
SOLUTIONS / 309

We find that the y-coordinate of U is m2

m1−m2
. We can thus calculate that the slope

of UV is zero, which means that UV is parallel to l.

3867. Proposed by D. M. Bătineţu-Giurgiu and Neculai Stanciu.

Let (an)n≥1 be a positive real sequence and a > 0 such that

lim
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(an − a · n!) = b > 0.

Find
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.

We received four correct submissions and one incorrect solution. We present the
solution of Paolo Perfetti, modified by the editor.
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Using Stirling’s formula, n! = (n/e)n ·
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Continuing from the last equality, the Taylor expansion for the exponential func-
tion then gives us
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Hence
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Since n+1
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n+1 and n
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n (see the beginning of the

proof), it follows that lim
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e as well.

3868. Proposed by Iliya Bluskov.

Determine the maximum value of f(x, y, z) = xy + yz + zx − xyz subject to the
constraint x2 +y2 +z2 +xyz = 4, where x, y and z are real numbers in the interval
(0, 2).
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