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Show that, for all nonnegative integers k
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Proof Induction. For k = 0 trivially holds. Let’s suppose it true for 0 ≤
k ≤ n namely
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For k = n+ 1 we need to prove
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By changing n+ 1− i = r we get
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and by definition of h(i)
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We need to show that
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which by virtue of the induction hypotheses becomes
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We can rewrite it as
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which evidently holds true and this concludes the proof.

Roma 04/27/2012 Best regards
Paolo Perfetti
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