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PROBLEMS

11348. Proposed by Richard P. Stanley, Massachusetts Institute of Technology, Cam-
bridge, MA. A polynomial f over a field K is powerful if every irreducible factor of f
has multiplicity at least 2. When q is a prime or a power of a prime, let Pq(n) denote
the number of monic powerful polynomials of degree n over the finite field Fq . Show
that for n ≥ 2,

Pq(n) = q�n/2� + q�n/2�−1 − q�(n−1)/3�.

11349. Proposed by Cezar Lupu (student), University of Bucharest, Bucharest, Roma-
nia. In triangle ABC , let ha denote the altitude to the side BC and let ra be the exradius
relative to side BC , which is the radius of the circle that is tangent to BC and to the
extensions of AB beyond B and AC beyond C . Define hb, hc, rb, and rc similarly. Let
p, r , R, and S be the semiperimeter, inradius, circumradius, and area of ABC . Let ν

be a positive number. Show that
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a + hν
br ν
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cr ν

c ) ≤ r ν
a r ν
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.

11350. Proposed by Bhavana Deshpande, Poona College of Arts, Science & Com-
merce Camp, Pune, India, and M. N. Deshpande, Institute of Science, Nagpur, In-
dia. Given a positive integer n and an integer k with 0 ≤ k ≤ n, form a permutation
a = (a1, . . . , an) of (1, . . . , n) by choosing the first k positions at random and filling
the remaining n − k positions in ascending order. Let En,k be the expected number of
left-to-right maxima. (For example, E3,1 = 2, E3,2 = 11/6, and E4,2 = 13/6.) Show
that En+1,k − En,k = 1/(k + 1). (A left-to-right maximum occurs at k when a j < ak

for all j < k.)

11351. Proposed by Marian Tetiva, National College “Gheorghe Roşca Codreanu”,
Bârlad, Romania. Given positive integers p and q, find the least positive integer m
such that among any m distinct integers in [−p, q] there are three that sum to zero.
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11352. Proposed by Daniel Reem, The Technion-Israel Institute of Technology, Haifa,
Israel. Let I be an open interval containing the origin, and let f be a twice-
differentiable function from I into R with continuous second derivative. Let T2 be
the Taylor polynomial of order 2 for f at 0, and let R2 be the corresponding remain-
der. Show that

lim
(u,v)→(0,0)

u �=v

R2(u) − R2(v)

(u − v)
√

u2 + v2
= 0.

11353. Proposed by Ernst Schulte-Geers, BSI, Bonn, Germany. For s > 0, let f (s) =∫ ∞
0 (1 + x/s)s e−x dx and g(s) = f (s) − √

sπ/2. Show that g maps R
+ onto (2/3, 1)

and is strictly decreasing on its domain.

11354. Proposed by Matthias Beck, San Francisco State University, San Francisco,
CA, and Alexander Berkovich, University of Florida, Gainesville, FL. Find a polyno-
mial f in two variables such that for all pairs (s, t) of relatively prime positive integers,

s−1∑
m=1

t−1∑
n=1

|mt − ns| = f (s, t).

SOLUTIONS

Unsolved in 1990

6576 [1986, 1036]. Proposed by Hans V. Gerber, University of Lausanne, Switzerland.
Suppose X1, X2, . . . are independent identically distributed real random variables with
E(Xk) = μ. Put Sk = X1 + X2 + · · · + Xk for k = 1, 2, . . . .

(a) If ρ < μ < 1, where ρ = −0.278465 . . . is the real root of xe1−x = −1, show
that the series

∞∑
k=1

Sk
k e−Sk /k!

converges with probability one.
(b) If X1, X2, . . . are positive and if μ < 1, show that the expectation of

∞∑
k=1

Sk
k e−Sk /k!

is μ/(1 − μ).
∗(c) In (b) is it possible to relax the condition that the random variables are positive?

For example, would it suffice to assume E(|Xk |) < ∞ and ρ < μ < 1?

Solution to (c) by Daniel Neuenschwander, Université de Lausanne, Lausanne, and
Universität Bern, Bern, Switzerland. We prove the validity of (c) under the additional
assumption that supp (X1) [the support of X1, i.e., the intersection of all closed subsets
A of the real line for which P(X1 ∈ A) = 1] is contained in the open interval (ρ, −ρ).
Let λ = sup{|x | : x ∈ supp (X1)}. Note that λ < −ρ. By Stirling’s formula, one sees
that ∑

k,n≥0

(kλ)k

k!
(nλ)n

n! < ∞. (1)
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Thus by Lebesgue’s Dominated Convergence Theorem, the expectation of the series
displayed in (a) is given by the absolutely convergent sum∑

k≥1, n≥0

(−1)n

k!n! E(Sk+n
k ).

By approximation, we may assume that X1 has finite support:

P(X1 = z j ) = p j ( j = 1, 2, . . . , h)

where p1, . . . , ph are positive,
∑h

j=1 p j = 1, and z j ∈ (ρ, −ρ) for 1 ≤ j ≤ h. Now
let p1, . . . , ph be fixed. The required equation

E(. . . ) = μ

1 − μ
(2)

[where (. . . ) is the series of (a) and μ = ∑h
j=1 p j z j ] can be viewed as an equality of

two functions in h real variables z1, . . . , zh on the open cube (ρ, −ρ)h. By (1), the
left side of (2) extends as a complex analytic function in h variables to the domain Dh ,
where D = {z ∈ C : |z| < −ρ}. The same holds for the right side of (2). By (b), (2)
holds on the subcube (0, −ρ)h of C , and by standard methods of complex analysis, it
thus holds also on Dh . This proves (c) in the asserted case.

Editorial comment. Solutions for (a) and (b) were published in the December, 1990,
issue of this MONTHLY (pages 930–932).

A Determinant Identity

11242 [2006, 656 & 848]. Proposed by Gerd Herzog and Roland Lemmert, Univer-
sität Karlsruhe, Karlsruhe, Germany. (corrected) Let f and g be entire holomorphic
functions of one complex variable, and let A and B be complex n × n matrices. If
the application of such a function to a matrix means applying the power series of this
function to the matrix, prove that

det ( f (A) f (B) + g(A)g(B)) = det ( f (B) f (A) + g(B)g(A)) .

Solution by Roger A. Horn, University of Utah. The crucial property of these matrix
functions is that f (Z) and g(Z) commute whenever both are defined. The following
result is key. (See D. Carlson et al., Linear Algebra Gems, MAA, 2002, p. 13.)
Lemma. Let C, D, X, Y be n × n complex matrices. If C commutes with X , then

det

[
C Y

X D

]
= det(C D − XY ).

Proof. If C is nonsingular, then

det

[
C Y

X D

]
= det

([
I 0

−XC−1 I

] [
C Y

X D

])
= det

[
C Y

0 D − XC−1Y

]

= det C · det(D − XC−1Y ) = det(C D − C XC−1Y )

= det(C D − XCC−1Y ) = det(C D − XY ).

(If C is singular, we invoke the foregoing result for C + ε I and take limits as ε → 0.)
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Let

M =
[

f (A) g(B)

−g(A) f (B)

]
, N =

[
f (B) −g(A)

g(B) f (A)

]
, and P =

[
0 1

1 0

]
.

Since M = P N P , det M = (det P)2 det N = det N . Because f (A) commutes with
−g(A) and f (B) commutes with g(B), the lemma ensures that

det( f (A) f (B) + g(A)g(B)) = det M = det N = det( f (B) f (A) + g(B)g(A)).

Also solved by S. Amghibech (Canada), R. Chapman (U. K.), K. Dale (Norway), G. Dospinescu (France), H.
Flanders, J. Grivaux (France), E. A. Herman, J. H. Lindsey II, O. P. Lossers (Netherlands), K. Schilling, R.
Stong, BSI Problems Group (Germany), GCHQ Problem Solving Group (U. K.), Microsoft Research Problems
Group, and the proposers.

A Bessel Function Identity

11246 [2006, 760]. Proposed by Lee Goldstein, Wichita, KS. Let Jn be the nth Bessel
function of the first kind, and let Kn be the nth modified Bessel function of the second
kind (also known as a Macdonald function), defined by

Kn(z) = �(|n| + 1/2)(2z)|n|
√

π

∫ ∞

0

cos t

(t2 + z2)|n|+1/2
dt.

Show that, for any positive b and any real λ,
√

π

2
√

b
eλ2−2b =

∞∑
−∞

J2n(4λ
√

b )Kn+1/2(2b).

Solution by Mourad E. H. Ismail, University of Central Florida, Orlando, FL. First
we note formula (4.10.2) from M. E. H. Ismail, Classical and Quantum Orthogonal
Polynomials in One Variable, Cambridge University Press, 2005:

Kn+1/2(x) = √
πe−x x−1/2

n∑
k=0

(−n)k (n + 1)k

k! (−2x)−k, n = 0, 1, · · · ,

where (a)0 := 1 and (a)n := ∏n−1
k=0(a + k) for n > 0. Since Kν(x) = K−ν(x) and

J−n(x) = (−1)n Jn(x), the series on the right side of the identity to be proved is
√

π√
b

e−2b
∞∑

n=0

J2n(4λ
√

b )

n∑
k=0

(−n)k (n + 1)k

k! (4b)−k .

Formula (9.0.1) in the same reference is

∞∑
m=0

ambm
(zw)m

m! =
∞∑

n=0

(−z)n

n!(γ + n)n

∞∑
r=0

bn+r zr

r !(γ + 2n + 1)r

n∑
s=0

(−n)k(n + γ )s

s! asw
s .

This, together with

J2n(2x) =
∞∑

s=0

(−1)s x2s+2n

s!(2n + s)! ,

proves the identity claimed.
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Also solved by R. Chapman (U. K.), J. Grivaux (France), F. Holland (Ireland), G. Lamb, A. R. Miller, V.
Schindler (Germany), A. Stadler (Switzerland), V. Stakhovsky, R. Stong, BSI Problems Group (Germany),
GCHQ Problem Solving Group (U. K.), and the proposer.

A Strip Problem

11247 [2006, 760]. Proposed by Jürgen Eckhoff, University College London, London,
U. K. Let A, B, C , and D be distinct points in the plane with the property that any
three of them can be covered by some strip of width 1. Show that there is a strip of
width

√
2 covering all four points, and demonstrate that if no strip of width less than√

2 covers all four, then the points are the corners of a square of side
√

2. (A strip of
width w is the closed set of points bounded by two parallel lines separated by distance
w.)

Solution by Li Zhou, Polk Community College, Winter Haven, FL. Let S be the set
{A, B, C, D}. If the convex hull of S is a triangle, then that triangle is covered by
a strip of width 1, and so is S. It thus suffices to assume that ABC D is a convex
quadrilateral. Given an arbitrary triangle XY Z , let hX denote the altitude of XY Z at
vertex X . For X, Y, Z ∈ S, by the assumed property of ABC D, min{hX , hY , hZ } ≤ 1.

Lemma. Consider a triangle XY Z with X, Y, Z ∈ S. If hX ≥ √
2, then � X ≤ 45◦.

Equality holds if and only if hX = √
2, hY = 1, and � Y = 90◦, or hX = √

2, hZ = 1,
and � Z = 90◦.

Proof. Either hY ≤ 1 or hZ ≤ 1, say hY ≤ 1. By the Law of Sines, sin � X ≤
sin � X/ sin � Y = Y Z/X Z = hY /hX ≤ 1/

√
2. Thus � X ≤ 45◦.

Now assume that ABC D is labeled clockwise. Without loss of generality, assume that
rays

−→
B A and

−→
C D do not intersect, and similarly

−→
C B and

−→
D A do not intersect. The

minimum width of all strips that cover ABC D is the minimum length of the perpen-
diculars from A to BC , A to C D, B to AD, and D to AB. Suppose this minimum
exceeds

√
2. Applying the lemma repeatedly, taking XY Z to be ABC , AC D, B AD,

and D AB, we conclude that all of � B AC , � C AD, � AB D, and � ADB are less than
45◦. This contradicts the fact that these angles sum to 180◦ as internal angles of tri-
angle AB D. Thus ABC D may be covered by a strip of width

√
2. If the minimum

equals
√

2, then each of the four angles must equal 45◦. By the conditions for equality
in the lemma, it follows that ABC D is a square.

Also solved by E. A. Herman, J. H. Lindsey II, B. Schmuland (Canada), R. Stong, M. Tetiva (Romania), GCHQ
Problem Solving Group (U. K.), and the proposer.

Double Sum Inequality

11250 [2006, 847]. Proposed by Sun Wen Cai, Pinggang Middle School, Shenzhen,
Guangdong Province, China. Show that if n is a positive integer and x1, . . . , xn are
nonnegative real numbers that sum to 1, then

n∑
j=1

√
x j

n∑
k=1

1

1 + √
1 + 2xk

≤ n2

√
n + √

n + 2
.

Solution by Vitaly Stakhovsky, Redwood City, CA. Let n > 1, 0 ≤ x ≤ 1, x0 = 1/n,
β = √

1 + 2x0, f (x) = √
nx , and

g(x) =
√

n + √
n + 2√

n + √
n + 2nx

= 1 + β

1 + √
1 + 2x

.
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We want to prove that (
1

n

n∑
i=1

f (xi )

)(
1

n

n∑
i=1

g(xi )

)
≤ 1.

Expand f (x) and g(x) by Taylor’s theorem: f (x) = 1 + f ′(x0)(x − x0) − φ(x)/2,
where f ′(x0) = n/2 and φ(x) = (

√
nx − 1)2; and g(x) = 1 + g′(x0)(x − x0) +

ψ(x)/2, where

ψ(x) = (
√

1 + 2x − β)2

1 + β

(
2

1 + √
1 + 2x

+ 1

β

)
≤ (√

1 + 2x − β
)2

≤ (√
1 + 2x − β

)2

(√
1 + 2x + √

1 + 2x0√
2x + √

2x0

)2

= 2

n

(√
nx − 1

)2 ≤ φ(x).

Using
∑n

i=1(xi − x0) = 0, we obtain:(
1

n

n∑
i=1

f (xi )

) (
1

n

n∑
i=1

g(xi )

)
=

(
1 − 1

2n

n∑
i=1

φ(xi )

) (
1 + 1

2n

n∑
i=1

ψ(xi )

)

≤
(

1 − 1

2n

n∑
i=1

φ(xi )

) (
1 + 1

2n

n∑
i=1

φ(xi )

)
≤ 1.

Also solved by D. R. Bridges, G. Crandall, P. P. Dályay (Hungary), K.-W. Lau (China), J. H. Lindsey II, O. P.
Lossers (Netherlands), B. Schmuland (Canada), A. Stenger, R. Stong, J. Sun, L. Zhou, GCHQ Problem Solving
Group (U. K.), Microsoft Research Problems Group, and the proposer.

An Inequality Proved Without Computer Assistance

11251 [2006, 847]. Proposed by Marian Tetiva, National College “Gheorghe Roşca
Codreanu”, Bârlad, Romania. Suppose that a, b, and c are positive real numbers, two
of which are less than or equal to 1, and ab + ac + bc = 3. Show that

1

(a + b)2
+ 1

(a + c)2
+ 1

(b + c)2
− 3

4
≥ 3(a − 1)(b − 1)(c − 1)

2(a + b)(a + c)(b + c)
.

Solution by Vitaly Stakhovsky, Redwood City, CA. The inequality follows from

1

a + b
+ 1

b + c
+ 1

c + a
≥ 3

2

(a − 1)(b − 1)(c − 1)

(a + b)(b + c)(c + a)
+ 3

2
(1)

and x2 + 1/4 ≥ x with x = 1/(a + b), 1/(b + c), and 1/(c + a). Multiplying by the
positive factor (a + b)(b + c)(c + a), we see that (1) is equivalent to

(b + c)(c + a) + (a + b)(c + a) + (a + b)(b + c)

≥ 3

2
(a − 1)(b − 1)(c − 1) + 3

2
(a + b)(b + c)(c + a). (2)

Using S1, S2, and S3 for the symmetric expressions a + b + c, ab + bc + ca, and abc,
inequality (2) becomes

S2
1 + S2 ≥ 3

2
(S3 − S2 + S1 − 1) + 3

2
(S1S2 − S3) = 3

2
(S1 − 1)(S2 + 1). (3)
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Now by hypothesis S2 = 3, so finally (3) is equivalent to S2
1 + 3 ≥ 6(S1 − 1). This is

equivalent to (S1 − 3)2 ≥ 0, which is always true.

Also solved by D. Beckwith, P. Bracken, J.-P. Grivaux (France), J. H. Lindsey II, K. McInturff, T.-L. Rădulescu
& V. Rădulescu (Romania), V. Schindler (Germany), R. Stong, S. Wagon, T. R. Wilkerson, L. Zhou, GCHQ
Problem Solving Group (U. K.), Microsoft Research Problem Solving Group, Northwestern University Math
Problem Solving Group, and the proposer.

A Productive Inequality

11252 [2006, 847]. Proposed by Ovidiu Bagdasar, Babeş Bolyai University, Cluj-
Napoca, Romania.Let n be an integer greater than 2 and let a1, . . . , an be positive
numbers. Let S = ∑n

i=1 ai . Let bi = S − ai , and let S′ = ∑n
i=1 bi . Show that∏n

i=1 ai∏n
i=1(S − ai )

≤
∏n

i=1 bi∏n
i=1(S′ − bi )

.

Solution by Marian Tetiva, National College “Gheorghe Roşca Codreanu”, Bârlad,
Romania. We begin with two lemmas.
Lemma 1. Let m be a positive integer, and let a, a1, . . . , am be positive. Then[

(a + a1) · · · (a + am)
]1/m

ma + a1 + · · · + am
≥ (a1 · · · am)1/m

a1 + · · · + am

Proof. Apply Jensen’s inequality to the concave function f (x) = ln(x/(a + x)) to get

ln
(a1 + · · · + am)/m

a + (a1 + · · · + am)/m
≥ 1

m

m∑
k=1

ln
ak

a + ak

which is equivalent to the claim.
Lemma 2. Let a, a1, . . . , am be positive and let A = a1 + · · · + am . Then

(a + A − a1) · · · (a + A − am) ≥ (
a + (m − 1)a1

) · · · (a + (m − 1)am

)
Proof. By the AM-GM inequality we have

(a + A − a1)
m−1 ≥ (

a + (m − 1)a2

) · · · (a + (m − 1)am

)
and m − 1 similar inequalities. Multiply them together to get the claimed result.

Now for the problem proposed, using Lemma 2 and then Lemma 1 gives[
(S − a1) · · · (S − an−1)

]1/(n−1)

S′ − bn
=

[
(S − a1) · · · (S − an−1)

]1/(n−1)

(n − 1)an + (n − 2)a1 + · · · + (n − 2)an−1

≥
[
(an + (n − 2)a1) · · · (an + (n − 2)an−1)

]1/(n−1)

(n − 1)an + (n − 2)a1 + · · · + (n − 2)an−1

≥
[
((n − 2)a1) · · · ((n − 2)an−1)

]1/(n−1)

(n − 2)a1 + · · · + (n − 2)an−1
=

[
a1 · · · an−1

]1/(n−1)

a1 + · · · + an−1
.

Thus we have [
(S − a1) · · · (S − an−1)

]1/(n−1)

S′ − bn
≥

[
a1 · · · an−1

]1/(n−1)

a1 + · · · + an−1

and n − 1 similar inequalities. Multiply these to get the required result.
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Also solved by P. P. Dályay (Hungary), O. P. Lossers (Netherlands), B. Schmuland (Canada), R. Stong, and
the proposer.

A Myth About Infinite Products

11257 [2006, 939]. Proposed by Raimond Struble, Santa Monica, CA. Let 〈zn〉 be a
sequence of complex numbers, and let sn = ∑n

k=1 zk . Suppose that all sn are nonzero.
(a) Given that sn does not tend to zero, show that

∑∞
n=1 zn/sn converges if and only if

limn→∞ sn exists.
(b) Show that if sn tends to a limit s, and s − sn is never zero, then

∑∞
k=1 zn/(s − sn−1)

diverges.

Solution by Jean-Pierre Grivaux, Paris, France. We reduce both parts to a commonly-
believed (but false) myth about infinite products. In fact, both parts are false, in general.

(a) Write

λn = zn

sn
= sn − sn−1

sn
= 1 − sn−1

sn
. (1)

Since the sums sn are nonzero, λn �= 1 and

sn = s1

(1 − λ2)(1 − λ3) · · · (1 − λn)
. (2)

So the question has been reduced to:∑
λn converges if and only if limn→∞

∏n
k=2(1 − λk) exists and is nonzero.

This is not true. Let λn = (−1)n/
√

n. By (2), this defines sn, and by (1) zn . The series∑
λn converges, but

∏n
k=2(1 − λk) → 0, since

log

(
1 − (−1)k

√
k

)
= − (−1)k

√
k

− 1

2k
+ O

(
1

k3/2

)
.

Alternatively, if λn = i(−1)n/
√

n, then
∑

λn converges, but
∏n

k=2(1 − λk) → ∞. If
λn = (1 + i)(−1)n/

√
n, then

∑
λn converges, but

∏n
k=2(1 − λk) diverges while re-

maining bounded.
(b) Let rn = s − sn−1. If

μn = zn

rn
= rn − rn+1

rn
= 1 − rn+1

rn
, (3)

then

rn+1 = r1(1 − μ1)(1 − μ2) · · · (1 − μn). (4)

Since limn→∞ sn = s, limn→∞ rn = 0. This reduces the problem to:
If limn→∞

∏n
k=1(1 − μk) = 0, then

∑
μk diverges.

This is not true, as μn = (−1)n/
√

n shows.

Also solved by D. Borwein (Canada), J. H. Lindsey II, O. P. Lossers (The Netherlands), P. Perfetti (Italy), A.
Stadler (Switzerland), R. Stong, BSI Problems Group (Germany), and GCHQ Problem Solving Group (U.K.).
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