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Given a, b, c, d ∈ [0, 1] such that no two of them are simultaneously equal to
0. Prove that
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Proof By Cauchy–Schwarz we have
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a2 + b2 + c2 + d2 − 3− abcd ≤ 0

The function f(a, b, c, d) = a2 + b2 + c2 + d2 − 3 − abcd is convex in each
variable (faa = fbb = fcc = fdd = 2) thus the maximum is attained at one of
the sixteen vertices of the four–dimensional cube [0, 1]4. Since f(a, b, c, d) ≤ 0
if each coordinate equals 0 or 1, the result is achieved.
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