per due domini non intersecantisi G' e G'', passando al limite nella (1), otteniamo l'uguaglianza

$$\int_{G' \cup G''} f(x) dx = \int_{G'} f(x) dx + \int_{G''} f(x) dx.$$

È ovvio che il risultato ottenuto si estende facilmente a ogni

numero (finito) di domini jordaniani $G', G'', \ldots, G^{(h)}$.

e. Principio di localizzazione. Sia data una funzione ammissibile illimitata $f(x) \geqslant 0$ in un dominio chiuso limitato $G \subset R_n$. Se per ogni punto $a \in G$ esiste un intorno V(a) in cui la funzione f(x) è integrabile (cioè l'integrale improprio di seconda specie di f(x) su V(a) è convergente), allora la funzione f(x) è integrabile su tutto il dominio G; se invece, almeno per un punto $b \in G$, esiste un intorno V(b) in cui la funzione f(x) non è integrabile, essa non è integrabile neppure su tutto il dominio G.

Dimostrazione. Dato per ogni punto $a \in G$ un intorno V(a) in cui la funzione f(x) è integrabile, scegliamo una copertura finita $V(a_1), \ldots, V(a_k)$ del dominio G. Ma in virtù della proposizione d, la funzione f(x) è integrabile anche sull'unione G di

questi intorni, come dovevasi dimostrare. Se la funzione f(x) non è integrabile sull'intorno V(b), essa non è integrabile neppure su tutto il dominio G in accordo con

la proposizione c.

f. Integrali assolutamente convergenti. Sia f(x) una funzione ammissibile data su un dominio $G \subset R_n$. Supponiamo che si abbia una funzione ammissibile non negativa g(x) il cui integrale su G è convergente. Allora, se $|f(x)| \leq g(x)$, le funzioni f(x) e |f(x)| sono pure integrabili sul dominio G, e si ha

$$\left| \int_{G} f(x) \, dx \right| \leqslant \int_{G} |f(x)| \, dx \leqslant \int_{G} g(x) \, dx. \tag{2}$$

Per dimostrare questa proposizione consideriamo una successione esaustiva di insiemi jordaniani $G_1 \subset G_2 \subset \ldots \subset G$; per k < m, otteniamo

$$\left| \int\limits_{G_m} f(x) \, dx - \int\limits_{G_k} f(x) \, dx \right| = \left| \int\limits_{G_m - G_k} f(x) \, dx \right| \leqslant$$

$$\leqslant \int\limits_{G_m - G_k} |f(x)| \, dx \leqslant \int\limits_{G_m - G_k} g(x) \, dx = \int\limits_{G_m} g(x) \, dx - \int\limits_{G_k} g(x) \, dx.$$

Il secondo membro della disuguaglianza ottenuta è non negativo e tende a zero per $k \to \infty$ e $m \to \infty$ in virtù della convergenza dell'integrale di g(x). In accordo con il criterio di Cauchy, esiste pure il limite degli integrali della funzione f(x) sui domini G_m ; ciò significa che, in accordo con la proposizione 3.71 c, esiste

anche l'integrale sul dominio G della funzione f(x). L'esistenza dell'integrale di |f(x)| discende dalla proposizione b. Per $m \to \infty$, passando al limite nella disuguaglianza

$$\left| \int_{G} f(x) dx \right| \leqslant \int_{m} |f(x)| dx \leqslant \int_{G_{m}} g(x) dx,$$

otteniamo la disuguaglianza richiesta (2).

L'integrale della funzione f(x) che soddisfa tutte le suddette condizioni si dice assolutamente convergente. È interessante notare che in R_n , in generale, non esistono integrali che non convergano assolutamente (si veda il problema 6).

3.73. Esempi

a. Sia $f(r) \geqslant 0$ una funzione data sulla semiretta $0 < a \le r < \infty$, continua a tratti su ogni intervallo finito $a \le r \le b$.

Ponendo $r^2 = \sum_{i=1}^{n} x_i^2 = |x|^2$, otteniamo la funzione ammissibile $f(r) = f\left(\sqrt{\sum_{i=1}^{n} x_i^2}\right)$ definita in R_n . Consideriamola nel dominio

 $G = \left\{x \in R_n : |x| \geqslant a, \frac{x}{|x|} \in \Sigma\right\}$, dove Σ è un finsieme dato di area positiva sulla sfera unitaria dello spazio R_n . Studiamo il problema della convergenza dell'integrale improprio di prima specie

$$\int_{G} f(r) dx. \tag{1}$$

Come successione esaustiva, consideriamo i domini $G_m = \{x \in R_n : a \leq |x| \leq m, \frac{x}{|x|} \in \Sigma\}$. L'integrale della funzione f(r) sul dominio G_m viene calcolato in base alla regola 3.65 a, e precisamente

$$\int_{G_m} f(r) dx = \int_{r=a}^{m} \left\{ \int_{r\Sigma} f(r) d(r\Sigma) \right\} dr,$$

dove l'insieme $r\Sigma$ giace sulla sfera di raggio r. Poiché la funzione f(r) è costante su questa sfera, l'integrale interno, in accordo con la proposizione 3.63 c, vale

$$f(r) \mid r\Sigma \mid = f(r) r^{n-1} \mid \Sigma \mid.$$

Otteniamo finalmente

$$\int_{G_m} f(r) dx = |\Sigma| \int_{r=a}^m f(r) r^{n-1} dr.$$