35 LO STUDIO DI FUNZIONE

(informazioni deducibili da limiti e dalla derivata)

Possiamo riassumere parte di quello che abbiamo visto nelle ultime lezioni come un 'algoritmo' per studiare le proprietà (ed eventualmente tracciare un grafico approssimato) di una funzione f di cui si può calcolare la derivata.

- 1. Studio del dominio di f: suddivisione del dominio in intervalli. Semplificazione del dominio usando simmetrie (parità o disparità della funzione) o periodicità;
- ${f 2.}$ Andamento di f agli estremi degli intervalli di definizione: calcolo dei limiti e dei comportamenti asintotici;
- **3.** Calcolo della derivata. Studio del dominio di f': suddivisione del dominio in intervalli;
- 4. Studio del segno della derivata. Individuazione degli intervalli di monotonia;
- **5.** Classificazione di punti di discontinuità e di non-derivabilità; individuazione di estremi relativi ed assoluti.

Esempio. Studiamo la funzione $f(x) = \frac{x \log |x|}{x+1}$.

- **1.** Dominio di $f=\{x\neq 0,-1\}$, che scriviamo come unione di intervalli: $(-\infty,-1)$, (-1,0) e $(0,+\infty)$;
- 2. Calcolo dei limiti

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \log|x| = +\infty;$$

$$\lim_{x \to -1} f(x) = -\lim_{x \to -1} \frac{\log(-x)}{1+x}$$

$$= -\lim_{y \to -0} \frac{\log(1-y)}{y} = 1;$$

$$\lim_{x \to 0} \frac{x \log|x|}{x+1} = \lim_{x \to 0} x \log|x| = 0;$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \log|x| = +\infty.$$

In particolare f è estendibile con continuità in -1 e 0. Inoltre si ha

$$\lim_{x\to\pm\infty}\frac{x\log|x|}{1+x}-\log|x|=\lim_{x\to\pm\infty}\frac{-\log|x|}{1+x}=0,$$

e quindi f è asintotica a $\log |x|$ per $x \to \pm \infty$;

3. Calcolo della derivata:

$$f'(x) = \frac{1 + x + \log|x|}{(1+x)^2}.$$

Il dominio di f' è lo stesso di f;

4. Si ha f'>0 se e solo se $\log |x|+x+1>0$. Per x<0 la funzione $g(x)=\log |x|+x+1$ ha derivata $g'(x)=\frac{1}{x}+1$ da cui si deduce che g è crescente in $(-\infty,-1)$ e decrescente in (-1,0), quindi ha massimo in x=-1 e g(-1)=0, quindi f'=g<0 per x<0 e $x\neq -1$;

Per x>0 la diseguaglianza f'>0 equivale a $\log |x|>-x-1$, che si risolve 'graficamente'. Usando il teorema degli zeri si ottiene che esiste un punto $\alpha\in(0,1)$ in cui f'=0 e tale che f'<0 in $(0,\alpha)$ e f'>0 in $(\alpha,+\infty)$.

Dunque: f è strettamente decrescente in $(-\infty, -1)$, in (-1, 0) e in $(0, \alpha]$ (e la sua estensione per continuità è strettamente decrescente in $(-\infty, \alpha]$), e strettamente crescente in $[\alpha, +\infty)$;

5. Come abbiamo visto 0 e -1 sono punti di discontinuità eliminabile. La funzione non ha punti di non-derivabilità ed ha un solo punto di minimo assoluto α , che è anche il solo punto stazionario.

Estendendo f con continuità in -1 e 0, ponendo f(0) = 0 e f(-1) = 1, calcolando la derivata in questi due punti si ha:

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\log|x|}{1 + x} = \lim_{x \to 0} \log|x| = -\infty,$$

e quindi x = 0 diventa un punto a tangente verticale, mentre

$$f'(-1) = \lim_{x \to -1} \frac{f(x) - f(-1)}{x + 1} = \lim_{x \to -1} \frac{x \log|x| - x - 1}{(1 + x)^2} = (H)$$
$$= \lim_{x \to -1} \frac{\log|x|}{2(1 + x)} = (H) = \lim_{x \to -1} \frac{1}{2x} = -\frac{1}{2},$$

e quindi anche la derivata si estende in -1 ed è diversa da 0.

Osservazioni.

- (a) A volte il dominio di f', o la sua suddivisione in intervalli in cui f' > 0 o f' < 0, non si calcolano esplicitamente, ma i teoremi che abbiamo a disposizione ci aiutano a descriverli qualitativamente. Nell'esempio sopra abbiamo usato il teorema degli zeri per determinare il numero di intervalli in cui f' > 0;
- (b) Nell'esempio precedente lo studio del segno di f' per x < 0 non può essere eseguito facilmente, ma dobbiamo studiare la funzione g (in sostanza: per studiare f dobbiamo studiare prima f').

36 PROPRIETÀ DEDUCIBILI DA f". CONVES-SITÀ E CONCAVITÀ

Vediamo per prima cosa un tipo di informazioni 'locali': noi sappiamo che se una funzione è derivabile in un punto x_0 , lì il suo grafico è simile a quello di una retta. Se una funzione è derivabile due volte ci aspettiamo che il suo grafico sia simile a quello di una parabola, e se x_0 è un punto stazionario ci aspettiamo che il vertice della parabola sia proprio x_0 , ovvero x_0 sia un massimo o minimo relativo.

Teorema. (criterio della derivata seconda) Sia $f \in C^1(I)$ e x_0 un punto stazionario di f. Se esiste $f''(x_0) > 0$ (risp. < 0), allora x_0 è un punto di minimo (risp. massimo) relativo per f.

DIMOSTRAZIONE Si ha $\lim_{x\to x_0} \frac{f'(x)-f'(x_0)}{x-x_0}>0$, quindi esiste, per il Teorema della permanenza del segno $\delta>0$ tale che

$$\frac{f'(x) - f'(x_0)}{x - x_0} = \frac{f'(x)}{x - x_0} > 0 \text{ per } 0 < |x - x_0| < \delta.$$

Quindi per $x \in]x_0 - \delta, x_0[$ si ha f'(x) < 0, ovvero la funzione è decrescente in $]x_0 - \delta, x_0[$, mentre per $x \in]x_0, x_0 + \delta[$ si ha f'(x) > 0, ovvero la funzione è crescente in $]x_0, x_0 + \delta[$. Questo mostra che $f(x_0) < f(x)$ per $0 < |x - x_0| < \delta$. \square

NOTA: questo teorema suggerisce un metodo per la ricerca di punti di estremo relativo per funzioni due volte derivabili. Attenzione però : la condizione è solo sufficiente (si consideri la funzione x^4 nel punto 0).

Definizione Se x_0 è punto stazionario per f e f è monotona in un intorno di x_0 , allora x_0 si dice un punto di flesso a tangente orizzontale (per esempio: $f(x) = x^3$ e x = 0).

Proposizione. Se x_0 è un punto di flesso a tangente orizzontale ed esiste $f''(x_0)$, allora $f''(x_0) = 0$.

DIMOSTRAZIONE f monotona $\Longrightarrow f' \geq 0$ (oppure ≤ 0) $\Longrightarrow x_0$ è un punto di minimo relativo (oppure massimo relativo) per $f' \Longrightarrow f''(x_0) = (f')'(x_0) = 0$. \square

Vediamo ora come dallo studio di f'' si deducano anche delle informazioni 'globali', allo stesso modo in cui dallo studio della derivata prima si deducono informazioni sulla monotonia.

Definizione Una funzione f definita su un intervallo si dice CONVESSA se per ogni x,y e $t\in(0,1)$ si ha

$$f(ty + (1-t)x) \le tf(y) + (1-t)f(y)$$

 $(\emph{diseguaglianza di convessità}).$ Se vale sempre la diseguaglianza opposta allora diremo che fè CONCAVA.

NOTA: il significato di questa diseguaglianza, letto sul grafico, è il seguente: al variare di t tra 0 e 1 il punto z = ty + (1-t)x prende tutti i valori tra x e y. Il valore tf(y) + (1-t)f(y) non è altro che quello della retta secante il grafico nei punti relativi a x e y corrispondente a z. Quindi: una funzione è convessa se il segmento congiungente due punti del grafico non passa mai 'sotto il grafico'.

Esempi. (1) $f(x) = x^2$, f(x) = |x| sono convesse (provarlo: basta osservare i grafici).

- (2) $f(x) = x^3$, $f(x) = \sqrt{x}$ non sono convesse. Per la prima verificare che il segmento secante al grafico tra x = -1 e x = 0 sta sotto il grafico, per la seconda che il segmento secante al grafico tra x = 0 e x = 1 sta sotto il grafico;
 - (3) $f(x) = x^3$ non è ne' concava ne convessa. $f(x) = \sqrt{x}$ è concava.

NOTA: se f è derivabile, allora dire che f è convessa è equivalente a dire che per ogni $x, x_0 \in (a, b)$ si ha

$$f(x_0) + f'(x_0)(x - x_0) \le f(x),$$

ovvero il grafico della funzione f sta sopra la tangente in un punto x_0 , e anche che f' è non decrescente. Se f è derivabile due volte ha quindi il seguente criterio:

Teorema. (criterio di convessità) Sia I intervallo e $f \in C^2(I)$. Allora f è convessa in I se e solo se $f'' \ge 0$, e f è concava in I se e solo se $f'' \le 0$.

Come per i punti in cui cambia la monotonia, è utile avere una notazione per i punti in cui f cambia da concava a convessa o viceversa.

Definizione Diciamo che x_0 è un PUNTO DI FLESSO per f se f è derivabile in x_0 e se esiste un $\delta > 0$ tale che f è concava in $(x_0 - \delta, x_0)$ e convessa in $(x_0, x_0 + \delta)$, o viceversa.

NOTA: se x_0 è un punto di flesso ed esiste $f''(x_0)$ allora $f''(x_0) = 0$.

Esempio Determinare gli intervalli su cui $f(x) = x^3 + x^2$ è concava/convessa.

In questo caso la funzione è derivabile due volte, quindi la domanda si traduce in determinare gli intervalli in cui $f'' \ge 0$ e $f'' \le 0$ rispettivamente.

Calcoliamo:

$$f'(x) = 3x^2 + 2x$$
, $f''(x) = 6x + 2 = 2(3x + 1)$.

Dunque f è convessa su $[-1/3, +\infty)$ e concava su $(-\infty, -1/3]$. In particolare x = -1/3 è punto di flesso.