t} - \sin t + 2 \right) + \cos t \left(-\cos t + \frac{1}{2} \log \frac{1 + \cos t}{1 - \cos t} \right)$$

$$= -1 - \sin^2 t + 2 \sin t - \cos^2 t + \frac{1}{2} \cos t \log \frac{1 + \cos t}{1 - \cos t}$$

$$= -2 + 2 \sin t + \frac{1}{2} \cos t \log \frac{1 + \cos t}{1 - \cos t},$$

dove in (a) si è usato il risultato $\int \frac{z^2}{1-z^2} dz = -\int \left(1 + \frac{1}{2} \frac{1}{z-1} - \frac{1}{2} \frac{1}{z+1}\right) dz = -z + \frac{1}{2} \log \left|\frac{z+1}{z-1}\right|.$ Allora la soluzione generale è data da $y_{gen}(t) = a_1 \cos t + a_2 \sin t - 2 + \frac{1}{2} \cos t \log \frac{1+\cos t}{1-\cos t}.$

Dalle condizioni iniziali otteniamo [osserviamo che $\frac{d}{dt}\cos t\log\frac{1+\cos t}{1-\cos t} = -\sin t\log\frac{1+\cos t}{1-\cos t} + \cos t\left(\frac{-\sin t}{1+\cos t}\right)$

$$\begin{cases} 0 = y_{gen}(\frac{\pi}{2}) = a_2 - 2\\ 0 = y'_{gen}(\frac{\pi}{2}) = -a_1. \end{cases}$$

Allora $y_{Cauchy}(t) = 2\sin t - 2 + \frac{1}{2}\cos t \log \frac{1+\cos t}{1-\cos t}, t \in (0,\pi).$

Esercizio 118. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'' - y = \frac{2}{1 + e^t} \\ y(0) = 0, \ y'(0) = 0. \end{cases}$$

Svolgimento. Risolviamo dapprima l'equazione omogenea associata. L'equazione caratteristica $\lambda^2 - 1 = 0$ ha radici $\lambda = \pm 1$. Quindi,

$$y_{om}(t) = a_1 e^t + a_2 e^{-t}.$$

Allora la soluzione y_2 del problema di Cauchy ausiliario

$$\begin{cases} y'' - y = 0 \\ y(0) = 0, \ y'(0) = 1, \end{cases}$$

è data da $y_2(t) = \frac{1}{2}e^t - \frac{1}{2}e^{-t} = \sinh t$.

Quindi, una soluzione particolare dell'equazione non omogenea è data da [vedi Teorema 3.31]

$$y_p(t) = \frac{1}{2} \int_0^t (e^{t-s} - e^{s-t}) \frac{2}{1+e^s} ds$$

$$= e^t \int_0^t \frac{e^{-s}}{1+e^s} ds - e^{-t} \int_0^t \frac{e^s}{1+e^s} ds$$

$$= e^t \int_0^t \frac{e^s}{e^{2s} + e^{3s}} ds - e^{-t} \int_0^t \frac{e^s}{1+e^s} ds$$

$$= e^t \int_1^{e^t} \frac{1}{z^2 + z^3} dz - e^{-t} \int_1^{e^t} \frac{1}{1+z} dz$$

$$\stackrel{(a)}{=} e^t \left[\log \left| \frac{z+1}{z} \right| - \frac{1}{z} \right]_1^{e^t} - e^{-t} \left[\log |1+z| \right]_1^{e^t}$$

$$= e^t \left(\log(1+e^{-t}) - e^{-t} - \log 2 + 1 \right) - e^{-t} \left(\log(1+e^t) - \log 2 \right)$$

$$= e^t \log(1+e^{-t}) - 1 + (1 - \log 2)e^t - e^{-t} \log(1+e^t) + e^{-t} \log 2,$$

dove in (a) si è usato il risultato $\int \frac{1}{z^2 + z^3} dz = \int \left(-\frac{1}{z} + \frac{1}{z^2} + \frac{1}{z+1} \right) dz = -\log|z| - \frac{1}{z} + \log|z+1|$.

Allora la soluzione generale è data da $y_{gen}(t) = a_1 e^t + a_2 e^{-t} + e^t \log(1 + e^{-t}) - e^{-t} \log(1 + e^t) - 1$. Dalle condizioni iniziali otteniamo [osserviamo che $\frac{d}{dt} \left(e^t \log(1 + e^{-t}) - e^{-t} \log(1 + e^t) \right) = e^t \log(1 + e^{-t}) + e^t \frac{-e^{-t}}{1 + e^{-t}} + e^{-t} \log(1 + e^t) - e^{-t} \frac{e^t}{1 + e^t} = e^t \log(1 + e^{-t}) - \frac{1}{1 + e^{-t}} + e^{-t} \log(1 + e^t) - \frac{1}{1 + e^t}$

$$\begin{cases} 0 = y_{gen}(0) = a_1 + a_2 - 1 \\ 0 = y'_{gen}(0) = a_1 - a_2 + 2\log 2 - 1, \end{cases} \iff \begin{cases} a_2 = 1 - a_1 = \log 2 \\ a_1 = 1 - \log 2, \end{cases}$$

Allora $y_{Cauchy}(t) = (1 - \log 2)e^t + e^{-t}\log 2 + e^t\log(1 + e^{-t}) - e^{-t}\log(1 + e^t) - 1, t \in \mathbb{R}.$

Esercizio 119. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'' + y' - 2y = \frac{e^t}{1 + e^t} \\ y(0) = 0, \ y'(0) = 0. \end{cases}$$

Svolgimento. Risolviamo dapprima l'equazione omogenea associata. L'equazione caratteristica $\lambda^2 + \lambda - 2 = 0$ ha radici $\lambda = -2$, $\lambda = 1$. Quindi,

$$y_{om}(t) = a_1 e^t + a_2 e^{-2t}.$$

Allora la soluzione y_2 del problema di Cauchy ausiliario

$$\begin{cases} y'' + y' - 2y = 0 \\ y(0) = 0, \ y'(0) = 1, \end{cases}$$

è data da $y_2(t) = \frac{1}{3}e^t - \frac{1}{3}e^{-2t}$.

Quindi, una soluzione particolare dell'equazione non omogenea è data da [vedi Teorema 3.31]

$$\begin{split} y_p(t) &= \frac{1}{3} \int_0^t (e^{t-s} - e^{2s-2t}) \frac{e^s}{1+e^s} \, ds \\ &= \frac{1}{3} e^t \int_0^t \frac{1}{1+e^s} \, ds - \frac{1}{3} e^{-2t} \int_0^t \frac{e^{3s}}{1+e^s} \, ds \\ &= \frac{1}{3} e^t \int_0^t \frac{e^s}{e^s + e^{2s}} \, ds - \frac{1}{3} e^{-2t} \int_0^t \frac{e^{3s}}{1+e^s} \, ds \\ &= \frac{1}{3} e^t \int_1^{e^t} \frac{1}{z+z^2} \, dz - \frac{1}{3} e^{-2t} \int_1^{e^t} \frac{z^2}{1+z} \, dz \\ &= \frac{1}{3} e^t \Big[\log \Big| \frac{z}{z+1} \Big| \Big]_1^{e^t} - \frac{1}{3} e^{-2t} \Big[\frac{1}{2} z^2 - z + \log |z+1| \Big]_1^{e^t} \\ &= \frac{1}{3} e^t \Big(\log 2 - \log(1+e^{-t}) \Big) - \frac{1}{3} e^{-2t} \Big(\frac{1}{2} e^{2t} - e^t + \log(1+e^t) + \frac{1}{2} - \log 2 \Big) \\ &= \frac{\log 2}{3} e^t - \frac{1}{3} \Big(\frac{1}{2} - \log 2 \Big) e^{-2t} + \frac{1}{3} e^{-t} - \frac{1}{6} - \frac{1}{3} e^t \log(1+e^{-t}) - \frac{1}{3} e^{-2t} \log(1+e^t), \end{split}$$

dove in (a) si sono usati i risultati $\int \frac{1}{z+z^2} dz = \int \left(\frac{1}{z} - \frac{1}{z+1}\right) dz = \log \left|\frac{z}{z+1}\right|$, e $\int \frac{z^2}{1+z} dz = \int \left(z - 1 + \frac{1}{z+1}\right) dz = \frac{1}{2}z^2 - z + \log|z+1|$.

Állora la soluzione generale è data da $y_{gen}(t) = a_1 e^t + a_2 e^{-2t} + \frac{1}{3} e^{-t} - \frac{1}{6} - \frac{1}{3} e^t \log(1 + e^{-t}) - \frac{1}{3} e^{-2t} \log(1 + e^t)$.

Dalle condizioni iniziali otteniamo [osserviamo che $\frac{d}{dt} \left(e^{-t} - e^t \log(1 + e^{-t}) - e^{-2t} \log(1 + e^t) \right) = -e^{-t} - e^t \log(1 + e^{-t}) - e^t \frac{-e^{-t}}{1 + e^{-t}} + 2e^{-2t} \log(1 + e^t) - e^{-2t} \frac{e^t}{1 + e^t} = -e^{-t} - e^t \log(1 + e^{-t}) + \frac{1}{1 + e^{-t}} + 2e^{-2t} \log(1 + e^t) - \frac{e^{-t}}{1 + e^t}$

$$\begin{cases} 0 = y_{gen}(0) = a_1 + a_2 + \frac{1}{6} - \frac{2}{3}\log 2 \\ 0 = y'_{gen}(0) = a_1 - 2a_2 - \frac{1}{3} + \frac{1}{3}\log 2, \end{cases} \iff \begin{cases} 3a_2 + \frac{1}{2} - \log 2 = 0 \iff a_2 = \frac{1}{3}\log 2 - \frac{1}{6} \\ a_1 = -a_2 - \frac{1}{6} + \frac{2}{3}\log 2 = \frac{1}{3}\log 2, \end{cases}$$

Allora $y_{Cauchy}(t) = \frac{1}{3}\log 2e^t + \left(\frac{1}{3}\log 2 - \frac{1}{6}\right)e^{-2t} + \frac{1}{3}e^{-t} - \frac{1}{6} - \frac{1}{3}e^t\log(1 + e^{-t}) - \frac{1}{3}e^{-2t}\log(1 + e^t),$ $t \in \mathbb{R}$.

3.5 Esercizi: Soluzioni periodiche delle equazioni differenziali lineari del II ordine

Esercizio 120. Determinare le soluzioni 2π -periodiche di

$$y'' + \beta^2 y = \sin t .$$

Svolgimento. La soluzione generale dell'equazione omogenea è $y_{om}(t) = c_1 \cos \beta t + c_2 \sin \beta t$.

- (1) Se $\beta \neq \pm 1$, cerchiamo una soluzione dell'equazione non omogenea nella forma $y_p(t) = a \sin t$, e otteniamo $-a \sin t + \beta^2 a \sin t = \sin t \iff a = \frac{1}{\beta^2 1}$. Quindi $y_{gen}(t) = c_1 \cos \beta t + c_2 \sin \beta t + \frac{1}{\beta^2 1} \sin t$, e queste funzioni sono 2π -periodiche se: (a) $\beta \in \mathbb{Z} \setminus \{-1, 1\}$; (b) $\beta \notin \mathbb{Z}$, $c_1 = c_2 = 0$.
- (2) Se $\beta = \pm 1$, cerchiamo una soluzione dell'equazione non omogenea nella forma $y_p(t) = at \cos t$, e otteniamo $y_p'(t) = a \cos t at \sin t$, $y_p''(t) = -2a \sin t at \cos t$, per cui $-2a \sin t at \cos t + at \cos t = \sin t \iff a = -\frac{1}{2}$. Quindi $y_{gen}(t) = c_1 \cos \beta t + c_2 \sin \beta t \frac{1}{2}t \cos t$, e queste funzioni non sono mai 2π -periodiche.

Esercizio 121. Determinare le soluzioni 2π -periodiche di

$$y'' + \beta^2 y = \sin^3 t \ .$$

Svolgimento. Poiché

$$\sin^3 t = -\frac{1}{3}\sin 3t + \frac{3}{4}\sin t$$

ci cerchiamo una soluzione particolare nella forma $y_p(t) = b_1 \sin t + b_3 \sin 3t$.

Allora

$$y_p'' + \beta^2 y_p = b_1(\beta^2 - 1)\sin t + b_2(\beta^2 - 9)\sin 3t = \frac{3}{4}\sin t - \frac{1}{4}\sin 3t.$$

Quindi se $\beta \neq \pm 1$ e $\beta \neq \pm 3$ non ho risonanza $\Rightarrow b_1 = \frac{3}{4(\beta^2 - 1)}, b_2 = \frac{-1}{4(\beta^2 - 9)}$. Se $\beta = \pm 1$, allora

$$y_p = b_1 t \cos t + b_3 \sin 3t$$

$$y'_p = b_1 \cos t - b_1 t \sin t + 3b_3 \cos 3t$$

$$y''_p = -2b_1 \sin t - b_1 t \cos t - 9b_3 \sin 3t$$

e quindi

$$\begin{split} y_p'' + \beta^2 y_p &= -2b_1 \sin t + b_1 (\beta^2 - 1) t \cos t + b_3 (\beta^2 - 9) \sin 3t = \\ &= -2b_1 \sin t - 8b_3 \sin 3t = \frac{3}{4} \sin t - \frac{1}{4} \sin 3t \Rightarrow b_1 = -\frac{3}{8} \;, \quad b_3 = \frac{1}{32} \;. \end{split}$$

Se $\beta = \pm 3$, allora

$$y_p = b_1 \sin t + b_3 t \cos 3t$$

$$y'_p = b_1 \cos t + b_3 \cos 3t - 3b_3 t \sin 3t$$

$$y''_p = -b_1 \sin t - 6b_3 \sin 3t - 9b_3 t \cos 3t$$

e quindi

$$y_p'' + \beta^2 y_p = b_1(\beta^2 - 1)\sin t - 6b_3\sin 3t + b_3(\beta^2 - 9)t\cos 3t =$$

$$= 8b_1\sin t - 6b_3\sin 3t = \frac{3}{4}\sin t - \frac{1}{4}\sin 3t \Rightarrow b_1 = \frac{3}{32}, \quad b_3 = \frac{1}{24}.$$

Riassumendo, le soluzioni periodiche sono

- 1. $\beta \notin \mathbb{Z}$, $y(t) = \frac{3}{4(\beta^2 1)} \sin t \frac{1}{4(\beta^2 9)} \sin 3t \equiv y_p(t)$;
- 2. $\beta \in \mathbb{Z} \setminus \{\pm 1, \pm 3\}, \ y(t) = a \cos \beta t + b \sin \beta t + \frac{3}{4(\beta^2 1)} \sin t \frac{1}{4(\beta^2 9)} \sin 3t;$
- 3. $\beta = \pm 1, \pm 3$ non esistono soluzioni 2π -periodiche.

Esercizio 122. Sia \tilde{f} l'estensione periodica di

$$f(t) = |t|$$
, $t \in [-\pi, \pi)$.

Specificare le condizioni su β affinché $y'' + \beta^2 y = \tilde{f}$ ammetta soluzioni periodiche (di periodo 2π). Calcolare esplicitamente la soluzione sotto forma di serie di Fourier.

Svolgimento. Intanto $y'' + \beta^2 y = 0$ ha integrale generale $\varphi_0(t) = c_1 \cos \beta t + c_2 \sin \beta t$ che è periodico di periodo $2\pi \Leftrightarrow \beta \in \mathbb{Z}$. Determiniamo lo sviluppo in serie di Fourier di \tilde{f}

$$\frac{\alpha_0}{2} + \sum_{n=1}^{\infty} \alpha_n \cos nt$$

perché \tilde{f} è pari,

$$\alpha_0 = \frac{2}{\pi} \int_0^{\pi} t \, dt = \frac{2}{\pi} \left[\frac{t^2}{2} \right]_0^{\pi} = \pi$$

$$\alpha_n = \frac{2}{\pi} \int_0^{\pi} t \cos nt \, dt = \frac{2}{\pi} \left\{ \left[\frac{t \sin nt}{n} \right]_0^{\pi} - \int_0^{\pi} \frac{\sin nt}{n} \, dt \right\} =$$

$$= -\frac{2}{\pi n} \left[-\frac{\cos nt}{n} \right]_0^{\pi} = \frac{2}{\pi n^2} (\cos n\pi - 1) =$$

$$= \begin{cases} 0 & n \text{ pari} \\ -\frac{4}{\pi n^2} & n \text{ dispari} \end{cases} \Rightarrow \tilde{f}(t) = \frac{\pi}{2} - \frac{4}{\pi} \sum_{k=0}^{\infty} \frac{1}{(2k+1)^2} \cos(2k+1)t$$

Sia φ soluzione particolare dell'equazione $y'' + \beta^2 y = \tilde{f}$, allora $\varphi \in C^2$ e quindi $\varphi = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nt + b_n \sin nt$ converge uniformemente, inoltre $\varphi'' = \tilde{f} - \beta^2 \varphi$ e quindi φ'' ha derivata continua tranne al più nei punti $(2k+1)\pi$ dove comunque esistono le derivate destra e sinistra, quindi la sua serie di Fourier converge uniformemente ed è data da $\varphi'' = -\sum_{n=1}^{\infty} n^2 (a_n \cos nt + b_n \sin nt)$.

Ma allora

$$\varphi'' + \beta^2 \varphi = \beta^2 \frac{a_0}{2} + \sum_{n=1}^{\infty} (\beta^2 - n^2)(a_n \cos nt + b_n \sin nt) =$$

$$= \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=0}^{\infty} \frac{1}{(2k+1)^2} \cos(2k+1)t$$

e quindi se $\beta \notin 2\mathbb{Z} + 1$ si ha $a_0 = \frac{\pi}{\beta^2}$, $a_{2k} = 0$, $a_{2k+1} = -\frac{4}{\pi} \frac{1}{(2k+1)^2} \frac{1}{\beta^2 - (2k+1)^2}$, $b_n = 0$ e quindi

$$\varphi(t) = \frac{\pi}{2\beta^2} - \frac{4}{\pi} \sum_{k=0}^{\infty} \frac{1}{(2k+1)^2} \frac{1}{\beta^2 - (2k+1)^2} \cos(2k+1)t.$$

Quindi ho soluzioni periodiche $y(t) = \varphi(t)$ se $\beta \notin \mathbb{Z}$, e $y(t) = \varphi_0(t) + \varphi(t)$ se $\beta \in 2\mathbb{Z}$.

3.6 Esercizi proposti

Esercizio 123. Determinare la soluzione generale delle equazioni differenziali seguenti

- (1) y'' + 3y' + 2y = f(t)
- (2) y'' = f(t)
- (3) y'' + 2y' + y = f(t)
- (4) y'' + y = f(t)
- (5) y'' + 2y' + 5y = f(t)dove f è una delle funzioni seguenti
- (a) $f(t) = t^2$, e^{-t} , e^{-2t} , e^t , te^{-t} , te^{-2t} , te^t
- (b) $f(t) = \cos t$, $\cos 2t$, $t \cos t$, $t \cos 2t$
- (c) $f(t) = e^{-t} \cos t$, $e^{-t} \cos 2t$, $e^{-2t} \cos t$
- (d) $f(t) = te^{-t}\cos t$, $te^{-t}\cos 2t$, $te^{-2t}\cos t$.

Esercizio 124. Determinare la soluzione generale delle equazioni differenziali seguenti

- (1) y'' 3y' + 2y = f(t)
- (2) y'' 2y' + y = f(t)
- (3) y'' y' = f(t)
- $(4) \ y'' + 4y = f(t)$
- (5) y'' + 4y' + 5y = f(t)dove f è una delle funzioni seguenti
- (a) $f(t) = t^2 + 2t$, e^t , e^{2t} , e^{-t} , $t^2 e^t$, $t^2 e^{2t}$, $t^2 e^{-t}$
- (b) $f(t) = \sin t, \sin 2t, t^2 \sin t, t^2 \sin 2t$
- (c) $f(t) = e^{-2t} \sin t$, $e^{-2t} \sin 2t$, $e^t \sin t$
- (d) $f(t) = t^2 e^{-2t} \sin t$, $t^2 e^{-2t} \sin 2t$, $t^2 e^t \sin t$.

Esercizio 125. Determinare la soluzione generale delle equazioni differenziali seguenti

- $(1) \ y''' y' = 0,$
- $(2) \ y''' 13y'' + 12y' = 0,$
- (3) y''' 3y'' + 3y' y = 0,

(4)
$$y''' + y = 0$$
,

(5)
$$y''' - y = t^3 - 1$$
,

(6)
$$y''' + y'' = 3te^t + t^2 + 1$$
,

(7)
$$y''' + y'' - 2y = 5e^t$$
,

(8)
$$y''' + y'' + y' + y = te^t$$
,

(9)
$$y''' + y' = \frac{\sin t}{\cos^2 t}$$
.

Svolgimento. (7) L'equazione caratteristica $\lambda^3 + \lambda^2 - 2 = (\lambda - 1)(\lambda^2 + 2\lambda + 2) = 0$ ha radici $\lambda = 1$, $\lambda = -1 \pm i$.

Esercizio 126. Determinare la soluzione generale delle equazioni differenziali seguenti

$$(1) \ y^{(4)} - 2y'' = 0,$$

$$(2) \ y^{(4)} + 2y''' + y'' = 0,$$

(3)
$$y^{(4)} + 2y'' + y = 0$$
,

$$(4) \ y^{(4)} - 2y'' + y = 0,$$

(5)
$$y^{(4)} - 6y'' + 9y = 0$$
,

(6)
$$y^{(4)} + 8y'' + 16y = 0$$
,

$$(7) \ y^{(4)} + 4y = 0,$$

(8)
$$y^{(4)} + y' = 0$$
,

$$(9) \ y^{(4)} - a^4 y = 0,$$

$$(10) \ y^{(4)} + a^2 y'' = 0,$$

$$(11) \ y^{(4)} - 2y''' + y'' = e^t,$$

$$(12) \ y^{(4)} - 2y''' + y'' = t^3,$$

$$(13) \ y^{(4)} + y''' = \cos 4t.$$

Esercizio 127. Determinare la soluzione dei seguenti problemi di Cauchy

(1)
$$y'' - 5y' + 4y = 0$$
, $y(0) = 1$, $y'(0) = -1$,

(2)
$$y'' + 4y = 0$$
, $y(0) = 0$, $y'(0) = 2$,

(3)
$$y'' + 2y' = 0$$
, $y(0) = 1$, $y'(0) = 0$,

(4)
$$y'' + 2y' + 5y = 10t + 4$$
, $y(0) = 1$, $y'(0) = -1$,

(5)
$$y'' + 4y = \sin t$$
, $y(0) = 1$, $y'(0) = 1$,

(6)
$$y'' + 3y' - 4y = 4 + 17\sin t$$
, $y(0) = \frac{1}{2}$, $y'(0) = -\frac{1}{2}$,

(7)
$$y'' + 3y' + 7y = 3e^t$$
, $y(0) = 1$, $y'(0) = 0$,

(8)
$$y'' - y' - 6y = -e^{4t} + 5$$
, $y(0) = 0$, $y'(0) = \frac{1}{3}$,

(9)
$$y'' - 2y' = e^{2t} + t^2 - 1$$
, $y(0) = \frac{1}{8}$, $y'(0) = 1$.

Esercizio 128. Si trovi (passando per lo sviluppo di Fourier, o con metodi diretti) la soluzione periodica dell'equazione

$$\ddot{y} + 4\dot{y} + 5y = (\cos x)^2.$$

Esercizio 129. Dato il problema di Cauchy:

$$\begin{cases} \ddot{y} - 4y = \sin t \\ y(0) = y_0, \ \dot{y}(0) = \dot{y}_0 \end{cases}$$

determinare y_0 , \dot{y}_0 in modo che y sia 2π -periodica.

Esercizio 130. Sia $f: \mathbb{R} \to \mathbb{R}$, 2π -periodica, pari definita da:

$$f(t) = \begin{cases} t + \frac{\pi}{2}, & -\pi \le t \le 0 \\ -t + \frac{\pi}{2}, & 0 < t \le \pi \end{cases}.$$

- 1. Si trovi lo sviluppo di Fourier di f(t).
- 2. Si trovi l'integrale generale dell'equazione differenziale

$$y'' + \frac{y}{4} = f(t) .$$

Esercizio 131. Si consideri l'equazione differenziale $y'' + \omega^2 y = 0$, essendo $\omega > 0$.

Detto p un numero strettamente positivo, trovare i valori di ω per cui ogni soluzione $y: \mathbb{R} \to \mathbb{R}$ dell'equazione sia p-periodica (cioè verifichi y(t+p) = y(t) per ogni $t \in \mathbb{R}$).

4 Convergenza di soluzioni

4.1 Equazioni a variabili separabili

Esercizio 132. Indicata con f_n la soluzione del problema di Cauchy

$$\begin{cases} y' = y^2 t \\ y(1) = \sqrt[n]{2} \,, \end{cases}$$

dimostrare che f_n converge uniformemente in [-1,1].

Svolgimento. L'equazione è a variabili separabili, e la sua soluzione con condizione iniziale $y(1) = \sqrt[n]{2}$ è data da $\int_{\sqrt[n]{2}}^{y(t)} \frac{dy}{y^2} = \int_1^t s \, ds \iff \left[-\frac{1}{y} \right]_{\sqrt[n]{2}}^{y(t)} = \frac{1}{2} \left[s^2 \right]_1^t \iff \frac{1}{\sqrt[n]{2}} - \frac{1}{y(t)} = \frac{1}{2} (t^2 - 1)$, cioè

$$f_n(t) = \frac{2}{2^{1-\frac{1}{n}} + 1 - t^2},$$

che è definita in $|t| < \sqrt{2^{1-\frac{1}{n}} + 1}$. Ora $f(t) := \lim_{n \to \infty} f_n(t) = \frac{2}{3-t^2}, |t| < \sqrt{2}$, e si ha

$$\sup_{|t| \le 1} |f_n(t) - f(t)| = \sup_{|t| \le 1} \left| \frac{2}{3 - t^2} - \frac{2}{2^{1 - \frac{1}{n}} + 1 - t^2} \right| = \sup_{|t| \le 1} \frac{\left| 2(2^{1 - \frac{1}{n}} + 1 - t^2) - 2(3 - t^2) \right|}{(3 - t^2)(2^{1 - \frac{1}{n}} + 1 - t^2)} \\
= \sup_{|t| \le 1} \frac{4(1 - 2^{-\frac{1}{n}})}{(3 - t^2)(2^{1 - \frac{1}{n}} + 1 - t^2)} \le \frac{4(1 - 2^{-\frac{1}{n}})}{2 \cdot 2^{1 - \frac{1}{n}}} \to 0,$$

cioè $f_n \to f$ uniformemente in [-1, 1].

Esercizio 133. Indicata con f_n la soluzione del problema di Cauchy

$$\begin{cases} y' = \frac{y \log y}{t + \frac{1}{n}} \\ y(1) = e \end{cases},$$

dimostrare che f_n converge uniformemente in [0,2].

Svolgimento. L'equazione è a variabili separabili, e si ha $\int \frac{dy}{y \log y} = \int \frac{dt}{t + \frac{1}{n}} \iff \log |\log y| = \log |t + \frac{1}{n}| + c \iff \log y = k(t + \frac{1}{n})$, e dalla condizione iniziale segue che $k = \frac{n}{n+1}$, per cui

$$f_n(t) = \exp\frac{nt+1}{n+1},$$

che è definita in \mathbb{R} . Ora $f(t) := \lim_{n \to \infty} f_n(t) = e^t$, $t \in \mathbb{R}$, e si ha

$$\sup_{t \in [0,2]} |f_n(t) - f(t)| = \sup_{t \in [0,2]} \left| e^{\frac{nt+1}{n+1}} - e^t \right| = \sup_{t \in [0,2]} e^t \left| e^{\frac{1-t}{n+1}} - 1 \right| \le e^2 \max\{e^{\frac{1}{n+1}} - 1, 1 - e^{-\frac{1}{n+1}}\} \to 0,$$

cioè $f_n \to f$ uniformemente in [-1, 1].

Esercizio 134. Indicata con f_n la soluzione del problema di Cauchy

$$\begin{cases} y' = \frac{\cos t}{yn} \\ y(\frac{\pi}{2}) = 2 \,, \end{cases}$$

dimostrare che f_n converge uniformemente in \mathbb{R} .

Svolgimento. L'equazione è a variabili separabili, e si ha $\int y \, dy = \frac{1}{n} \int \cos t \, dt \iff \frac{1}{2} y^2 = \frac{1}{n} \sin t + c$, e dalla condizione iniziale segue che $c = 2 - \frac{1}{n}$, per cui

$$f_n(t) = \sqrt{4 - \frac{2}{n}(1 - \sin t)},$$

che è definita in \mathbb{R} . Ora $f(t) := \lim_{n \to \infty} f_n(t) = 2, t \in \mathbb{R}$, e si ha

$$\sup_{t \in \mathbb{R}} |f_n(t) - f(t)| = \sup_{t \in \mathbb{R}} 2 - \sqrt{4 - \frac{2}{n}(1 - \sin t)} = \sup_{t \in \mathbb{R}} \frac{\frac{2}{n}(1 - \sin t)}{2 + \sqrt{4 - \frac{2}{n}(1 - \sin t)}} \le \frac{\frac{4}{n}}{2 + \sqrt{4 - \frac{4}{n}}} \to 0,$$

cioè $f_n \to f$ uniformemente in \mathbb{R} .

4.2 Equazioni lineari del I ordine

Esercizio 135. Indicata con f_n la soluzione del problema di Cauchy

$$\begin{cases} y' = n(t - y) \\ y(0) = 0 \end{cases}$$

- a) calcolare il limite puntuale f di f_n in $[0, \infty)$;
- b) f_n converge uniformemente ad f in $[0, \infty)$?

Svolgimento.

a) L'equazione è lineare e la sua soluzione è

$$f_n(t) = e^{-a(t)} \int_0^t e^{a(s)} ns \, ds ,$$

dove

$$a(t) := \int_0^t n \, ds = nt \; ;$$

quindi

$$f_n(t) = e^{-nt} \int_0^t e^{ns} ns \, ds = \frac{1}{n} e^{-nt} \int_0^{nt} x e^x \, dx = \frac{1}{n} e^{-nt} \left[e^x (x-1) \right]_0^{nt} =$$

$$= \frac{1}{n} e^{-nt} \left[e^{nt} (nt-1) + 1 \right] = \frac{1}{n} (nt-1) + \frac{1}{n} e^{-nt} = t - \frac{1}{n} (1 - e^{-nt})$$

(si è utilizzato qui l'integrale $\int xe^x dx = xe^x - \int e^x dx = xe^x - e^x$). Quindi $f(t) := \lim_{n \to \infty} f_n(t) = t$, $\forall t \ge 0$.

b) Infine

$$\sup_{t\geq 0} |f_n(t) - f(t)| = \frac{1}{n} \sup_{t\geq 0} (1 - e^{-nt}) = \frac{1}{n} \to 0 ,$$

e quindi $f_n \to f$ uniformemente in $[0, \infty)$.

Esercizio 136. Indicata, per ogni $n \in \mathbb{N}$, con f_n la soluzione del problema di Cauchy

$$\begin{cases} y' + (1 + \frac{1}{n}) y = -\frac{e^{-(1 + \frac{1}{n})t}}{t^2} \\ y(1) = \frac{1}{n}, \end{cases}$$

dimostrare che f_n converge uniformemente in $[\frac{1}{2}, 2]$.

Svolgimento. L'equazione differenziale è lineare. Intanto l'equazione omogenea ha soluzione $y_{om}(t) = ke^{-(1+\frac{1}{n})t}$. Cerchiamo una soluzione particolare nella forma $y_p = k(t)e^{-(1+\frac{1}{n})t}$. Deve essere $k'(t)e^{-(1+\frac{1}{n})t} = -\frac{e^{-(1+\frac{1}{n})t}}{t^2}$, cioè $k'(t) = -\frac{1}{t^2}$, per cui $k(t) = \frac{1}{t}$. La soluzione generale è quindi

$$y_{gen}(t) = ke^{-(1+\frac{1}{n})t} + \frac{1}{t}e^{-(1+\frac{1}{n})t},$$

e dalla condizione iniziale si deduce $k = (\frac{1}{n} - e^{-(1+\frac{1}{n})})e^{1+\frac{1}{n}} = \frac{1}{n}e^{1+\frac{1}{n}} - 1$. Quindi $f_n(t) = (\frac{1}{n}e^{1+\frac{1}{n}} - 1)e^{-(1+\frac{1}{n})t}$, t > 0. Allora $f(t) := \lim_{n \to \infty} f_n(t) = (\frac{1}{t} - 1)e^{-t}$, t > 0. Si ha

$$\sup_{t \in [\frac{1}{2}, 2]} |f_n(t) - f(t)| = \sup_{t \in [\frac{1}{2}, 2]} \left| \left(\frac{1}{n} e^{1 + \frac{1}{n}} - 1 + \frac{1}{t} \right) e^{-(1 + \frac{1}{n})t} - \left(\frac{1}{t} - 1 \right) e^{-t} \right| \\
\leq \sup_{t \in [\frac{1}{2}, 2]} \frac{1}{n} e^{(1 + \frac{1}{n})(1 - t)} + \left(e^{-t} - e^{-(1 + \frac{1}{n})t} \right) + \frac{1}{t} \left(e^{-t} - e^{-(1 + \frac{1}{n})t} \right) \\
\leq \frac{1}{n} e^{\frac{1}{2}(1 + \frac{1}{n})} + e^{-\frac{1}{2}} \left(1 - e^{-\frac{2}{n}} \right) + 2e^{-\frac{1}{2}} \left(1 - e^{-\frac{2}{n}} \right) \to 0,$$

da cui segue la tesi.

4.3 Equazioni lineari del II ordine

Esercizio 137. Indicata, per ogni $n \in \mathbb{N}$, con f_n la soluzione del problema di Cauchy

$$\begin{cases} y'' + \frac{2}{n}y' + y = t \\ y(0) = 0, \ y'(0) = 1 - \frac{2}{n^2}, \end{cases}$$

dimostrare che f_n converge uniformemente in [-2,2].

Svolgimento. L'equazione caratteristica è

$$\lambda^2 + \frac{2}{n}\lambda + 1 = 0 \Rightarrow \lambda = -\frac{1}{n} \pm i\sqrt{1 - \frac{1}{n^2}}$$

e la soluzione del problema omogeneo è:

$$y = a_1 e^{-\frac{t}{n}} \cos\left(t\sqrt{1 - \frac{1}{n^2}}\right) + a_2 e^{-\frac{t}{n}} \sin\left(t\sqrt{1 - \frac{1}{n^2}}\right).$$

Prendendo una soluzione particolare nella forma $y_p = a + bt$ $(y'_p = b, y''_p = 0)$, dalla equazione differenziale si ottiene:

$$a = -\frac{2}{n}, \ b = 1.$$

La soluzione generale è quindi

$$y_n(t) = a_1 e^{-\frac{t}{n}} \cos\left(t\sqrt{1 - \frac{1}{n^2}}\right) + a_2 e^{-\frac{t}{n}} \sin\left(t\sqrt{1 - \frac{1}{n^2}}\right) + t - \frac{2}{n}.$$

Imponendo le condizioni iniziali si ottiene

$$0 = y_n(0) = a_1 - \frac{2}{n} \Rightarrow a_1 = \frac{2}{n}$$

$$1 - \frac{2}{n^2} = y'_n(0) = -\frac{a_1}{n} e^{-\frac{t}{n}} \cos\left(t\sqrt{1 - \frac{1}{n^2}}\right) - a_1\sqrt{1 - \frac{1}{n^2}} e^{-\frac{t}{n}} \sin\left(t\sqrt{1 - \frac{1}{n^2}}\right)$$

$$-\frac{a_2}{n} e^{-\frac{t}{n}} \sin\left(t\sqrt{1 - \frac{1}{n^2}}\right) + a_2\sqrt{1 - \frac{1}{n^2}} e^{-\frac{t}{n}} \cos\left(t\sqrt{1 - \frac{1}{n^2}}\right) + 1\Big|_{t=0}$$

$$= -\frac{a_1}{n} + a_2\sqrt{1 - \frac{1}{n^2}} + 1 \Rightarrow a_2 = 0,$$

e quindi

$$f_n(t) = \frac{2}{n} e^{-\frac{t}{n}} \cos\left(t\sqrt{1 - \frac{1}{n^2}}\right) + t - \frac{2}{n}$$
.

Il limite puntuale è quindi

$$f(t) := \lim_{n \to \infty} f_n(t) = t, \quad t \in \mathbb{R}.$$

Si ha

$$\sup_{t \in [-2,2]} |f_n(t) - f(t)| = \sup_{t \in [-2,2]} \left| \frac{2}{n} e^{-\frac{t}{n}} \cos\left(t\sqrt{1 - \frac{1}{n^2}}\right) - \frac{2}{n} \right| \le \frac{2}{n} e^{\frac{2}{n}} + \frac{2}{n} \to 0,$$

da cui segue la tesi.

Esercizio 138 (Problema ai limiti). Si determini, in funzione di $n \in \mathbb{N}$, una soluzione dell'equazione differenziale

$$\begin{cases} -\frac{1}{n}\ddot{y}_n + 2\dot{y}_n = 1\\ y_n(0) = 0, \ y_n(1) = 0, \end{cases}$$

e si determini il limite puntuale y della successione di funzioni y_n in tal modo definita. Si dica in quali insiemi tale convergenza è uniforme.

Svolgimento. L'equazione caratteristica è

$$-\frac{1}{n}\lambda^2 + 2\lambda = 0 \Rightarrow \lambda^2 - 2n\lambda = 0 \Rightarrow \lambda = \begin{cases} 0\\ 2n \end{cases}$$

e la soluzione del problema omogeneo è:

$$y = c_1 + c_2 e^{2nt}.$$

Prendendo una soluzione particolare nella forma $y_p = bt$ $(\dot{y}_p = b, \ddot{y}_p = 0)$, dalla equazione differenziale si ottiene:

 $b = \frac{1}{2}.$

La soluzione generale è quindi

$$y_n(t) = c_1 + c_2 e^{2nt} + \frac{1}{2}t.$$

Imponendo le condizioni in t = 0, t = 1 si ottiene

$$y_n(0) = c_1 + c_2 = 0 \Rightarrow c_2 = -c_1$$

$$y_n(1) = c_1 + c_2 e^{2n} + \frac{1}{2} = c_1 (1 - e^{2n}) + \frac{1}{2} = 0$$

$$\Rightarrow c_1 = \frac{1}{2(e^{2n} - 1)}, \ c_2 = -\frac{1}{2(e^{2n} - 1)}$$

e quindi

$$y_n(t) = \frac{1 - e^{2nt}}{2(e^{2n} - 1)} + \frac{1}{2}t$$
.

Il limite puntuale è quindi

$$\lim_{n \to \infty} y_n(t) = \begin{cases} \frac{t}{2} & 0 \le t < 1\\ 0 & t = 1 \end{cases}.$$

La convergenza è uniforme (come si verifica facilmente) in ogni intervallo del tipo [a, b], con $0 \le a < b < 1$.

4.4 Esercizi proposti

Esercizio 139. Indicata, per ogni $n \in \mathbb{N}$, con f_n la soluzione del problema di Cauchy, verificare che $\{f_n\}$ converge uniformemente nell'intervallo I indicato

(1)
$$\begin{cases} y' = \frac{1+y^2}{2t^2y} \\ y(1) = e^{-n}, \end{cases} I = [2, 3],$$

(2)
$$\begin{cases} y' = \frac{y}{t + \frac{1}{n}} \\ y(1) = 2 + \frac{1}{n}, \end{cases} I = [0, 2],$$

$$\begin{cases} y(1) = 2 + \frac{1}{n}, \\ y' = y + t + 2^{-n} \\ y(1) = -2, \end{cases} I = [0, 3],$$

(4)
$$\begin{cases} y' = \frac{y+t+\frac{1}{n^2}}{\sqrt{t}} & I = [1,3], \\ y(1) = -\frac{5}{2}, & \end{cases}$$
(5)
$$\begin{cases} y'' + 3y' + 2y = e^t \\ y(0) = 0, \ y'(0) = \frac{1}{n}. & I = [-1,1]. \end{cases}$$

(5)
$$\begin{cases} y'' + 3y' + 2y = e^t \\ y(0) = 0, \ y'(0) = \frac{1}{n}. \end{cases} I = [-1, 1].$$