Quanto alla convergenza dell'integrale (1), dobbiamo qui far tendere m verso $+\infty$. La questione della convergenza di questo integrale si riduce così alla convergenza in R_1 dell'integrale improprio

$$\int_{a}^{\infty} f(r) r^{n-1} dr.$$

Per esempio, utilizzando il risultato P11.11 a, possiamo dire che l'integrale

$$\int_{G} \frac{dx}{r^{\alpha}}$$

è convergente per $\alpha > n$ e divergente per $\alpha \leq n$. Si osservi che il risultato è indipendente dall'insieme Σ sulla sfera unitaria in R_n , che definisce il dominio G (purché l'insieme Σ abbia un'area positiva).

In accordo con il criterio del confronto 3.72 b, per le stesse condizioni, è convergente o divergente anche l'integrale

$$\int_{G} \theta(x) \frac{dx}{r^{\alpha}}, \qquad (2)$$

dove $\theta(x)$ è una funzione ammissibile, tendente a un limite positivo per $|x| \to \infty$. Se la funzione $\theta(x)$ è soltanto limitata per $|x| \to \infty$, allora, in base al criterio del confronto 3.72 b, si può affermare soltanto che l'integrale (2) è convergente per $\alpha > n$.

b. Sia f(r) > 0 una funzione data su un intervallo $0 < r \le b$, continua a tratti su ogni intervallo chiuso $a \le r \le b$ (a > 0) e, eventualmente, illimitata per $r \to 0$. Ponendo $r^2 = \sum_{i=1}^n x_i^2 = |x|^2$, otteniamo la funzione ammissibile $f(r) = f\left(\sqrt{\sum_{i=1}^n x_i^2}\right)$ definita in R_n per $0 < |x| \le b$. Consideriamola nel dominio $G = \{x \in R_n, 0 < |x| \le b, \frac{x}{|x|} \in \Sigma\}$, dove Σ è un insieme di misura positiva sulla sfera unitaria in R_n , e studiamo il problema della convergenza dell'integrale improprio di seconda specie

$$\int_{G} f(r) dx. \tag{3}$$

Come successione esaustiva consideriamo i domini

$$G_m = \left\{ x \in R_n : \frac{1}{m} \leqslant |x| \leqslant b, \frac{x}{|x|} \in \Sigma \right\}.$$

Analogamente all'esempio a abbiamo

$$\int_{G_m} f(r) dx = |\Sigma| \int_{r=1/m}^b f(r) r^{n-1} dr.$$

Il problema della convergenza dell'integrale (3) si riduce così a quello della convergenza in $R_{\rm 1}$ dell'integrale improprio di seconda specie

$$\int_{0}^{b} f(r)^{n-1} dr.$$

Per esempio, utilizzando i risultati P11.22 a, otteniamo che l'integrale

$$\int_{G} \frac{dx}{r^{\alpha}}$$

è convergente per $\alpha < n$ e divergente per $\alpha > n$.

In base al criterio del confronto 3.72 b, con le stesse condizioni, è convergente o divergente l'integrale

$$\int_{C} \theta(x) \frac{dx}{r^{\alpha}}, \qquad (5)$$

dove $\theta(x)$ è una funzione ammissibile tendente a un limite positivo per $x \to 0$. Se invece la funzione $\theta(x)$ è soltanto limitata per $x \to 0$, allora, utilizzando il criterio del confronto 3.72, b, si può affermare soltanto che l'integrale (4) è convergente per $\alpha < n$.

c. Otteniamo come conseguenza degli esempi a e b che l'integrale di terza specie della funzione $1/r^{\alpha}$ su un « angolo solido » $G = \{x \in R_n : \frac{x}{|x|} \in \Sigma\}$ (dove, come sopra, Σ è un insieme di misura positiva sulla sfera unitaria in R_n) non esiste per nessun α .

d. Vogliamo analizzare la convergenza dell'integrale

$$\int_{G_i} \frac{x^2 - y^2}{r^4} \, dx \, dy \tag{5}$$

in ciascuno dei domini G_i (i=1,2,3) rappresentati nella fig. 3.20. Consideriamo dapprima il dominio G_1 .

Per ogni ϵ positivo e per un ρ sufficientemente grande, il settore $\{x, y \in R_2 : \epsilon < y/x < 1 - \epsilon, x > \rho\}$ appartiene a questo dominio. L'espressione integranda nel detto settore è non minore di C/r^2 per un C > 0. Di conseguenza, l'integrale (5) è divergente su questo settore e, a maggior ragione, sul dominio G_1 in accordo con il risultato dell'esempio a e del criterio del confronto 3.72 b. Al dominio G_2 appartiene il settore $\{x, y \in R_2 : 0 \le y/x \le 1 - \epsilon, r \le 1\}$; in questo settore l'espressione integranda è ugual-