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Then ∠QSA = ∠Q′QR = π
2 . Since O is the circumcenter of isosceles triangle

Q′QS,

∠SQQ′ = 2∠OQQ′ = 2∠OBQ′ = ∠QBQ′. (2)

Let M be midpoint of QQ′. Points Q,M,S,A lie on the circle with diameter QA,
because ∠QMA = π

2 = ∠QSA. Thus

∠SQQ′ = ∠SQM = ∠SAM. (3)

Observe that sin∠SAQ = SQ
AQ = Q′Q

AQ = 2MQ
AQ = 2 sin∠MAQ = 2 sin∠OAQ.

From that we get
∠SAQ = arcsin(2 sin∠OAQ). (4)

From ∠OAQ = ∠QAB−∠QAC
2 and equations (2) through (4),

∠QBQ′ = ∠SQQ′ = ∠SAM = ∠SAQ− ∠OAQ,

which is equation (1), as claimed.
For the inequality on the right, simply note that we have proved that the

middle difference is the maximum of |∠PCB−∠PBC| over all points P ∈ `, while
Problem 2255 established that this difference is at most |∠PAB − ∠PAC|. This
observation concludes the proof.

Also solved by the proposer; no solution was published before now.
For an alternative proof of the right inequality, let x = |∠PAB − ∠PAC|, 0 ≤ x < π

3
.

The inequality to prove reduces to arcsin
�
2 sin x

2

�
≤ 3x

2
, for 0 ≤ x < π

3
, which is an elementary

exercise. It is interesting to note that according to the solution of Problem 2255, the inequality
there, namely |∠PAB − ∠PAC| ≥ |∠PCB − ∠PBC|, holds for all isosceles triangles ABC for
which ∠A ≥ π

3
(and ∠B = ∠C ≤ π

3
), while the inequality fails for some positions of P in

isosceles triangles with ∠A < π
3

. Note that arcsin
�
2 sin x

2

�
is no longer real for x > π

3
, so that

there are positions of P for which the right inequality of the present problem fails for isosceles
triangles with ∠A > π

3
.

3641. [2011 : 234, 237] Proposed by José Luis Dı́az-Barrero, Universitat
Politècnica de Catalunya, Barcelona, Spain.

Let 0 ≤ x1, x2, . . . , xn < π/2 be real numbers. Prove that 
1

n

nX
k=1

sec(xk)

!�
1−

 
1

n

nX
k=1

sin(xk)

!2
�1/2

≥ 1 .

I. Composite of similar solutions by Arkady Alt, San Jose, CA, USA; and Paolo
Perfetti, Dipartimento di Matematica, Università degli studi di Tor Vergata Roma,
Rome, Italy.

Let f(x) = secx, g(x) = sinx and set x̄ =
1

n

nX
k=1

xk. Since f ′′(x) =

1 + sin2 x

cos3 x
> 0 and g′′(x) = − sinx < 0 for 0 < x <

π

2
, f is convex and g is

concave on the interval (0, 1).
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Hence Jensen’s Inequality ensures that

1

n

nX
k=1

secxk ≥ sec(x̄) and
1

n

nX
k=1

sinxk ≤ sin(x̄).

Therefore we have 
1
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nX
k=1

sec(xk)

!�
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1

n

nX
k=1

sin(xk)

!2
�1/2

≥ sec(x̄)(1− sin2(x̄))1/2

= sec(x̄) cos(x̄) = 1.

II. Composite of virtually identical solutions by Šefket Arslanagi ć, University of
Sarajevo, Sarajevo, Bosnia and Herzegovina; and Salem Malikić, student, Simon
Fraser University, Burnaby, BC.

By Cauchy-Schwarz Inequality we have
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sin2(xk)
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!
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sin(xk)
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so  
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sin(xk)
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≤ 1
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sin2(xk).

Hence, 
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(1− sin2(xk))
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= 1

by the AM-GM Inequality.
Clearly, equality holds if and only if x1 = x2 = · · · = xn.

Also solved by OLIVER GEUPEL, Brühl, NRW, Germany; ALBERT STADLER, Her-
rliberg, Switzerland; and the proposer.
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