SOLUTIONS / 199

Also solved by GEORGE APOSTOLOPOULOS, Messolonghi, Greece; MICHEL BATAILLE, Rouen, France; JOHN HAWKINS and DAVID R. STONE, Georgia Southern University, Statesboro, GA, USA; PAOLO PERFETTI, Dipartimento di Matematica, Università degli studi di Tor Vergata Roma, Rome, Italy; EDMUND SWYLAN, Riga, Latvia; and the proposer. Note that in Lemma 2, it may happen that the function u could have a discontinuity outside of the range of v.

3740. [2012 : 150, 152] Proposed by Yunus Tuncbilek, Ataturk High School of Science, Istanbul, Turkey.

Let R, r, r_a, r_b, r_c represent the circumradius, inradius and exradii, respectively, of ΔABC . Find the largest k that satisfies

$$r_a^2 + r_b^2 + r_c^2 + (1+4k)r^2 \ge (7+k)R^2.$$

Composite of solutions by Michel Bataille, Rouen, France; and Paolo Perfetti, Dipartimento di Matematica, Università degli studi di Tor Vergata Roma, Rome, Italy; modified by the editor.

We claim that the largest such k is k = 1. For the proof, we show that the inequality holds for k = 1 and fails for all larger k. We use two known results:

$$r_a^2 + r_b^2 + r_c^2 = (4R + r)^2 - 2s^2,$$
(1)

where s is the semiperimeter, and

$$4R^2 + 4Rr + 3r^2 \ge s^2,$$
(2)

known as Gerretsen's inequality. [See [1] and [2].]

By (1), the inequality in the problem statement is equivalent to

$$(4R+r)^2 - 2s^2 + (1+4k)r^2 \ge (7+k)R^2,$$

and thus to

$$9R^2 + 8Rr + 2r^2 - 2s^2 \ge k \left(R^2 - 4r^2\right).$$
(3)

If k = 1, (3) is equivalent to

$$8R^2 + 8Rr + 6r^2 - 2s^2 \ge 0,$$

which is equivalent to (2). Hence the inequality holds for k = 1.

To show that there is no larger k for which the inequality always holds, let $t \in (0,1)$ and a = t, b = c = 1. The semiperimeter of this triangle is $s = \frac{2+t}{2}$, its area is $F = \frac{t}{4}\sqrt{4-t^2}$, its circumradius is $R = \frac{abc}{4F} = \frac{1}{\sqrt{4-t^2}}$, and its inradius is $r = \frac{F}{s} = \frac{t\sqrt{4-t^2}}{2(2+t)}$. For this triangle, therefore, inequality (3) is successively

Copyright © Canadian Mathematical Society, 2014

equivalent to

$$\frac{9}{4-t^2} + \frac{4t}{2+t} + \frac{t^2(4-t^2)}{2(2+t)^2} - \frac{(2+t)^2}{2} \ge k \left[\frac{1}{4-t^2} - \frac{t^2(4-t^2)}{(2+t)^2}\right]$$
$$\frac{(1+t)^2(1-t)^2}{(2+t)(2-t)} \ge k \cdot \frac{(1-t)^2(1+2t-t^2)}{(2+t)(2-t)}$$
$$\frac{(1+t)^2}{1+2t-t^2} \ge k.$$
(4)

Fix k > 1 and let $t \to 0$. Since $\frac{(1+t)^2}{1+2t-t^2} \to 1$, (4) eventually fails.

References

- O. Bottema, R.Z. Djordjević, R.R. Janic, D.S. Mitrinović, P.M. Vasić, Geometric Inequalities, Wolters-Noordhoff Publishing, 1969, p. 50.
- [2] K. W. Feuerbach, Eigenschaften einiger merkwürdigen Punkte des geradlinigen Dreiecks, 1822, p. 5.

Also solved by ŠEFKET ARSLANAGIĆ, University of Sarajevo, Sarajevo, Bosnia and Herzegovina; CHIP CURTIS, Missouri Southern State University, Joplin, MO, USA; OLIVER GEUPEL, Brühl, NRW, Germany; KEE-WAI LAU, Hong Kong, China; PETER Y. WOO, Biola University, La Mirada, CA, USA; and the proposer. Four incomplete solutions were received.

Crux Mathematicorum

Founding Editors / Rédacteurs-fondateurs: Léopold Sauvé & Frederick G.B. Maskell Former Editors / Anciens Rédacteurs: G.W. Sands, R.E. Woodrow, Bruce L.R. Shawyer

Crux Mathematicorum with Mathematical Mayhem

Former Editors / Anciens Rédacteurs: Bruce L.R. Shawyer, James E. Totten, Václav Linek, Shawn Godin

Crux Mathematicorum, Vol. 39(4), April 2013