Prof. Harold ReiterDept.of Math. Univ. of North Carolina Charlotte9021 University City Boulevard, Charlotte NC 28223–0001

Proposed solution of prob. 1211

Let $\sum_{n=1}^{\infty} a_n$ be a convergent series with positive terms. Prove that $\sum_{n=1}^{\infty} \frac{\sqrt{a_n}}{n}$ converges. Note from the poser: Since this problem is well-known, the challenge is to provide an elementary solution, one that does not invoke the Cauchy-Schwartz Inequality

Proof By $(a-b)^2 \ge 0$ it follows $a^2 + b^2 \ge 2ab$ hence

$$0 \le \sum_{n=1}^{\infty} \frac{\sqrt{a_n}}{n} \le \frac{1}{2} \sum_{n=1}^{\infty} \left(a_n + \frac{1}{n^2} \right) = \frac{1}{2} \sum_{n=1}^{\infty} a_n + \frac{\pi^2}{12} < \infty$$