
Solution to problem O615

Let a, b, c be positive real numbers such that a + b+ c = 3. Prove that
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thus we prove

a + b+ c = 3 =⇒ (abc)2(a2 + b2 + c2) ≤ 3

Moreover by abc ≤ (a+ b+ c)3/27 ≤ 1 we come to prove

a+ b+ c = 3 =⇒ abc(a2 + b2 + c2) ≤ 3

Let’s change variables a + b + c = 3, ab + bc + ca = 3v2, abc = w3. The
inequality reads as

u = 1 =⇒ w3(9u2 − 6v2) ≤ 3

that is
f(w3)

.
= w3(9− 6v2) ≤ 3 (1)

The function f(w3) is linear increasing thus it holds if and only if it holds
true for the minimum value of w. The minimum value of w is attained when
c = 0 (or cyclic) or b = c (or cyclic).

c = 0 is forbidden by the hypotheses but if we let a, b, c, assume also that
value we can observe that w = 0 and the inequality clearly holds true.

If c = b whence a = (3− b)/2 we have that abc(a2+ b2+ c2) ≤ 3 is equivalent
to
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(a3−6a2+11a−8)(a−1)2 ≤ 3 ⇐⇒ h(a)

.
= a3−6a2+11a−8 ≤ 0 0 ≤ a ≤ 3
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− 2, h(3) = −2

hence h(a) < 0 for any 0 ≤ a ≤ 3 and this concludes the proof.
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