
Solution to problem J614

Let a, b, c be real numbers such that abc = 1. Prove that
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Proof Using abc = 1 the inequality is
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This is power–means–inequality
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⇐⇒ 31/3(a3/2+b3/2+c3/2)2/3 ≥ a+b+c

and then by elevating to the fractional power 3/2 we get the desired inequality

31/2(a3/2 + b3/2 + c3/2) ≥ (a+ b+ c)3/2
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