33 ESTREMI RELATIVI

Definizione Sia $\emptyset \neq A \subseteq \mathbb{R}$, $f: A \to \mathbb{R}$, $x_0 \in A$. Il punto x_0 si dice un PUNTO DI MASSIMO RELATIVO o un PUNTO DI MASSIMO LOCALE quando esiste un intorno I di x_0 tale che x_0 è punto di massimo per la restrizione di f a $I \cap A$; ovvero

$$\forall x \in A \cap I \text{ si ha } f(x) \leq f(x_0).$$

Analogamente diciamo che x_0 è un PUNTO DI MINIMO RELATIVO o un PUNTO DI MINIMO LOCALE quando esiste un intorno I di x_0 tale che x_0 è punto di minimo per la restrizione di f a $I \cap A$; ovvero

$$\forall x \in A \cap I \text{ si ha } f(x) \geq f(x_0).$$

Un punto si dice di ESTREMO RELATIVO o DI ESTREMO LOCALE se è punto di massimo locale o di minimo locale.

NOTA: se x_0 è un punto di massimo per f su A, allora è anche punto di massimo relativo; se vogliamo distinguere le due cose si parlerà di PUNTO DI MASSIMO ASSOLUTO (o globale).

Esempi. 1) $f(x) = \begin{cases} x^2 & \text{se } x \in [-1,1] \setminus \{0\} \\ 2 & \text{se } x = 0 \end{cases}$. Allora -1,0,1 sono punti di massimo relativo; di questi 0 è punto di massimo assoluto;

- $2) \ f(x) = \begin{cases} 2 & \text{se } |x| = 1 \\ 1/x^2 & \text{se } x \in]-1,1[\setminus \{0\} \,.\,\, 0 \text{ è punto di minimo assoluto; } 1 \text{ e } -1 \text{ sono} \\ 0 & \text{se } x = 0 \\ \text{punti di massimo relativo ma non assoluto.} \end{cases}$
- 3) $f(x) = \cos x$; tutti i punti della forma $2k\pi$ sono punti di massimo assoluto, tutti i punti della forma $(2k+1)\pi$ sono punti di minimo assoluto;
- 4) f(x) = [x] (parte intera). Tutti i punti $x \in \mathbf{R}$ sono punti di massimo relativo; tutti i punti $x \in \mathbf{R} \setminus \mathbf{Z}$ sono punti di minimo relativo;
- 5) $f(x) = \sqrt{|x|}$. Il punto 0 è l'unico punto di minimo (assoluto e relativo); è anche un punto di cuspide;
- 6) $f(x) = \min\{|x|, |x-2|+1\}$. Il punto 0 è punto di minimo assoluto; il punto 2 è punto di minimo relativo. Notare che la funzione non è derivabile in 0 e 2.
- $7) \ f(x) = \begin{cases} x+2 & \text{se } x \leq -1 \\ -x & \text{se } -1 < x < 1 \text{. La funzione non ha punti di massimo e minimo} \\ x-2 & \text{se } x \geq 1 \\ \text{assoluti. 1 è punto di minimo relativo; } -1 \text{ è punto di massimo relativo.} \end{cases}$

Esercizio. Determinare i punti di estremo relativo della funzione

$$f(x) = \begin{cases} 4x^2 & \text{se } x \notin \mathbf{Z} \\ x^4 & \text{se } x \in \mathbf{Z}. \end{cases}$$

Questa funzione è ottenuta 'modificando' in punti isolati la funzione continua $4x^2$, che ha un unico punto di minimo relativo (e assoluto) x=0. Notiamo che si ha

(a)
$$4x^2 < x^4 \iff x < -2 \text{ o } x > 2;$$

(b) $4x^2 > x^4 \iff -2 < x < 2 \text{ e } x \neq 0;$
(c) $4x^2x^4 \iff x = -2, 2 \text{ o } 0.$

Dunque (caso (c)) la funzione non viene modificata vicino ai punti -2, 0 e 2, e dunque 0 continua ad essere un minimo relativo, mentre ± 2 non sono estremi relativi.

Nel caso (a) la funzione viene modificata nei punti $x_0 \in \mathbf{Z}$ con $x_0 < -2$ o $x_0 > 2$ e per tali x_0 si ha $f(x_0) > f(x)$ in un intorno di x_0 , dato che $\lim_{x \to x_0} f(x) = 4x_0^2 < x_0^4 = f(x_0)$. Dunque questi x_0 sono punti di massimo relativo.

Nel caso (b) la funzione viene modificata nei punti $x_0 \in \mathbf{Z}$ con $-2 < x_0 < 2$, $x_0 \neq 0$ (ovvero $x_0 = \pm 1$) e per tali x_0 si ha $f(x_0) < f(x)$ in un intorno di x_0 , dato che $\lim_{x \to \pm 1} f(x) = 4 > 1 = f(\pm 1)$. Dunque questi ± 1 sono punti di minimo relativo.

Riassumendo: $0, \pm 1$ sono i punti di minimo relativo per f; $\pm 3, \pm 4, \pm 5, \dots$ sono i punti di massimo relativo.

Osservazione: nell'esercizio precedente abbiamo usato (per i punti ± 1) il seguente ragionamento: "se si ha

$$f(x_0) < \lim_{x \to x_0} f(x),$$

allora x_0 è un punto di minimo relativo."

Analogamente (per i punti $\pm 3, \pm 4, \ldots$): "se si ha

$$f(x_0) > \lim_{x \to x_0} f(x),$$

allora x_0 è un punto di massimo relativo."

34 PUNTI STAZIONARI

Nel caso di funzioni derivabili e punti di estremo relativo interni, si è visto che la derivata deve annullarsi, ovvero la tangente essere orizzontale (parallela all'asse delle x). Conviene dare una definizione per quest'ultima proprietà.

Definizione x_0 è punto stazionario o punto critico di f se $f'(x_0) = 0$.

ESEMPI: 1) $f(x) = x^2$, $f'(x) = 2x \Longrightarrow 0$ è l'unico punto stazionario (e di minimo assoluto)

2) $f(x) = x^3$, $f'(x) = 3x^2 \Longrightarrow 0$ è l'unico punto stazionario (ma non è punto di estremo relativo);

3) $f(x) = \begin{cases} x^2 \sin(\frac{1}{x}) & \text{se } x \neq 0 \\ 0 & \text{se } x = 0. \end{cases}$ 0 è punto stazionario. Verificarlo tramite la definizione di derivata

Teorema. Sia $f:[a,b] \to \mathbf{R}$ e $x_0 \in (a,b)$ un punto di estremo relativo per f in cui esiste $f'(x_0)$; allora x_0 è punto stazionario di f.

DIMOSTRAZIONE (nel caso in cui x_0 sia punto di min. rel.) $\exists \delta > 0$ tale che se $x_0 - \delta < x < x_0 + \delta$, allora $f(x) - f(x_0) \ge 0$. Quindi

$$\frac{f(x) - f(x_0)}{x - x_0} \begin{cases} \le 0 & \text{se } x_0 - \delta < x < x_0 \\ \ge 0 & \text{se } x_0 + \delta > x > x_0. \end{cases}$$

Dunque passando al limite per $x \to x_0 \pm$ si ha $f'_-(x_0) \le 0$, $f'_+(x_0) \ge 0$. Quindi deve essere $f'(x_0) = 0$.

Questo teorema ci dà una "ricetta" per la ricerca di estremi (relativi) ma solo in punti interni al dominio e in cui f è derivabile.

NOTA: abbiamo dimostrato qualcosa di più:

"Sia $f:[a,b]\to \mathbf{R}$ e $x_0\in [a,b]$ un punto di estremo relativo per f in cui esistono le derivate destra e/o sinistra.

- (i) se x_0 è punto di minimo relativo allora $f'_-(x_0) \leq 0$, $f'_+(x_0) \geq 0$;
- (ii) se x_0 è punto di massimo relativo allora $f'_{-}(x_0) \geq 0$, $f'_{+}(x_0) \leq 0$."

Esercizio. Verificare che queste condizioni sono soddisfatte dalle funzioni negli esempi sopra.

Eercizio. Trovare estremi relativi e punti stazionari di

$$f(x) = \arcsin\left(\frac{x}{3}\right) + \sqrt{|x-1|}$$

In questo caso la funzione è definita in [-3, 3], la sua derivata è

$$f'(x) = \frac{1}{\sqrt{9-x^2}} + \frac{1}{2\sqrt{|x-1|}} \cdot \frac{x-1}{|x-1|}$$

definita per $x \in (-3,3), x \neq 1$. Per x>1 la derivata è strettamente positiva (somma di funzioni positive). Per x<1 si scrive

$$f'(x) = \frac{1}{\sqrt{9 - x^2}} - \frac{1}{2\sqrt{1 - x}},$$

e si ha f' > 0 se e solo se

$$2\sqrt{1-x} > \sqrt{9-x^2},$$

ovvero $4(1-x)>9-x^2$, cioè $x^2-4x-5=(x-5)(x+1)>0$. Dunque f'>0 se -3< x<-1 o 1< x<3 e f'<0 per -1< x<1.

Dunque f ha due minimi relativi in x=-3 e x=1, e due punti di massimo relativo in x=-1 e x=3; inoltre f ha un solo punto stazionario (x=-1) (gli altri punti sono un punto di cuspide (x=1) e due punti con $f'=+\infty$).