
LECTURE NOTES ON BIRKHOFF BILLIARDS: DYNAMICS,
INTEGRABILITY AND SPECTRAL RIGIDITY

CORENTIN FIEROBE, VADIM KALOSHIN, AND ALFONSO SORRENTINO

Contents

1. Lecture I: Billiard dynamics 1

2. Lecture II: Variational principle and periodic orbits. 8

3. Lecture III: Caustics, invariant curves and integrability 17

4. Lecture IV: Aubry-Mather theory and billiard dynamics 33

References 38

1. Lecture I: Billiard dynamics

In these lecture notes we would like to introduce and investigate an interesting class of dynam-
ical systems, known as mathematical billiards. Billiard is a generic term to refer to a very wide
range of dynamical models with impacts; we refer the interested reader to [69, 95, 101, 102]
for a more exhaustive presentation. Billiard-like models have been capturing the attention of
researchers in various areas of mathematics for many years: not only their law of motion is very
physical and intuitive, but billiard-type dynamics is ubiquitous. Mathematically, according to
the shape of the billiard, they offer models in every subclass of dynamical systems (integrable,
regular, chaotic, etc.). Moreover, thanks to their manifold nature, they provide a fruitful labo-
ratory where different ideas and expertises (from dynamical systems, analysis, geometry, etc...),
have the possibilty to interface and beneficially integrate.

In these notes, we will be mostly interested in the study of the so-called Birkhoff billiards (see
Definition 1.2). Such billiards are designed to describe the trajectory of a ray of light evolving
inside a homogeneous convex cavity bounded by perfectly reflecting mirrors. From a mechanical
point of view, if we consider a convex bounded domain Ω ⊂ Rd, where d ≥ 2, with a C1-smooth
boundary ∂Ω, we can think of a massless ball moving with unit velocity and without friction
following a geodesic path: when the ball hits the boundary, it reflects elastically according to
the standard reflection law, namely the angle of reflection is equal to the angle of incidence1;
see Figure 1.

The dynamics of the ball (or of the ray of light) evolving in Ω can be described by two ap-
proaches, a time-continuous one (the billiard flow), and a time-discrete one (the billiard map).

1One could also assume that the boundary ∂Ω has some point of non-differentiability; in this case, when the
ball hits the boundary at one of these points (a sort of “holes”), then the motion stops.
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∂Ω

Ω

Figure 1. Two consecutive reflections of a billiard trajectory in a strictly convex
planar domain Ω with smooth boundary ∂Ω.

• The billiard flow : a billiard trajectory consists of the path followed by a ray of light
evolving inside Ω, and bouncing on its boundary ∂Ω according to the law of reflection
of optics, that is angle of incidence = angle of reflection. This first continuous approach
can be translated in the existence of a quantity Bt(p, v), where p is a point in the domain
Ω, v is a non-zero vector and t ∈ R represents a time variable, giving the position at
time t of the ray of light emitted from p with speed v. The map (p, v, t) 7→ Bt(p, v) is
called the billiard flow 2.

• The billiard map: complementary to the billiard flow, which provides a continuous model
for the billiard, there is a discrete way to describe the billiard dynamics, namely using
the so-called billiard map. Roughly speaking, we keep track only of bouncing points
on the boundary and their bouncing direction. More specifically, a ray of light can be
modeled by an oriented line intersecting Ω. The set of all such oriented lines defines
the phase space L of the billiard map. The reflection of an oriented line is given by a
transformation T : L → L which associates to an oriented line ` ∈ L, the oriented line
`′ = T (`) which corresponds to the trajectory of the light after being reflected from `.
The map T is called the billiard map associated to Ω.

Remark 1.1. In the above models, one can easily replace Rd by any manifold with a complete
Riemannian metric g and oriented lines by oriented geodesics of g. This allows one to define a
notion of billiard in other geometrical contexts. The reader can consult [102] for more details.

1.1. Birkhoff billiards. In the following, we will be interested in the time-discrete point of
view. Moreover, we assume that the billiard domain satisfies some (strict) convexity assump-
tion. Although in these lecture notes we will focus on planar billiards, we present some of the
first properties for billiards in any dimension.

Definition 1.2. A Birkhoff billiard is a triple (Ω,L, T ), where Ω is a strictly convex domain of
Rd, and L and T are the associated phase-space and billiard map. A billiard orbit is a sequence
(T n(`))n∈Z for a given ` ∈ L.

The unit-bundle model. A way to define the phase space of a Birkhoff billiard Ω is to
consider the set Φ of pairs (p, v) where p ∈ ∂Ω lies on the boundary of Ω and v is a unit vector

2The billiard flow might not be defined for any time t > 0, as it was shown by Halpern [50]: there exist
Birkhoff billiards of C2-smooth boundary such that the billiard flow is not defined for all times. However, when
the boundary is C3-smooth this phenomenon cannot occur.
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pointing inside Ω when we choose p as its origin. Indeed, any oriented line intersecting Ω is
uniquely defined by such a pair.

The billiard map can be then defined as the map F : Φ→ Φ associating to a pair (p, v) ∈ Φ a
new pair F (p, v) = (p′, v′) ∈ Φ such that the ray of light emitted from (p, v) is reflected by the
boundary as a ray emitted from (p′, v′).

Proposition 1.3. Suppose that the boundary of Ω is Cr-smooth, r ≥ 2. Then Φ can be endowed
with a structure of Cr−1-smooth manifold which is 2(d − 1)-dimensional, and F : Φ → Φ is a
Cr−1-smooth diffeomorphism.

Proof. (See also [66, Theorem 4.2 in Part V]) Fix p ∈ ∂Ω. Since the boundary is Cr-smooth,
one can find a Cr-smooth local isometry j : U → V ⊂ ∂Ω between an open set U ⊂ Rd−1 and
an open set V ⊂ ∂Ω containing p. For any point q ∈ V , one can define
- a unit normal vector N(q) pointing inside Ω when we fix its origin at q;
- the tangent space of ∂Ω at q = j(x) by TqΩ = dj(x)

(
Rd−1

)
.

Consider the set
B(0, 1) = {r ∈ Rd−1 | ‖r‖ < 1}

of vectors of Rd−1 with Euclidean norm less than 1. Given v ∈ B(0, 1) and q = j(x) ∈ V , one
can define the unit vector of Rd

V (x, r) := dj(x) · r +
√

1− ‖dj(x) · r‖2N(x).

The reader can check that V (x, r) is the unit vector pointing inside ∂Ω when we choose its
origin at q, and projecting onto Tq∂Ω with the component dj(x) · r. Note that dj(x) is a linear
isometry between B(0, 1) and the unit open ball of Tq∂Ω. Hence, the Cr−1-smooth, injective
map given by

(x, r) ∈ U ×B(0, 1) 7→ (j(x), V (x, r))

defines a chart on Φ.

The fact that the billiard map is Cr−1-smooth comes from the implicit function theorem:
consider two distinct points p, p′ ∈ ∂Ω and a vector v ∈ TpΩ of norm < 1. The map G
defined by

G(p, v, p′) =
p′ − p
‖p′ − p‖ −

〈
p′ − p
‖p′ − p‖ |N(p)

〉
N(p)− v

is Cr−1-smooth and vanishes if and only if p′ is the point of impact of a ray emitted from p
with unit vector given by Vv,ν(p). Indeed, the two first terms in G define the projection of the
unit vector p′−p

‖p′−p‖ on the tangent space Tp∂Ω. Hence it is enough to show that locally, there is
a Cr−1 smooth map g in the variables (p, v) such that

G(p, v, p′) = 0 ⇔ p′ = g(p, v).

By the implicit function theorem, it is enough to check that G̃ : q ∈ ∂Ω 7→ G(p, v, q) ∈ Tp∂Ω
is a local diffeomorphism at q = p′. We let the reader check this match by computing the
differential of G̃ at p′.

Hence we have shown that if the billiard map writes as (p, v) 7→ (p′, v′), then p′ = p′(p, v) is
Cr−1 smooth. Now v′ = v′(p, v) is also Cr−1-smooth since it is obtained by projecting p′−p

‖p′−p‖
orthogonally to Tp∂Ω. �

Exercise 1.4. Let i : Φ→ L be the map associating to a pair (p, v) the oriented line ` containing
p and directed by v. Show that i is a bijection satisfying i ◦ F = T ◦ i.
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The cylinder model in dimension 2. From now we shall consider planar Bikrhoff billiards,
namely we assume that d = 2, and Ω ⊂ R2 is a strictly convex bounded domain with with a
Cr-smooth boundary, r ≥ 3. The boundary ∂Ω is a closed curve which can be parametrized
by an arc-length coordinate s, viewed modulo the perimeter of the boundary L = |∂Ω|. In
this case any pair (p, v) ∈ Φ in the unit bundle model can be encoded by a unique pair
(s, ϕ) ∈ R/LZ × (0, π) where s is the arc-length coordinate of p and ϕ is the angle made by
v with the tangent line of ∂Ω at p oriented according to the parametrization of the boundary.
The phase-space in this case is the annulus (or cylinder)

AL := R/LZ× (0, π).

The billiard map is the one which naturally arises from this construction, acting therefore on
AL; see Figure 2.

(s, ϕ)

s

(0, π)

ϕ

∂Ω ' R/LZ
0 s L

0

ϕ
(s, ϕ)

π

Figure 2. The phase space AL in dimension 2. On the left, its representation
as a cylinder; on the right, its representation as an affine chart on R/LZ× (0, π).

Let us start with an example.

Example: billiard in the unit disk. We consider the billiard in the unit disk D1 := {(x, y) ∈
R2 | x2 + y2 ≤ 1}, whose boundary has perimeter L = 2π and we assume to be parametrized
by arc-length. We denote by θ the length of the arc joining a point pθ from a fixed origin
p0 ∈ ∂D1 = S1 in a given orientation (we count θ modulo 2π). Given an oriented line ` inter-
secting ∂D1 at a point p, we denote by ϕ the oriented angle between the tangent line Tp∂D1

and `. See Figure 3.

Proposition 1.5. In (θ, ϕ)-coordinates, the billiard map in D1 is the map F : A2π → A2π given
by

(1) F (θ, ϕ) = (θ + 2ϕ, ϕ).

Proof. Let us write (θ′, ϕ′) := F (θ, ϕ). We consider the following geometric configuration.
Denote by O the center of D1 and consider an oriented line intersecting ∂D1 at a point p = pθ
and such that the oriented angle between the tangent line Tp∂D1 and ` is ϕ ∈ (0, π). Let
p′ = pθ′ be the second point of intersection of ` with ∂D1. See Figure 3.

By definition of D1, the triangle Opp′ is isosceles in O and the lines Op and Op′ intersect D1

orthogonally. This allows to deduce the following statements:

- The oriented angle between the tangent line Tp′∂D1 and ` is −ϕ.
- The oriented angle between Op and Op′ is 2ϕ.

Hence θ′ = θ + 2ϕ and ` is reflected at p′ into an oriented line making an angle ϕ with the
tangent line Tp′∂D1, i.e., ϕ′ = ϕ. �
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O

p

p′

2ϕ

ϕ

ϕ

Figure 3. The billiard reflection in a disk: two successive impact points p and
p′, such that the line pp′ makes an angle ϕ with the boundary at p.

Periodic and dense orbits. In particular, Propositin 1.5 implies that ϕ stays constant along the
orbit (i.e., it represents what is called an integral of motion for the map); hence, the property
of the orbits are determined by the corresponding angle ϕ = πω, with ω ∈ (0, 1); ω is called
the rotation number of the orbit. Then:

• If ω = m
n
∈ (0, 1) ∩ Q, for two coprime integers m,n > 0, then for any θ ∈ R, by

induction F satisfies

(2) F n(θ, ϕ) = (θ + 2nϕ, ϕ) = (θ + 2πm,ϕ) = (θ, ϕ) mod. 2πZ.

Hence, the orbit is periodic with minimal period n. We say that (θ, ϕ) is a periodic
point of rotation number m/n. In fact it corresponds to a polygonal periodic trajectory
(if m = 1) or a star-shaped one (if m > 1), with n denoting its period, and m the
number of times that the trajectory winds around the boundary ∂D1 before closing (see
Figure 4).

Figure 4. Two periodic trajectories of period 5 in a disk, with rotation numbers
1/5 (on the left) and 2/5 (on the right).

• If ω ∈ (0, 1) \Q, then the orbit is not periodic and it hits the boundary ∂D1 on a dense
set of points (by Kroenecker’s theorem).

Invariant curves. By Equation 1, we observe that given a fixed ϕ0 ∈ (0, π), the curve Cϕ0 :=
{(θ, ϕ) ∈ A2π | ϕ = ϕ0} is invariant by F , that is F (Cϕ0) = Cϕ0 . Moreover, the set of all possible
Cϕ0 , for ϕ0 ∈ (0, π), foliates the annulus A2π (see Figure 5).
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0 s |∂D1| = 2π
0

ϕ

π

Cϕ1

Cϕ0

Figure 5. The phase space A2π of the billiard map in a disk with its foliation
by horizontal invariant curves Cϕ, where ϕ ∈ (0, π).

Remark 1.6. Equation (2) implies that all points in Cm
n
π are periodic of rotation number m/n

(and in fact, all such points lie on Cm
n
π). We say that D1 has 1-parameter families (i.e., curves

in the phase space) of periodic points. In fact, it was proven (see [84]) that this phenomenon is
degenerate in the sense that for a generic domain (i.e., an intersection of open and dense set
of domains), the set of periodic orbits in this domain of any given period n ≥ 2 is finite (see
also [4] for some related results for general maps).

1.2. Generating function. Consider γ : R→ R2 be a Cr-smooth L-periodic parametrization
of the boundary ∂Ω. Define the map H : R2 → R+ given by

H(s, s′) = −dist(γ(s), γ(s′)) ∀ s, s′ ∈ R.
Definition 1.7. The map H is called the generating function of the billiard in Ω.

Remark 1.8. The negative sign in the definition of H is just a convention, that will make
sense a bit later when we will consider minimizers of H, which otherwise would be maximizers
of the distance.

Exercise 1.9. Compute H when Ω is a unit disk.

γ(s)

γ(s′)

H(s, s′)

ϕ

ϕ′

Figure 6. The generating function encodes the dynamics of the billiard

The function H is called generating because it contains the dynamics of the billiard (see Figure
6), as stated in the following proposition.
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Proposition 1.10. The map H is Cr-smooth outside the set ∆ = {(s, s) | s ∈ R}. Moreover,
if (s, ϕ), (s′, ϕ′) ∈ AL are such that s 6= s′, then the following statements are equivalent:
(i) F (s, ϕ) = (s′, ϕ′);
(ii) ∂1H(s, s′) = − cosϕ and ∂2H(s, s′) = cosϕ′, where ∂k denotes the derivative with respect
to the k-th variable (k = 1, 2).

Proof. The smoothness condition is obvious since ∂Ω is Cr-smooth. Given s 6= s̃, let us compute
∂1H(s, s̃). Differating the Euclidean norm, we obtain

∂1H(s, s̃) = −
〈

γ(s̃)− γ(s)

‖γ(s̃)− γ(s)‖ | γ
′(s)

〉
.

Here u := γ(s̃)−γ(s)
‖γ(s̃)−γ(s)‖ is a unit vector from p = γ(s) to p̃ = γ(s̃) and γ′(s) has unit norm (since

γ parametrizes ∂Ω with arc-length). It follows that ∂1H(s, s̃) is − cosϕ where ϕ is the angle
between the line pp̃ and the tangent line to ∂Ω at p. Similarly, ∂2H(s, s̃) = cos ϕ̃ where ϕ̃ is the
angle between the line pp̃ and the tangent line to ∂Ω at p̃. From this we obtain F (s, ϕ) = (s̃, ϕ̃)
and hence F (s, ϕ) = (s′, ϕ′) if and only if s̃ = s′ and ϕ̃ = ϕ′, which is tantamount to item
(ii). �

Exercise 1.11. Let Ω be a Birkhoff billiard with C2-smooth boundary. Let κ(s) be the radius
of curvature of ∂Ω at a point of arc-length coordinate s.

(i) Show that (see [66, Theorem 4.2 in Part V]) :
∂ss
′ =

κ(s)d(s, s′)− sinϕ

sinϕ′
∂ϕs

′ =
d(s, s′)

sinϕ′

∂sϕ
′ =

κ(s)κ(s′)d(s, s′)− κ(s) sinϕ′ − κ(s′) sinϕ

sinϕ′
∂ϕϕ

′ =
κ(s′)d(s, s′)− sinϕ′

sinϕ′

where d(s, s′) denotes the distance in the plane between the points on the boundary of
the billiards corresponding to s and s′.

(ii) Assume that Ω is a Birkhoff billiard with C4-smooth boundary. Show that when (s′−s)→
0, the generating function H associated to Ω can be written as

H(s, s′) = −|s′ − s|
(

1− κ(s)2

24
(s′ − s)2 − κ(s)κ′(s)

24
(s′ − s)3 +O

(
(s′ − s)4

))
.

Moreover, for small ϕ, the differential of the billiard map has the following form

Df(s, ϕ) = L(s) + ϕA(s) +O(ϕ2)

where

L(s) :=

 1
2

κ(s)

0 1


and

A(s) :=

 −2
κ′(s)

κ2(s)
− 8

3

κ′(s)

κ3(s)

0
4

3

κ′(s)

κ2(s)

 .
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Area-preservation. Consider the 1-form λ on AL defined by λ = cosϕds. The exterior dif-
ferential of λ is the area form

ω = dλ = sinϕds ∧ dϕ.
Proposition 1.10 has the following consequence. We recall that given a k-form α on a manifold
M , and a smooth map F : M →M , we define α’s pullback by F as the k-form β := F ∗α such
that

βp(v1, . . . , vk) = αF (p)(dFp(v1), . . . , dFp(vk)) ∀ p ∈M ∀ v1, . . . , vk.

Exercise 1.12 (Exact symplecticity). Prove that

F ∗λ− λ = dH

(F is a so-called exact-symplectic map). Deduce that F preserves ω, i.e., F ∗ω = ω.

This suggests the following change of coordinates:{
x := s
y := − cosϕ.

Notice that
ω = ds ∧ d(− cosϕ) = dx ∧ dy.

The billiard map F in these new coordinates is given by
f : R/LZ× (−1, 1)→ R/LZ× (−1, 1),

defined by the condition f(s,− cosϕ) = (s′,− cos(ϕ′) where (s′, ϕ′) = F (s, ϕ) for all (s, ϕ) ∈
AL; by by construction f is conjugated to F . From Exercise 1.12 we can deduce the following
proposition.

Proposition 1.13. The billiard map f is area-preserving, i.e. it preserves the area form dx∧dy.

Billiard maps are examples of so-called exact-symplectic twist maps; we refer to [43, 95] for more
details about these maps. See also section 4 for their relation with the so-called Aubry-Mather
theory.

2. Lecture II: Variational principle and periodic orbits.

Let Ω ⊂ R2 be a strictly convex bounded domain with C3-smooth boundary and assume that
its boundary ∂Ω is parametrized by an arc-length coordinate s, viewed modulo the perimeter
of the boundary that, without loss of generality, we assume to be equal to 1. We denote by
γ : R→ R2 this parametrization.
Let us denote as before A := R/Z× (0, π) and consider the billiard map F : A −→ A and a lift
of F to the universal cover R× (0, π) of A:

F̃ : R× (0, π) −→ R× (0, π)

(s, ϕ) 7→ (s′, ϕ′).

Let us also denote by H : R× R→ R its generating function
H(s, s′) = −dist(γ(s), γ(s′)) ∀ s, s′ ∈ R.

Definition 2.1. An orbit of the map F̃ is a sequence p = (sk, ϕk)k∈Z such that for any k ∈ Z,
F̃ (sk, ϕk) = (sk+1, ϕk+1). The rotation number of the orbit, if it exists, is defined as the quantity

lim
k→+∞

sk − s0

k
.

An orbit is said to be periodic if there exist an integer n > 0 and m ∈ Z, such that for any
k ∈ Z sk+n = sk +m. The period of the orbit is the minimal n satisfying this condition.
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Exercise 2.2. Check that in the case of a periodic orbit, rotation number exists and it is given
by the ratio m/n, where n is the period and m the corresponding integer (see definition above).

Remark 2.3. The rotation number m/n has a simple geometric interpretation in the case of
billiard maps: n is the number of time an orbit bounces on the billiard boundary before repeating
itself - or its period, and m is the number of time it winds around the boundary.

Definition 2.4. A stationary configuration for F̃ is a sequence s = (sk)k∈Z ⊂ RZ such that for
any k ∈ Z

∂2H(sk−1, sk) + ∂1H(sk, sk+1) = 0.

From Proposition 1.10, we can easily deduce a correspondance between stationary configura-
tions and orbits. More specifically:

Proposition 2.5. The map associating to an orbit (sk, ϕk)k∈Z the stationary configuration
(sk)k∈Z is a bijection between orbits and stationary configurations.

Given a Birkhoff billiard, we can ask about if it has periodic orbits. The answer is in fact
yes, and it is given by the famous theorem of Birkhoff (see [16] and also the presentations in
[43, 95]).

Theorem 2.6 (Birkhoff). Let Ω be a Birkhoff billiard with C2-smooth boundary. Then for any
m/n ∈ (0, 1)∩Q there exist at least two geometrically distinct periodic orbits of rotation number
m/n.

Proof. The proof of Theorem 2.6 relies on the variational principle given by Proposition 2.5.
Fix coprime integers m,n > 0 such that m/n ∈ (0, 1) ∩Q.

The first periodic orbit of rotation number m/n is given by minimizing the functionnal hm,n :
Km,n → R defined on the compact set

Km,n = {(s0, . . . , sn) ∈ Rn+1 | sn = s0 +m, s0 ∈ [0, 1] and sk ≤ sk+1 ∀k}
by

hm,n(s0, . . . , sn) :=
n−1∑
k=0

H(sk, sk+1).

The function hm,n is continuous hence reaches its minimal value at a certain s = (s0, . . . , sn).
In fact, one can show that s can be taken in the interior of Km,n. Indeed, if for some k we have
sk−1 = sk, but sk < sk+1 then for a fixed t ∈ (sk, sk+1) if we denote by

s̃ = (s0, . . . , sk−1, t, sk+1, . . . , sn)

we have by construction hm,n(s̃) < hm,n(s) because the sum of distances of the chords from
sk−1 to t and from t to sk+1 is strictly greater than the distance of the chord from sk−1 = sk to
sk+1 hence

H(sk−1, t) +H(t, sk+1) < H(sk−1, sk) +H(sk, sk+1).

This contradicts the minimality of s. Moreover, adding or substracting 1 to the components of
s does not change the minimality, so we can assume s0 ∈ [0, 1). Now, since s is in the interior
of Km,n, it is a critical point of hm,n: in particular for any k ∈ {1, . . . , n− 1},

0 = ∂khm,n(s) = ∂2H(sk−1, sk) + ∂1H(sk, sk+1)

and by Proposition 2.5, this corresponds to a periodic orbit of the billiard map of rotation
number m/n.

The other one is obtain by minmax techniques (see figure below for an idea of the so-called
mountain pass method) and one needs to show that also this critical configuration must lie in
the interior of the set, hence correspond to an orbit of the map. �
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Figure 7. Mountainpass critical points

Remark 2.7. The lower bound on the number of periodic orbits with a given rational rotation
number is optimal. For example, if one takes an ellipse with eccentricity 0 < e < 1, then there
are exactly two periodic orbits corresponding, respectively, to the minor and major axis.

Exercise 2.8. Let ε > 0 and consider the domain Ωε ⊂ R2 whose boundary is given in polar
coordinates (ϕ, r) by

r = 1 + ε cos 3ϕ.

1) Show that there exists ε0 > 0 such that for any 0 ≤ ε ≤ ε0 the domain Ωε is strictly convex.
2) Consider the points p1, p2, p3 on ∂Ωε corresponding to ϕ = 0, 2π

3
, 4π

3
. Show that (p1, p2, p3) is

a 3-periodic orbit. Does this orbit maximize the length functional?
3) Same question as in 2) with the points q1, q2, q3 on ∂Ωε corresponding to ϕ = π

3
, π, 5π

3
.

2.1. On the quantity of periodic orbits and Ivrii’s conjecture. Describing the set of
periodic orbits of a dynamical system like a billiard allows to understand it better. The question
of their existence is given by Birkhoff’s theorem (Theorem 2.6) which states the existence of
periodic orbits of any rotation number. A further question one can ask is about their quantity.
The following statement was conjectured by Ivrii in [60].

Ivrii’s conjecture. Given a strictly convex billiard in Rd, the set of its periodic orbits has zero
measure.

The conjecture can be understood as follows: the billiard map inside a strictly convex domain
Ω ⊂ Rd acts on the pairs (p, v) where p lies on the boundary of Ω and v is a unit vector
pointing inside Ω from p. It can hence be viewed as a diffeomorphism F : B(T∂Ω)→ B(T∂Ω)
of pairs (p, v) ∈ T∂Ω such that v is tangent to Ω at p and has norm ≤ 1. In this setting, Ivrii’s
conjecture states that the set of periodic points of F , namely

{(p, v) ∈ B(T∂Ω) | ∃n ∈ Z>0 F n(p, v) = (p, v)}
has zero measure.

This conjecture is related to the so-called Weyl law related to the Dirichlet eigenvalues of the
Laplace-Beltrami operator ∆ in a bounded convex domain Ω ⊂ Rd. For λ ≥ 0, define N(λ)
the number of eigenvalues (with multiplicities) of ∆ for which the corresponding eigenvector
vanish on the boundary ∂Ω. Weyl [108] proved the following asymptotics

N(λ) ∼ ad vol(Ω)λd/2

where ad > 0 is a constant depending only on d and conjectured the second order term, so that
N(λ) should follow the following asymptotics:

(3) N(λ) = ad vol(Ω)λd/2 + ad−1 area(∂Ω)λ
d−1

2 + o
(
λ
d−1

2

)
where ad−1 ∈ R∗ only depends on d. Ivrii showed that if the set of periodic orbits inside a
domain Ω has measure zero, then the asymptotics (3) holds.

Ivrii’s conjecture remains open until now; however partial answers have been given. A generic
positive answer has been given in [84], where it is proven using a transversality theorem that
for a generic domain the set of periodic orbits of any given period is finite. Note that in fact
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Ivrii’s conjecture holds if and only if it is true for the set of periodic orbits of any given period.
Following this idea, [91] and later [99] proved the conjecture for 3-periodic orbits. There result
was extended to any dimension in [107]. See also [20, 109] for different proofs of this result
which also apply for other geometries. These results were also extended to 4-periodic orbits,
see [41, 42], but also [37, 38, 39]. The latter result also applies to billiards in other geometries
or with different reflection laws, see for example [20, 34, 35].

This conjecture was proven by [104] under the assumption that the boundary of the domain is
analytic. Let us sketch the proof of this result.

Theorem 2.9 ([104]). Let Ω ⊂ Rd be a strictly convex domain with analytic boundary. Then
the set of periodic orbit for the billiard inside Ω has zero measure.

Proof. Let us sketch the proof of this result for d = 2. In this setting, the billiard map F inside
Ω is an analytic diffeomorphism of the cylinder A. If the set of periodic points of F has striclty
positive measure, then there should exists an n ≥ 2 such that the set of periodic points of F of
period n has strictly positive measure. Hence the identity F n = id is satisfied on a set of non
zero measure, and by analytic continuation it is satisfied everywhere. But this contradicts the
existence of periodic orbits of rotation number 1/q where q is bigger than n. �

Remark 2.10. The proof of Theorem 2.9 shows that in the analytic setting the existence of a
set of non-zero measure of periodic orbits implies the existence of an open set of periodic orbits
(here the whole phase space).

Remark 2.11. Consider a billiard F in a strictly convex domains. Let x0 = F q(x0) be a
periodic of some period q > 1. Call x0 absolutely periodic (resp. absolutely periodic of order
n) if the differential of F q is the identity and all second order and higher partial derivatives of
F q (resp. of order up to n) at x0 are 0. In a recent preprint [24], K. Callis showed that for
any natural number n, the set of domains containing absolutely periodic orbits of order n are
dense in the set of bounded strictly convex domains with C∞ smooth boundary. This result is
a step toward disproving the following conjecture by Safarov-Vassiliev in [94], namely, that no
absolutely periodic billiard orbits of infinite order exist in Euclidean billiards. This is also an
indication that Ivrii’s Conjecture about the measure set of periodic orbits might not be true.

Let us conclude this section by recalling that the set of perimeters of periodic orbits in a strictly
convex billiard has zero measure. This is a simple consequence of Sard’s lemma and the fact
that periodic orbits are critical points of the length functional. This however does not allow to
answer Ivrii’s conjecture.

Theorem 2.12 (Birkhoff [16]). Let L(Ω) ⊂ R be the set of perimeters of periodic orbits inside
a Birkhoff’s billiard. Then L has zero Lebesgue measure.

Proof. It is enough to show this result for the set Lm/n(Ω) of periodic orbits of a fixed rotation
number m/n ∈ (0, 1). As in the proof of Theorem 2.6, define the map hm,n : Vm,n → R on the
open set

Vm,n = {(s0, . . . , sn) ∈ Rn+1 | sn = s0 +m, ∀k sk < sk+1}
by

hm,n(s0, . . . , sn) =
n−1∑
k=0

H(sk, sk+1).

As we saw, the set Crit(hm,n) corresponds to the stationary configurations, and hence to periodic
orbits of rotation numberm/n of the billiard map. Moreover, the perimeter of the orbit obtained
from s ∈ Vm,n corresponds to the quantity hm,n(s). Hence we just showed that

Lm/n(Ω) = hm,n(Crit(hm,n))
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is the so-called set of critical values of hm,n. By Sard’s Lemma, this set has zero measure. �

Exercise 2.13. Construct a C∞ domain with the Length spectrum of positive Hausdorff di-
mension.

2.2. Laplace spectrum and Length spectrum. We define the length spectrum of Ω as the
set

LΩ := N+ · {lengths of periodic orbits in Ω} ∪ N+ · |∂Ω|,
where |∂Ω| denotes the length of the boundary, namely the set of multiples of the lengths of all
periodic orbits and multiples of the perimeter of Ω.

As we have already pointed out before (see Ivrii’s conjecture), a remarkable relation exists
between the length spectrum of a billiard in a convex domain Ω and the spectrum of the
Laplace operator in Ω with Dirichlet boundary condition:{

∆f + λ2f = 0 in Ω
f |∂Ω = 0.

From the physical point of view, the eigenvalues are the eigenfrequencies of the membrane Ω
with a fixed boundary. Denote by Spec∆(Ω) = {0 < λ1 ≤ λ2 ≤ . . .} the Laplace spectrum of
eigenvalues solving this problem.

The famous question of M. Kac in its original version asks if one can recover the domain from
the Laplace spectrum. For general manifolds there are counterexamples (see [44]).

K. Anderson and R. Melrose [2] proved the following relation between the Laplace spectrum
and the length spectrum (see also [47, 85, 94]):

Theorem (Anderson-Melrose). The wave trace

w(t) := Re

 ∑
λn∈Spec∆(Ω)

eiλnt


is well-defined as a distribution and smooth away from the length spectrum:

(4) sing. supp.
(
w(t)

)
⊆ ±L(Ω) ∪ {0}.

Namely, if ξ > 0 belongs to the singular support of this distribution, then there exists either
a closed billiard trajectory of length ξ, or a closed geodesic of length ξ in the boundary of the
billiard table. Generically, equality holds in (4).

Exercise 2.14. An example to convince about this relation is the following. Consider Ω =
(0, π)× (0, π); then, its Laplace spectrum is given by

Spec(Ω) = {n2 +m2 : (n,m) ∈ N× N \ {(0, 0)}}.
Discuss its relation with the lengths of periodic orbits in Ω.

Remark 2.15. (i) The above inclusion holds for non-convex C∞ domains in arbitrary dimen-
sion (see [85, Theorem 5.4.6]).
(ii) Observe that there are not known examples of domains in which the singular support of the
wave trace is strictly included inside the Length spectrum: the equivalence between these sets is
strictly related to the problem whether Laplace spectral rigidity implies Length spectral rigidity.
Observe that it may be possible that the singular support of the wave trace is strictly included
inside the Length spectrum. If they are the same it is closely related to the problem whether
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Laplace spectral rigidity implies Length spectral rigidity. In an unpublished manuscript Hezari
and Zelditch constructed an example of an analytic domain where the equality fails. In a recent
preprint Kaloshin-Koval-Vig [62], it was show that for a dense set of eccentricities e ∈ (0, 1),
there is a small perturbation Ω of an ellipse E of eccentricity e such that the equality of the
singular support of wΩ(t) and the length spectrum (4) fails.

A very interesting result in this direction has been recently provided in [53], where the authors
prove that ellipses of sufficiently small eccentricities are Laplace spectrally unique (up to isome-
try) among all smooth domains (without any assumption on symmetry, convexity, or closeness
to other ellipses). A key result in their proof consists in showing that for nearly circular do-
mains, the lengths of periodic orbits of rotation number 1/q is contained in the singular support
of the wave trace [53, Theorem 1.4]. This observation was used in a recent work of Koval [68]
about local Laplace spectrum rigidity of ellipses.

2.3. Laplace Spectral Rigidity. Given a classM of domains and a domain Ω ∈M, we say
that Ω is spectrally determined inM if it is the unique element (modulo isometries) ofM with
its Laplace Spectrum: if Ω,Ω′ ∈ M are isospectral, i.e., Spec∆(Ω′) = Spec∆(Ω), then Ω′ is the
image of Ω by an isometry (i.e., a composition of translations and rotations).

The question of Kac can be thus formulated as follows, assuming we have fixed a class of do-
mainsM: Is every Ω ∈M spectrally determined?

IfM is the space of all planar domains, the answer is well known to be negative (see e.g., [44],
which generalizes some results previously obtained for compact manifolds without boundary
(see [100, 106])).3 However, all known examples of domains that are not spectrally determined
are not convex, moreover, they are bounded by curves that are only piecewise analytic (e.g.
plane domains with corners). On the other hand, Zelditch proved in [111] that the inverse
spectral problem has a positive answer when M is a generic class of analytic Z2-symmetric
convex domains (i.e., symmetric with respect to reflection about a given axis).
More recently, as we have already mentioned, Hezari and Zelditch [53] proved that ellipses of
sufficiently small eccentricities are Laplace spectrally unique (up to isometry) among all smooth
domains (withouth any assumption on symmetry, convexity, or closeness to other ellipses).

The problem for non-analytic domains is substantially more challenging. In the C∞ category,
Osgood-Phillips-Sarnak [80, 81, 82] showed that isospectral sets are necessarily compact in the
C∞ topology. Sarnak (see [93]) also conjectured that an isospectral set consists of isolated
domains. In other words, C∞-close to a C∞ domain there should be no isospectral domains,
except those that can be obtained by an isometry.

A weaker version of this conjecture can be stated as follows: a domain Ω is said to be spectrally
rigid in M if any C1-smooth one-parameter isospectral family (Ωτ )|τ |≤1 ⊂ M with Ω0 = Ω is
necessarily an isometric family. We can then ask: “Are all C∞ domains spectrally rigid?”

The problem of spectral rigidity is in principle much simpler than the inverse spectral problem;
yet it turns out to be extremely challenging. Hezari–Zelditch (see [52]) provided a result in
the affirmative direction: let Ω0 be bounded by an ellipse E , then any one-parameter isospec-
tral C∞-deformation (Ωτ )|τ |≤1 which additionally preserves the Z2×Z2 symmetry group of the

3Remarkably, Sunada (see [100]) exhibits isospectral sets (i.e., sets of isospectral manifolds) of arbitrarily
large cardinality.
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ellipse is necessarily flat (i.e., all derivatives have to vanish for τ = 0).4 Popov–Topalov [87]
recently extended these results (see also [88]).

Further historical remarks on the inverse spectral problem can also be found in [52] and in the
surveys [110] and [112].

In the case of Riemannian manifolds, we mention that Guillemin–Kazhdan in [46] showed that
any negatively curved surface is spectrally rigid among negatively curved surfaces. This result
has been later extended to compact manifolds of negative curvature in [27].

2.4. Length spectral rigidity. The relation between the Laplace Spectrum and the Length
Spectrum, immediately raises the following question:

Does the knowledge of the lengths of periodic orbits determine the shape of the billiard domain?

All counterexamples to the inverse spectral problem mentioned earlier also constitute a negative
answer to this question. Likewise, at present, there is no known counterexample realized by ei-
ther convex domains or domains with a C∞ smooth boundary. Moreover, the above mentioned
result by Zelditch (in [111]) also holds in the dynamical context. In the case of sufficiently
smooth convex domain, the problem is open and presents the same challenges as the inverse
spectral problem.

In [29], the following dynamical problem corresponding to spectral rigidity has been investi-
gated: we say that a domain Ω0 ∈ M is dynamically spectrally rigid in M if any C1-smooth
one-parameter dynamically isospectral family (Ωτ )|τ |≤1 ⊂M is necessarily an isometric family.
More specifically, the authors proved the following theorem:

Theorem 2.16 (De Simoi, Kaloshin, Wei [29]). LetM be the set of strictly convex domains
with sufficiently (finitely) smooth boundary and axial symmetry and that are sufficiently close
to a circle. Then, Ω ∈M is dynamically spectrally rigid inM.

Remark 2.17. This work leaves several natural open problems:

- Remove axial symmetry. Similar symmetry assumption appears in a work of Zelditch
[111] and double symmetry assumption appears in Colin de Verdière [32].

- Nonlocal dynamically spectrally rigid inM is another exciting open problem.
- A closely related setting is dynamically spectrally rigid for standard maps of a cylinder

(x, y) 7→ (x+ y + V ′(x), y + V ′(x)), where the x-component is taken (mod. 1) and V (x)
is a smooth period function, i.e. V (x+ 1) ≡ V (x).

- Questions of dynamically spectrally rigid for geodesic flows on 2-torus seems a closely
related open problem. Even when geodesic flow is close to integrable.

Let us point out that the above-mentioned results are concerned with spectral rigidity for smooth
domains. Some results in the analytic category, yet for non-Birkhoff billiards, are contained in:

- [30], where under suitable symmetry and genericity assumptions, it is proved that the
Marked Length Spectrum determines the geometry of billiard tables obtained by removing
from the plane finitely many strictly convex analytic obstacles satisfying the so-called
non-eclipse condition;

4Results of this kind are usually referred to as infinitesimal spectral rigidity.
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- Bunimovich stadia and squash-type stadia are beautiful examples of chaotic billiards. A
Bunimovich stadium is a convex domain whose boundary is formed by four segments:
two parallel segments forming a rectangle and two strictly convex segments connecting
the end points of segments. For example, one can take semicircles. Bunimovich showed
that such billiards are chaotic. One can consider segments not to be parallel and con-
nect them by two strictly convex segments forming a squash. In [25] it is established
the dynamical spectral rigidity for piecewise analytic Bunimovich stadia and squash-type
stadia satisfying an additional “symmetry” assumption.

2.5. Some ideas on the proof of deformational spectral rigidity (Theorem 2.16).
Here we introduce the key elements of the proof of Theorem 2.16. Let (Ωτ )|τ |≤1 ⊂ M be a
isospectral family of domains.

The first step is to establish existence of a countable family of maximal periodic orbits given
by q-gons for all q ≥ 2.

Lemma 2.18. (see Lemma 4.3 [29]) Let Ω ∈M; for any q ≥ 2, there exists a periodic orbit of
rotation number 1/q passing through the marked point of ∂Ω and having maximal length among
other periodic orbits passing through the marked point. We call such an orbit marked symmetric
maximal periodic orbit and denote it by Sq(Ω).

Let Sq = (skq , ϕ
k
q)
q−1
k=0 be the maximal symmetric periodic orbit. Associate to Sq and a continuous

function ν : T→ R a linear functional

`Ω,q(ν) =

q−1∑
k=0

ν(skq) sinϕkq .

Given a parameterization γ of a family (Ωτ )|τ |≤1 inM, we define the infinitesimal deformation
function:

nγ(τ, ξ) = 〈∂τγ(τ, ξ), Nτ (τ, ξ)〉,
where 〈·, ·〉 is the usual scalar product in R2 and Nτ (τ, ξ) is the outgoing unit normal vector
to ∂Ωτ at the point γ(τ, ξ). Observe that nγ is continuous in τ and nγ(τ, ·) is smooth for
any |τ | ≤ 1. By the normalization condition of (Ωτ )|τ |≤1, we conclude that nγ(τ, ·) is an even
function, i.e., nγ(τ, ξ) = nγ(τ,−ξ), and nγ(τ, 0) = 0 for any |τ | ≤ 1. Naturally the space of
perturbations can be identified with the space of smooth even functions on the circle denoted
Csym.

Proposition 2.19. (See [29, Proposition 4.6]) Let (Ωτ )|τ |≤1 be an isospectral family, then for
any |τ | ≤ 1, q ≥ 2 and having fixed arbitrarily S̄qτ a maximal marked symmetric periodic orbit
for Ωτ , we have

`Ωτ ,q(n(τ, ·)) = 0.

For any domain Ω (parameterized by the length s) with the radius of curvature ρ, we define
the linear functional

`Ω,0(ν) :=

∫ 1

0

ν(s)

ρ(s)
ds.

As it is shown in (4.3), [29] if (Ωτ )|τ |≤1 be an isospectral family, then for any |τ | ≤ 1 we have
`Ω,0(n(τ, ·)) = 0.

Define the following key notion. Call the linearized isospectral operator TΩ : Csym → RN:

TΩν = (`Ω,0(n(τ, ·)), `Ω,1(n(τ, ·)), . . . `Ω,q(n(τ, ·)), . . . ).
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In fact, TΩ has range in `∞, by definition of the functionals `Ω,q, since by [8, Lemma 8] there
exists some C > 0 so that for any q ≥ 2 we have sinϕkq ≤ C

q
.

The linearized isospectral operator bears a strong analogy with the X-transform (see [45, Sec-
tion 2.2]).

Theorem 2.20. ([29, Theorem 4.9]) In the space of sufficiently smooth axis symmetric domains
there is a neighborhood of the circular domain such that the operator TΩ : Csym → `∞ is injective.

This Theorem implies the rigidity Theorem above. In the case of the domain Ω0 being the
circle the linearized isospectral operator TΩ0 is easy to compute. For j ≥ 1 and q ≥ 2

`q(ej) = δq|j,

where δq|j = 1 is j is divisible by q and zero otherwise. For the circle TΩ0 is clearly indective.
In [29, Lemma B.1] we compute a perturbative expression for `Ω,q(ej) when a domain Ω is close
to the circle. In a proper sense perturbation of TΩ0 is also injective.

Related prior results. The problem of isospectral deformations of manifolds without boundary
were considered in some early works on variations of the spectral functions and wave invariants.

Let (M, g) be a compact boundaryless Riemannian manifold. A family (gτ )|τ |≤1 of Riemannian
metrics on M depending smoothly on the parameter |τ | ≤ 1 is called a deformation of the
metric g if g0 = g. A deformation is called trivial if there exists a one-parameter family of
diffeomorphisms ϕτ : M → M such that ϕ0 = Id , and gτ = (ϕτ )

∗ g0. For each homotopy
class of closed curves in M , consider the infimum of g-lengths of curves belonging to the given
homotopy class. The Length Spectrum L(M, g) is defined as the union of these lengths over all
homotopy classes. The inverse spectral problem in this setting is to show that two metrics with
the same Length Spectrum are isometric.

Likewise, a deformation (gτ )|τ |≤1 is said to be isospectral if L(M, gτ ) = L(M, g). We say that a
Riemannian manifold (M, g) is length spectrally rigid if it does not admit non-trivial isospectral
deformations.

It is worth mentioning that for there is a partial solution of the inverse spectral problem due
independently to Croke [26] and Otal [83] which can be stated as follows: any negatively curved
manifold is uniquely determined by its Marked Length Spectrum (see subsection 2.6 for the cor-
responding billiard problem).5
Recently, Guillamou and Lefeuvre [45] proved that in all dimensions, the marked length spec-
trum of a Riemannian manifold (M, g) with Anosov geodesic flow and non-positive curvature,
locally determines the metric in the sense that two close enough metrics with the same marked
length spectrum are isometric.

Another example of deformational spectral rigidity appears in De la Llave, Marco and Moriyón [28].
Recall that one can associate to a symplectic map a generating function. Then, for each peri-
odic orbit, one can define the corresponding action by summing the generating function along
the orbit. This value of the action is invariant under symplectic coordinate changes. The union
of the values all these actions over all periodic orbits is called the action spectrum of the sym-
plectic map. In [28, Theorem 1.3], it is proved that there are no non-trivial deformations of
exact symplectic mappings Bτ , τ ∈ [−1, 1], leaving the action spectrum fixed, when Bτ are
Anosov’s mappings on a symplectic manifold. One of the reasons for symplectic rigidity in [28]

5The Marked Length Spectrum in the case of negatively curved surfaces without boundary consists of the set
of pairs of homotopy classes and length of the shortest geodesic in that homotopy class.
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is that all periodic points of Bτ are hyperbolic and form a dense set.

2.6. Marked length Spectral Rigidity. One of the difficulties in working with the length
spectrum is that all of this information on the periodic orbits come in a non-formatted way.
For example, we lose track of the rotation numbers corresponding to each length. A way to
overcome this difficulty is to “organize” this set of information in a more systematic way, for
instance by labelling each length with corresponding rotation number. This new set is called
the Marked Length Spectrum of Ω and denoted byMLΩ:

MLΩ := {(length(γ), rot(γ)) : γ periodic orbit of the billiard in Ω} ,
where rot(γ) denotes the rotation number of γ.

One could also reduce this set of information by considering not the lengths of all orbits, but
selecting some of them. More precisely, for each rotation number p/q in lowest terms, one could
consider the maximal length among those having rotation number p/q. We call this map the
Maximal Marked Length Spectrum of Ω, namelyMLmax

Ω : Q ∩ [0, 1/2] → R given by:

MLmax
Ω (p/q) = max

{
lengths of periodic orbits with rot. number p/q

}
.

Marked Spectral Rigidity Question. Let Ω1 and Ω2 be two strictly convex planar domains
with smooth boundaries and assume that they are isospectral, i.e., MLΩ1 ≡ MLΩ2. Is it true
that Ω1 and Ω2 are isometric?
Similarly, one could ask whether this same question has an affirmative answer by asking only
thatMLmax

Ω1
≡MLmax

Ω2
.

Remark 2.21. (i) The above question could be reformulated – and it remains still meaningful
and interesting – by asking that they two domains are only isospectral near the boundary, i.e.,
MLΩ1(p/q) =MLΩ2(p/q) for all p/q ∈ Q ∩ [0, ε), for some 0 < ε ≤ 1/2.

See section 4 for a reformulation of this question in terms of the so-called Mather’s minimal
average action (or β-function) and for some partial answers to the Marked Length rigidity
question related to the proof of the perturbative Birkhoff conjecture (see section 4.3).

3. Lecture III: Caustics, invariant curves and integrability

3.1. Caustics and invariant curves. In this section, we would like to recall the concept of
caustic of a billiard and discuss its relations with invariant curves for the billiard map. Let us
first start to introduce the concepts of caustic and integrability, starting with some motivating
means of two examples; the definition of caustic will be given in subsection 3.2.

Example 1: Circular billiards. As we saw, the billiard in the unit disk defines a map
f : A2π → A2π for which the sets

Cϕ := {(θ, ϕ′) ∈ A2π | ϕ′ = ϕ}
are invariants by f , that is if (θ, ϕ) ∈ Cϕ then f(θ, ϕ) = (θ + 2ϕ, ϕ) ∈ Cϕ. In particular, as we
already notices, ϕ stays constant along the orbit and it represents an integral of motion for the
map, and the property of the orbits are determined by the corresponding angle ϕ = πω, with
ω ∈ (0, 1) (see Section 3.2).
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Moreover, this billiard enjoys the peculiar property that all orbits with ϕ = πω are tangent to
the same concentric circle of radius R cos πω (see Figure 8); this concentric circle is an example
of caustics (see Definition 3.8) and it is related to the existence of a homotopically non-trivial
invariant curve for the corresponding billiard map, namely the Cω = R/2πRZ × {πω} (this
relation between caustics and invariant curves is more subtle, see Remark ??). Observe that
the whole phase space of the circular billiard map – which is topologically a cylinder – is
completely by these Cω and, looking at the billiard table, this is completely foliated by caustics
(this foliation is a singular foliation, due to the special role of the center of the disc): in this
regard, circular billiards are example of integrable billiards; see Figure 9.

D1

Figure 8. A billiard trajectory in the disk remains tangent to the same concen-
tric circle after successive reflections.

Figure 9. Circular billiard and its phase space

Example 2: Elliptic billiard. Consider the billiard in an ellipse E given, for 0 < b < a by

E =

{
(x, y) ∈ R2

∣∣∣∣ x2

a2
+
y2

b2
= 1

}
.

Since E is not a circle, it has two distinct foci F1 and F2 lying on the x-axis. The billiard in
the ellipse can be described geometrically as follows (see Figure 11):
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Proposition 3.1. Let ` be an oriented line intersecting the ellipse E transversally, and consider
the billiard flow induced by ` in E. Then one of the following situations is satisfied:
1. ` contains one of the foci; in this case, the successive reflections of ` contain a focus and the
latter differs from the focus of previous reflection. Moreover, the succesive reflected lines will
converges to the x-axis.
2. ` crosses the x-axis between the foci; in this case, the successive reflections of ` always cross
the x-axis between the foci. Moreover, they are supported by lines which are tangent to one and
the same confocal hyperbola.
3. ` crosses the x-axis outside the foci; in this case, the successive reflections of ` always cross
the x-axis outside the foci. Moreover, they remain tangent to one and the same confocal ellipse.

F1 F2 F1 F2 F1 F2

Figure 10. The three different possibilities for a billiard trajectory in a ellipse.
Left: the trajectory always alternatively contains one of the two foci. Center: the
trajectory always crosses the segmente between the foci, and remains tangent to
a confocal hyperbola. Right: the trajectory never crosses the foci line and remain
tangent to a confocal ellipse.

This proposition tells us that the trajectory of a billiard in an ellipse are tangent to curves,
which are confocal conics to E , including hyperbolae.

Exercise 3.2. Using the description of an ellipse as the data of two distinct points F1, F2 and
a constant r > 0 such that

E = {M ∈ R2 |F1M + F2M = r},
show item 1 of Proposition 3.1.

The proof of Proposition 3.1 can be shown using the so-called Joachimsthal invariant:

Proposition 3.3. Let p = (x, y) ∈ E and v = (vx, vy) be a unit vector starting at p and pointing
inside of E. Then the quantity J(p, v) defined by

J(p, v) =
xvx
a

+
yvy
b

is invariant by the billiard map inside E. It is called the Joachimsthal invariant of the ellipse.

A proof of Proposition 3.3 can be found in [33, 102].

Exercise 3.4. Let 0 < b < a and consider the pencil of confocal conics Cλ given for any
0 < λ < a and λ 6= b by the equations

Cλ :
x2

a2 − λ +
y2

b2 − λ = 1.

Show that given a trajectory which does not contain the foci, it remains tangent to the conics
Cλ0 where

λ0 = (abJ(p, v))2

and J(p, v) is Joachimsthal invariant associated to the trajectory.
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Description of the phase space of the billiard in an ellipse. Optical properties of conics (an
alternative way to consider the billiard ball motion inside a conic) were already well known to
ancient Greeks. We refer to [102] for a more detailed discussion (see also [95]). Proposition
3.1 leads to a nice description of the phase space of the billiard in E . Consider an arc-length
coordinate s on E defined modulo the perimeter L of the elllipse, and ϕ the usual angle of
reflection. The phase space in E we consider is

AL = {(s, ϕ) | s ∈ R/LZ, ϕ ∈ (0, π)}.

AL is the disjoint union of the following objects (see Figure 11):
1. Hyperbolic 2-periodic points. The two points O1 = (0, π/2) and O2 = (L/2, π/2), correspond-
ing to the major semi-axis, are called hyperbolic and corresponds to the billiard flow induced
by the x-axis. The billiard map permutes O1 and O2.
1’. Elliptic 2-periodic points. The two points O′1 = (L/4, π/2) and O2 = (3L/4, π/2), corre-
sponding to the minor semi-axis, are called elliptic and corresponds to the billiard flow induced
by the y-axis. The billiard map permutes O′1 and O′2.
2. Stable and unstable manifolds. Two graphs over s, Γ1,Γ2, intersecting at O1 and O2 and
forming two eyes in the phase space. The curve Γi consists of the point (s, ϕ) such that the
line intersecting E at s with an angle ϕ contains the focus Fi. They correspond to the stable
and unstable manifolds of O1 and O2 and satisfies the following properties: the billiard map
f permutes them, they are invariant under f 2 and the points in Γi converge to O1−i under
iteration of f 2. The graph Γ2 is called stable manifolds of O1 since the points on it converges
to O1 under positive iteration of f 2; Γ1 is called unstable manifold of O1 since the points on it
converges to O1 under negative iteration of f 2. The same remarks hold for O2 by permuting
the roles of Γ1 and Γ2.
3. Homotopically trivial invariant curves. Given a confocal hyperbola H, consider the set of
pairs (s, ϕ) such that the line intersecting E at s with angle ϕ is tangent to H. It consists of
two closed invariant curves (depending on the orientation of the tangency points of ` with γ
- one is given by the positive tangencies, the other one by negative tangencies) located in the
eyes described at point 2. These curves are contractible in the cylinder AL.
4. Homotopically non-trivial (or essential) invariant curves. Given a confocal ellipse γ nested
in E , consider the set of pairs (s, ϕ) such that the line intersecting E at s with angle ϕ is tangent
to γ. This consists of two closed invariants graphs over s (depending on the tangency orienta-
tion, as in 3.) located outside the eyes described at point 2. These curves are homotopically
non-trivial in the cylinder AL.

Figure 11. Elliptic billiard and its phase space
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Remark 3.5. Confocal ellipses are therefore examples of caustics and they foliate everything
but the closed segment between the two foci (see Figure 11). Hence, this could be also con-
sidered as an example of integrable billiard; see Figure 11. Observe that also hyperbolae can
be considered examples of caustics, although, differently from concentric circles or confocal el-
lipses, they are not connected, closed or convex; see subsection 3.2 for a more precise discussion.

3.2. Caustics. Let us introduce the concept of convex caustic6 and its relation with invariant
curves for the billiard map. We refer to [49] for a more detailed (and extended) presentation
of these topics. We also discuss some results and questions about their existence.

Let us start by recalling the definition of invariant circle (or homotopically non-trivial invariant
curve, or essential invariant curve) for a billiard map.

Definition 3.6. We say that a curve γ ⊂ AL is an invariant circle for the billiard map
f : AL → AL if γ is isotopic to a boundary component of AL and f(γ) = γ.

Remark 3.7. (i) Observe that both boundary components of AL are trivial invariant circles.
It follows from Birkhoff’s theorem that invariant circles must be Lipschitz graphs (see [17] and
also [95, Theorem 1.3.3]).
(ii) Clearly, a billiard map may possess invariant curves that are not invariant circles: see
for example the billiard map in an ellipse (see discussion above) and its homotopically trivial
(disconnected) invariant curves, corresponding to orbits intersecting the segment between the
foci).

In the spirit of what we have seen in the examples of circular and elliptic billiards, let us give
the following definition.

Definition 3.8. A C1 simple closed curve Γ in the interior of Ω is called a convex caustic
for the billiard map f , if γ bounds a convex set DΓ and any supporting line to DΓ remains a
supporting line to DΓ after the billiard reflection in Ω. In other words, every time a trajectory
is tangent to Γ, then it remains tangent after every each reflection.

44 3 The minimal action and convex billiards

Let us return to the general case of a convex billiard Ω. Suppose for a
moment that the billiard possesses a convex caustic c. Then one can associate
the following two parameters to c :

1. its rotation number ω ∈ (0, 1/2), defined as the rotation number of the
circle homeomorphism on c induced by the geodesic flow via the points of
tangency;

2. its length l(c).

It turns out that there is a third parameter associated to a convex caustic,
the so–called Lazutkin parameter.

Definition 3.1.8. Let Ω be a convex billiard with a convex caustic c. Then
the Lazutkin parameter of c is defined as

Q(c) = |A − P | + |P − B| − |
!

AB|,

where P is any point on ∂Ω and A, B ∈ c are the points of tangency of c seen

from P ; see Fig. 3.6. Moreover, |
!

AB| denotes the length of the caustic’s part
from A to B, where we have oriented the caustic according to the geodesics
touching it.

PA

B

Fig. 3.6. The Lazutkin parameter of a convex caustic

In fact, if c is not a caustic but just any closed convex curve inside Ω, the
Lazutkin parameter can be defined in the same manner but may depend on
the point P ∈ ∂Ω. It is independent of P if, and only if, c is a caustic [55, 1].
Therefore, the Lazutkin parameter of a caustic is well defined.

What is the relation between (convex) caustics of a convex billiard Ω and
invariant circles for the corresponding billiard map φ? Certainly, to a convex
caustic in Ω corresponds an invariant circle for the billiard map, i.e. a simply
closed, homotopically nontrivial curve Γ in S1 × (−1, 1) with φ(Γ ) = Γ . The
converse, however, is not entirely true. By a theorem of Birkhoff (see [94]

Figure 12. Caustic and Lazutkin invariant (figure credits [95, Fig. 3.6]).

In our discussion, we will focus on convex caustics, however one could consider a more general
notion of caustic that does not require the properties of bounding a convex region, of being
closed (see for example, confocal hyperbola for elliptic billiards, see discussion above), nor to be
necessarily C1. Since this will not be the object of our investigation, we refer to the discussion

6Caustic comes from the greek word καυστικός (kaustikós), meaning “burning”; this terminology is related to
optics and refers to the envelope of reflected or refracted rays of light, namely concentration of lights that can
potentially lead to burns.
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in [5, 49, 67]. See Figure 13 for some examples.

Remark 3.9. An interesting example of billiard maps with invariant circles are billiards whose
boundary is a curve of constant width, i.e., namely a curve that bounds a convex planar region
whose width (defined as the perpendicular distance between two distinct parallel lines each having
at least one point in common with the region’s boundary but none with its interior) is the same
regardless of the orientation of the curve (to construct such curves, see, for example, [67, Section
4] and [102, Exercise 3.13]. The corresponding billiard map has an invariant circle consisting
of 2-periodic orbits. These curves corresponds to caustics that, in general, may have cusps; see
[67, Section 4 and Fig. 6].
Billiard tables (other than ellipses) with a 1-parameter family of 3-periodic trajectories have
been constructed by Innami in [58].

Figure 13. Examples of non-convex caustics in billiards of constant width (fig-
ure credits [67, Fig. 6]).

As in the case of billiard in a disk, convex caustics and invariant curves are related (see Figure
14). One can prove the following.

Proposition 3.10. Let Γ be a caustic of a Birkhoff billiard Ω with a chosen orientation.
Consider the set γ of pairs (p, ϕ) where p is any point on ∂Ω and v is a unit inward pointing
vector supporting the line containing p and tangent to Γ with the same orientation at the
tangency point. Then γ is a graph in s which is invariant by the billiard map associated to Ω.

Observe that to every convex caustic has a well-defined rotation number. In fact, the dynamics
tangent to it, induces a circle homeomorphism from the boundary to itself; the rotation number
of the caustic corresponds to the Poincaré rotation number of this circle homeomorphism.

Exercise 3.11. In the case of the billiard in the unit disk, show that the invariant curve
Cϕ := {(θ, ϕ′) ∈ A2π | ϕ′ = ϕ} has rotation number 2ϕ.

Remark 3.12. (i) The notion of caustics is often connected to the so-called whispering gallery,
a phenomenon that can be detected under some particular domes, in which whispers can be
clearly transmitted and received from distant parts of the gallery, as long as the talker/listener
are close the wall.
(ii) If Γω is a convex caustic with rotation number ω ∈ (0, 1/2], then one can associate to it an
invariant, the so-called Lazutkin invariant Q(Γω). More precisely

(5) Q(Γω) = |A− P |+ |B − P | − |
_

AB |

where | · | denotes the Euclidean length and |
_

AB | the length of the arc on the caustic joining A
to B (see figure 12). This quantity is connected to the value of Mather’s α-function, as it will
be discussed in section 4.
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ϕ(s)

s

Γ

Ω

0 s L
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ϕ

π

(s, ϕ(s))

AL

Figure 14. Left: A Birkhoff billiard Ω having a caustic Γ; once we fix a positive
orientation, for each point p of arc-length parameter s there is only one possible
oriented line emitted from p and tangent to Γ, we denote by ϕ(s) its angle at p
with ∂Ω. Right: The invariant graph s 7→ (s, ϕ(s)) associated to the caustics Γ
and drawn in the phase space AL where L is the perimeter of Ω.

One could wonder about the relation between caustics for the billiard in Ω and invariant cir-
cles for the corresponding billiard map f . While one can show that to a convex caustic in Ω
(not necessarily C1) corresponds an invariant circle for the billiard map (see Proposition 3.10),
however, the converse is however is not always true: given an invariant curve γ of pairs (p, v)
where p is a point on the bounary and v is a unit inward pointing vector, one can consider the
envelope of the lines passing through p and directed by v; this curve might be not convex nor
smooth. We refer to [5, 49, 67, 102] for more details.

3.3. Existence of (convex) caustics. A natural question that one could wonder is whether
the existence of (convex) caustics is a common or a rare phenomenon. As we have seen before,
circular and elliptic billiards possess many convex caustics.

Questions: Are there other Birkhoff billiards with (convex) caustics? And in case of an affir-
mative answer: How many of them is reasonable to expect?

Note: In the following we will often write caustic in place of convex caustic (unless differently
specified). However, most of these questions can be addressed for more general notions of caus-
tics.

String construction. Constructing a Birkhoff billiard with at least one caustic is easy: it is
enough to perform the so-called string construction, similarly to the well-known one to draw
a circle as the set of points equidistant from a fixed center, or to construct an ellipse as the
locus of points whose distances from two fixed points have a constant sum. Pictoriallky, (see
for example [102, Chapter 5] for a more precise construction), given γ ⊂ R2 a smooth closed
convex curve of length L0, let L > L0 and Γ be the closed curve obtained as follows: consider a
closed inextensible string of length L wrapped around γ, pull it tight at a point and move this
point around γ: the curve that one obtains, corresponds to a billiard domain that has γ as a



24 CORENTIN FIEROBE, VADIM KALOSHIN, AND ALFONSO SORRENTINO

caustic.

M

A

B

_

AB

AB

γ

Γ

Figure 15. The string construction around a fixed curve γ: an inextensible
string is wrapped around γ and stretched so that the quantity MA+MB +AB
remains the same. This is the same as saying that Lazutkin’s invariant, namely
Q(M) = |MA|+ |MB| − |

_

AB |, is constant.

More precisely, Γ can be defined as the set of point M outside γ such that, if A and B are the
two points of tangencies of the lines tangent to γ and containing M , then the length

|AM |+ |BM |+ |AB|

is constant equal to L, where |
_

AB | is the length of the arc
_

AB of the curve γ between A and
B and located the furthest from M . Note that the level sets of this quantity are the same as
the one of

Q(M) := AM +BM − |
_

AB |
where |

_

AB | is the arc of the curve γ between A and B the closest from M (compare this
quantity with Lazutkin invariant of γ, see Remark 3.12).

Lazutkin’s KAM caustics. Are there other billiards with infinitely many caustics? Quite
surprisingly, the answer is affirmative: all (sufficiently smooth) Birkhoff billiards have infinitely
many smooth convex caustics that accumulate to the boundary of the billiard domain. In [70],
in fact, V. Lazutkin introduced a very special change of coordinates that reduces the billiard
map f to a very simple form (as usual, L = |∂Ω|). Let LΩ : R/LZ× [0, π]→ R/Z× [0, δ] with
small δ > 0 be given by

LΩ(s, ϕ) :=

(
x = C−1

Ω

∫ s

0

ρ−2/3(s)ds, y = 4C−1
Ω ρ1/3(s) sinϕ/2

)
,

where ρ denotes the radius of curvature of ∂Ω, and CΩ :=
∫ `

0
ρ−2/3(s)ds (sometimes called the

Lazutkin perimeter). In these new coordinates the billiard map has a more simple expression:

B(x, y) =
(
x+ y +O(y3), y +O(y4)

)
.

In particular, near the boundary {y = 0}, this map can be seen as a small perturbation of the
integrable map (x, y) 7−→ (x + y, y), and hence, under suitable regularity assumptions, KAM
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theorem can be applied (it is sufficient, for example, that ∂Ω is C6, so that the map is at
least C5). Hence, there exists a positive measure Cantor set of smooth invariant circles for the
map which accumulates on {y = 0} and on which the motion is smoothly conjugate to a rigid
rotation with Diophantine rotation number (see [70] and also [86] for a refined version); this
translates into the existence of a positive measure set of caustics, accumulating to the boundary
of the billiard table.

Non-existence of caustics. Observe that in this context it is extremely important that Ω is
strictly convex. In [77], in fact, Mather proved the non-existence of caustics if the curvature
of the boundary vanishes at one point. An alternative proof of this result has been provided
by Gutkin and Katok in [49], where the authors also investigate how the shape of the domain
determines the location of caustics, establishing the existence of open regions which are free of
caustics and estimating (from below) the size of these regions. More specifically, given a caustic
Γ with Lazutkin invariant L = L(Γ), if we denote by δmax(Γ, ∂Ω) the maximum distance of Γ
from the boundary ∂Ω, they proved the following estimates (see [49, Propositions 1.2-3]):

δ2
max(Γ, ∂Ω)

d
≤ L ≤ min{2d3κ2, 2/K},

where d = d(Ω) denotes the diameter of Ω, while κ and K are respectively the minimum and
the maximum of the curvature of ∂Ω.
It follows from this that if κ = 0 at some point, then caustics cannot exist.

3.4. Integrability and Birkhoff conjecture. Next step then consists in asking in which
cases these caustics foliate the whole billiard table or an open dense subset of it, as it hap-
pens in the circular and elliptic cases. In other words: are there other examples of integrable
billiards?
This appearantly naïve question turns out to be much more difficult to extricate, and it has
given rise to one of the most famous (and somehow impenetrable) open problem in dynamical
systems: the so-called Birkhoff conjecture.

Conjecture (Birkhoff) Circular and elliptic billiards are the only examples of integrable
Birkhoff billiards.

Remark 3.13. Although some vague indications of this question can be found in [16], to the
best of our knowledge, its first appearance as a conjecture was in a paper by Poritsky [89], where
the author attributes it to Birkhoff himself7. Thereafter, references to this conjecture (either as
Birkhoff conjecture or Birkhoff-Poritsky conjecture) repeatedly appeared in the literature: see,
for example, Gutkin [48, Section 1], Moser [79, Appendix A], Tabachnikov [101, Section 2.4], etc.

This conjecture assumes very different connotations and levels of complexity, according to the
notion of integrability that one takes into account. Despite its long history and the amount
of attention that it has captured over the last decades, many interesting formulations of this
conjecture still remain unanswered.

7Poritsky was a National Research Fellow in Mathematics at Harvard University, presumably under the
supervision of Birkhoff and refers to Birkhoff and stated that he wrote that paper while in Harvard. However,
[89] was published several years after Birkhoff’s death.
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We shall see in the section 4 how also this conjecture/question can be rephrased as a regularity
question for Mather’s minimal average action (or β-function).

3.4.1. Global Integrability. In [9], Bialy proved the following result under the assumption of full
global integrability.

Theorem (Bialy). If the phase space of the billiard ball map is fully foliated by continuous
invariant circles, then it is a circular billiard.

Remark 3.14. An integral-geometric approach to prove Bialy’s result was proposed by Wo-
jtkowski in [109], by means of the so-called mirror formula. This approach was later exploited
by Bialy [10] for billiards on the sphere and the hyperbolic plane, as well as for magnetic billiards.

Observe that Bialy and Wojtkowski’s result is not in contrast with what we have discussed
in the case of elliptic billiards. In fact, in that case the family of convex caustics represented
by confocal ellipses do not foliate the whole domain (the segment between the two foci is left
out) neither the set of homotopically non-trivial invariant curves (invariant circles) have full
ω-measure in the phase space: the homotopically trivial invariant curves corresponding to or-
bits tangent to confocal hyperbolae, foliate a positive ω-measure set (in the phase portrait –
see Figure 11 – this set corresponds to the area below the separatrix, i.e., the stable/unstable
manifold of the hyperbolic 2-periodic orbit corresponding to the major semi-axis of the ellipse).

What about other notions of integrability? In the study of integrable systems, in fact, in most
of the cases integrals of motion are non-degenerate not everywhere, but either on an open-dense
subset of the phase space (we shall refer to this as global integrability) or just a proper (non-
trivial) open subset (we shall refer to this as local integrability).

Remark 3.15. (i) An interesting result by Innami [59] shows that the existence of convex caus-
tics with rotation numbers accumulating to 1/2 implies that the billiard must be an ellipse. This
regime of integrability is somehow opposite to the one we are interested in, which is concerned
with caustics near the boundary of the billiard table, i.e., with small rotation numbers. Innami’s
proof is based on Aubry-Mather theory; a simpler and more geometric proof of Innami’s result
has been recently given in [5]. Observe that in this result it is decisive that the caustics are
convex.
(ii) In this regard, Treschev in [105] gave numerical indication that there might exist analytic
billiards, different from ellipses, for which the dynamics in a neighborhood of the elliptic period-2
orbit is conjugate to a rigid rotation. These billiards could be seen as an instance of local in-
tegrability; however,as we have already remarked above, this regime is somehow complementary
to the one usually considered for Birkhoff conjecture, since it is concerned with integrabilility a
neighborhood of an elliptic periodic orbit of period 2. Very interestingly, this fact – if verified
– would provide an intriguing indication that these regimes of integrability are significantly dif-
ferent.

3.4.2. Perturbative Birkhoff conjecture. Instead of considering all possible Birkhoff billiards,
one could restrict the analysis to what happens for domains that are sufficiently close to el-
lipses and try to study the Birkhoff conjecture in this class of domains, which can be considered
as perturbations of ellipses. More specifically, we can state the following perturbative version
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of Birkhoff conjecture.

Birkhoff Conjecture (Perturbative version). A smooth strictly convex domain that is
sufficiently close (w.r.t. some topology) to an ellipse and whose corresponding billiard map is
integrable, is necessarily an ellipse.

First results in this direction were obtained:

- Levallois [72] and Levallois – Tabanov [73]: Non-integrability of certain algebraic per-
turbations of elliptic billiards.

- Delshams and Ramírez-Ros [31]: Non-integrability of entire symmetric perturbations of
ellipses (these perturbations break integrability near the homoclinic solutions.

More recently, Avila, De Simoi and Kaloshin proved in [8] that the claim of the perturbative
version of Birkhoff conjecture is true, for domains that are sufficiently close to a circular bil-
liard. The complete proof for domains sufficiently close to an ellipse of any eccentricity, has
been provided in [64].

Let us describe this result more precisely, starting with the following definition.

Definition 3.16. Let Ω be a strictly convex domain.
(i) We say Γ is an integrable rational caustic for the billiard map in Ω, if the corresponding
invariant circle Γ consists of periodic points; in particular, the corresponding rotation number
is rational.
(ii) Let q0 ≥ 2 be a positive integer. If the billiard map inside Ω admits integrable rational
caustics for all rotation numbers 0 < p

q
< 1

q0
, we say that Ω is q0-rationally integrable.

The main result proved in [64] is the following.

Theorem 3.17 (Kaloshin–Sorrentino [64]). For any eccentricity 0 ≤ e0 < 1 outside of
locally finite set in [0, 1)the following holds. Let E0 be an ellipse of eccentricity e0 and semi-
focal distance c; let k ≥ 39. For every K > 0, there exists ε = ε(e0, c,K) such that the following
holds: if Ω is a 2-rationally integrable Ck-smooth domain, whose boundary ∂Ω is

• K-close to E0, with respect to the Ck-norm,
• ε-close to E0, with respect to the C1-norm,

then Ω is an ellipse.

Remark 3.18. Actually, it is sufficient to ask only the existence of integrable rational caustics
of rotation number 1

q
, for all q ≥ 3.

3.4.3. Local integrability and Birkhoff conjecture. What can be said for locally integrable Birkhoff
billiards? As we have noticed in Remark 3.15, the correct regime that one should consider seems
to be integrability in a neighborhood of the boundary of the billiard table, i.e., for small rota-
tion numbers.

Let us denote with Ee,c ⊂ R2 an ellipse of eccentricity e and semifocal distance c. We state the
following local version of Birkhoff conjecture.
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Local Birkhoff Conjecture. For any integer q0 ≥ 3, there exist e0 = e0(q0) ∈ (0, 1),
m0 = m0(q0), n0 = n0(q0) ∈ N such that the following holds. For each 0 < e ≤ e0 and
c ≥ 0, there exists ε = ε(e, c, q0) > 0 such that the following holds.
If Ee,c is an ellipse of eccentricity e and semi-focal distance c, and Ω is a q0-rationally integrable
Cm0-smooth domain, whose boundary ∂Ω is ε-close to E0, with respect to the Cn0-norm, then
Ω must be an ellipse.

This conjecture has been first studied in [55]. More precisely, the following results have
been proved (see also Section 3.6 for more recent advances by Bialy-Mironov [14], Kaloshin-
Koudjinan-Zhang [63], Koval [68]).

Theorem 3.19 (Huang, Kaloshin, Sorrentino [55]). (i) The Local Birkhoff Conjecture
holds true for q0 = 2, 3, 4, 5, with m0 = 40q0 and n0 = 3q0.
(ii) The Local Birkhoff Conjecture holds true for q0 > 5 with m0 = 40q0 and n0 = 3q0, subject
to checking that q0 − 2 matrices (which are explicitely described) are invertible.

Remark 3.20. (i) Case q0 = 2 was proven in [8] (see also [59, 64]).
(ii) Smoothness exponents are probably not optimal.
(iii) Notice that in the proof we actually need only the existence of rationally integrable caustics
of rotation numbers, less than 1/q0, of the form j/q for j = 1, 2, 3.
(iv) The invertibility condition on finitely many matrices, to which the claim of part (ii) of
Theorem 3.19 is subject, is explicit and computable. In [56] it is described how to imple-
ment an algorithm to verify it by means of symbolic computations. The coefficients of these
matrices are completely determined by the e-expansion of the action-angle parametrisation of
the ellipse, which, in turn, is explicitly given by elliptic integrals; it turns out that the en-
tries of these matrices are either 0, 1 or of the form ξ cos−2j(wπ)e2j, where ξ ∈ Q, j ∈ N,
w ∈ { 1

2k+1
, 2

2k+1
, 1

2k
, 3

2k
: k > j}.

Recently a complete proof of this conjecture for ellipses of almost all eccentricities has been
given in [68].

3.5. Some ideas on the proofs of Perturbative Birkhoff conjecture and its local
version (Theorems 3.17 and 3.19).

3.5.1. Perturbative Birkhoff conjecture (Theorem 3.17). Let us provide a description of the
strategy that we adopted in [64] to prove Theorem 3.17.

For small eccentricities, Theorem 3.17 was proven in [8]. Let us start by describing the simplified
setting of integrable infinitesimal deformations of a circle. This provides an insight into the
strategy of the proof in the general case.

Let Ω0 be a circle centered at the origin and radius ρ0 > 0. Let Ωε be a one-parameter family
of smooth deformations given in the polar coordinates (ρ, ϕ) by

∂Ωε = {(ρ, ϕ) = (ρ0 + ερ(ϕ) +O(ε2), ϕ)}.
Consider the Fourier expansion of ρ :

ρ(ϕ) = ρ′0 +
∑
k>0

ρk sin(kϕ) + ρ−k cos(kϕ).

Theorem 3.21 (Ramírez-Ros [90]). If Ωε has an integrable rational caustic Γ1/q of rotation
number 1/q, for any ε sufficiently small, then we have ρkq = ρ−kq = 0 for any integer k.
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Let us now assume that the domains Ωε are 2-rationally integrable for all sufficiently small
ε and ignore for a moment the dependence on the parametrisation: then the above theorem
implies that ρ′k = ρ′′k = 0 for k > 2, i.e.,

ρ(ϕ) = ρ′0 + ρ′1 cosϕ+ ρ′′1 sinϕ+ ρ′2 cos 2ϕ+ ρ′′2 sin 2ϕ

= ρ′0 + ρ∗1 cos(ϕ− ϕ1) + ρ∗2 cos 2(ϕ− ϕ2)

where ϕ1 and ϕ2 are appropriately chosen phases.

Remark 3.22. Observe that

• ρ0 corresponds to an homothety;
• ρ∗1 corresponds to a translation in the direction forming an angle ϕ1 with the polar axis
{ϕ = 0};
• ρ∗2 corresponds to a deformation of the circle into an ellipse of small eccentricity, whose
major axis forms an angle ϕ2 with the polar axis.

This implies that, infinitesimally (as ε → 0), rationally integrable deformations of a circle are
tangent to the 5-parameter family of ellipses.

In order to extend these ideas to the case of an integrable perturbation (not necessarily a
deformation) of an ellipse, a more elaborate strategy is needed, involving more quantitative
estimates and approximation procedure (we refer to [8, 64] for more technical details). In
particular, Fourier modes are replaced by new functions determined by the dynamics inside the
approximating ellipse, that we call dynamical modes {cq, sq}q≥3, which are given by:

cq(ϕ) :=
cos
(

2π q
4K(kq)

F (ϕ; kq)
)

√
1− k2

q sin2 ϕ

sq(ϕ) :=
sin
(

2π q
4K(kq)

F (ϕ; kq)
)

√
1− k2

q sin2 ϕ

where kq denotes the eccentricity of the confocal ellipse corresponding to the caustic of rotation
number 1/q, while

F (ϕ; k) :=

∫ ϕ

0

dθ√
1− k2 sin2 τ

and K(k) := F
(π

2
; k
)
.

are the elliptic integrals of first kind (see, for example, [1] for more details on these functions
and their properties).

The core of the proof consists in showing that these dynamical modes together with the infini-
tesimal generators of homotheties, translations, rotations and hyperbolic rotations (i.e., those
transformations preserving the set of ellipses), form a basis of L2(R/2πZ). This is one of the
main difficulties (maybe the hardest one) involved in the extension of the perturbative result
in [8] to the case of perturbations of any ellipse, as studied in [64]. While in the former case,
one can take advantage of the fact that these functions can be considered small perturbations
of the Fourier modes, in the latter new strategies need to be exploited.
In [64], we consider analytic extensions of the action-angle coordinates of the elliptic billiard,
more specifically, of the boundary parametrizations induced by each integrable caustic (these
functions can be explicitly expressed in terms of elliptic integrals and Jacobi elliptic functions.
). A detailed study of their complex singularities and the size of their maximal strips of analitic-
ity, allowed us to deduce their linear independence (both for finite and infinite combinations)
and, by a suitable codimension argument, to show that they form a complete set of generators,
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thus completing the proof that they are a basis of L2(R/2πZ).

3.5.2. Local Birkhoff conjecture for nearly circular domains (Theorem 3.19). The main diffi-
culty in this case – in comparison with the one discussed in Theorem 3.17 and Section 3.5.1 –
is that we cannot use the preservation of integrable rational caustics for all rotation number
1/q, with q ≥ 3; hence, we need to recover the missing conditions on the corresponding Fourier
coefficients of the perturbation.

Our key idea is the following: for ellipses of small eccentricity e > 0, we study the Taylor expan-
sion, with respect to e, of the corresponding action-angle coordinates. Using this expansion, we
derive the necessary condition for the preservation of integrable rational caustics, in terms of
the Fourier coefficients of the perturbation, up to the precision of order e2N , for some positive
integer N = N(q0).

Let us outline our strategy, starting from some special cases.

• Case q0 = 3: We lose a pair of conditions corresponding to Fourier coefficients of order
3. We exploit the conditions obtained from the existence of integrable rational caustics
of rotation numbers 1/5, 1/7, 2/7: we use the corresponding expansions, with respect to
e, up to the precision O(e6), to derive a system of linear equations for the 3rd, 5th, 7th

Fourier coefficients. Solving this linear system will provide us with the needed estimates
for Fourier coefficients of order 3.

• Case q0 = 4: In this case we lose two pairs of conditions corresponding to Fourier
coefficients of order q = 3, 4. These will be recovered in two steps:

- To recover the one corresponding to Fourier coefficients of order 3, we study the
necessary conditions for the existence of integrable rational caustics of rotation
numbers 1/5, 1/7, 1/9, 2/9, written in terms of the Fourier coefficients of the per-
turbation, and consider their expansions, with respect to e, up to order O(e8). We
then derive a linear system for the 3rd, 5th, 7th, 9th Fourier coefficients, whose solu-
tion will provide us with the needed estimates for the Fourier coefficients of order
3.

- To recover the one corresponding to Fourier coefficients of order 4, we study the
necessary conditions for the existence of integrable rational caustics of rotation
numbers 1/6, 1/8, 1/10, 1/12, 1/14, 3/14, which give rise to a system of linear
equation for the 4th, 6th, 8th, 10th, 12th, 14th Fourier coefficients; as before, the
solution of this linear system will give us the needed estimates for the Fourier
coefficients of order 4.

• The general case: Along the same lines described in the previous two items, we
outlined in [56] a general (conditional) procedure to deal with this problem for any
q0 ≥ 3; the implementation of this scheme is based on the assumption that certain
explicit non-degeneracy conditions for the corresponding linear systems hold. We remark
however that all of these conditions are very explicit and the algorithm is explicitely
described, so to be implemented on a computer.

3.6. More recent advances on Birkhoff conjecture. We recall here some more recent
breakthroughs on Birkhoff conjecture that appeared after the CIME summer school.

(1) In [14] Bialy and Mironov proved the Birkhoff conjecture for centrally-symmetric C2-
smooth convex planar billiards. More specifically, they assume that the domain between
the invariant curve the invariant curve foliated by 4-periodic orbits and the boundary
of the phase cylinder is foliated by C0-invariant curves and prove that the billiard table
must be elliptic. In [63] the authors proved that this condition is equivalent to having



LECTURE NOTES ON BIRKHOFF BILLIARDS: DYNAMICS, INTEGRABILITY AND SPECTRAL RIGIDITY31

integrable rational caustics of rotation number 1
q
, for every q ≥ 4. The main ingredients

of the proof are the use of a non-standard generating function for convex billiards and
the observation that invariant curve consisting of 4 -periodic orbits enjoys some special
properties; combining these ingredients with the integral-geometry approach for rigidity
results that was was introduced by Bialy in [9], they establish a Hopf-type rigidity for
billiards in ellipses. See also [15] for an effective version of this result.

(2) Combining the method of Bialy-Mironov [14] and Kaloshin-Sorrentino [64], recently
Kaloshin, Koudjinan and Zhang [63] proved a perturbative version of Birkhoff conjec-
ture nearby centrally symmetric strictly convex domain, under the assumption that the
billiard admits integrable rational caustics for rotation numbers 1

3
and for all 0 < p

q
≤ 1

4
.

(3) Recently, Koval [68] proved a Local Birkhoff conjecture for nearly elliptic domains. More
precisely, for any positive integer q0 and any eccentricity e outside of locally finite set
in [0, 1), a small q0-integrable perturbation of an ellipse of eccentricity e is an ellipse.

3.7. Local period-two Birkhoff Conjecture. Notice that when we discuss integrability in
the context of Birkhoff conjecture, usually we refer to integrability near the boundary, namely,
integrability for nearly glancing orbits (i.e., caustics with small rotation numbers).
There is an alternative notion of local integrability defined as follows. Fix an ellipse E of posi-
tive eccentricity and let AB denote its minor axis. This corresponds to an elliptic period-two
orbit of the billiard map in E . We say that it is locally integrable in the sense that there is
a neighborhood foliated by local invariant curves for the square of the billiard map. It turns
out that for the square of the billiard map there is a twist. Passing to local polar coordinates
(r, ϕ) ∈ (R+,T) with r = 0 corresponding to say A. Then, one can define the polar rotation
number of each of such invariant curves. The billiard trajectories for these invariant curves are
tangent to confocal hyperbolae, for this reason we call them hyperbolic caustics. Notice that a
hyperbolic caustic consists of two connected components, both on the billiard table (s, θ) ∈ A
and on the plane E ⊂ R2. Call the projection of a hyperbolic caustic onto the boundary (via
the map π(s, θ) = s) its support.

A natural extension of the notion of rational integrability is the following one.

Let Ω be convex domain of non-constant width has a period two orbit, whose length is strictly
less than the diameter of Ω. We say that Ω period-two locally integrable if there exists δ > 0
such that in a neighborhood of period-two periodic orbit there exists invariant curves of polar
rotation number p/2q for each 0 < p/2q < δ. It is natural to ask:

Question 1. Let (Ωτ )τ be an analytic deformation of an ellipse Ω0 = E that is period-two
locally integrable. Is it true that Ωτ is an ellipse for every τ?

Question 2. Let Ω be an analytic convex period-two locally integrable domain. Is it true that
Ω is an ellipse?

In the case of smooth deformations one needs to impose an additional requirement. Let Ω0 be
an ellipse, and ω+

0 = ω+(Ω0) be the rotation number of the period two orbit. One can check
there is a twist. Then in the polar coordinates all rotation numbers in (0, ω+

0 ) can be realized
near the period-two orbit. For a perturbation Ω of Ω0, there exists an interval (ω−(Ω), ω+(Ω))
of rotation numbers that are admissible.
Fix an interval of polar rotation numbers [ρ1, ρ2], ρ1 < ρ2 ⊂ [0, ω+

0 ]. We say that the billiard Ω
is rationally integrable on [ρ1, ρ2] if for all rational rotation numbers in [ρ1, ρ2]∩(ω−(Ω), ω+(Ω)),
there is a hyperbolic caustic with this rotation number.
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Associate to this interval the union of the supports of the associated hyperbolic caustics. Simi-
larly, we can associate to a smooth deformation of an ellipse (Ωτ )τ , Ω0 = E its support, namely,
the part of the boundary, where Ωτ \ E 6= ∅.

Question 3. Let (Ωτ )τ be a smooth deformation of an ellipse Ω0 = E which is [ρ1, ρ2]-integrable
for an interval of admissible polar rotation numbers ⊂ [0, ωτ ]. Is it true that Ωτ restricted to
the support of the hyperbolic caustics coincide with an ellipse?

3.8. Integrable Riemannian geodesic flows on the torus. We want to conclude this
section by drawing some connections between Birkhoff conjecture and a problem in Riemannian
geometry. The Birkhoff conjecture can be also thought as an analogue, in the case of billiards,
of the following task: classifying integrable (Riemannian) geodesic flows on T2. The complexity
of this question, of course, depends on the notion of integrability that one considers. If one
assumes that the whole phase space is foliated by invariant Lagrangian graphs (i.e., the system
is C0-integrable, see [3, Définition 4.19], in particular, the integral of motion is only assumed to
be continuous), then it follows from Hopf’s result [54] (see also [23] for the proof in dimension
greater than 2) that the associated metric must be flat. Bialy and Wojtkowski’s results in the
billiard setting, can be considered as the analogs of this result.

However, the question becomes more challenging – and it is still open – if one considers integra-
bility only on an open and dense set (global integrability), or assumes the existence of an open
set foliated by invariant Lagrangian graphs (local integrability). Example of globally integrable
(non-flat) geodesic flows on T2 are those associated to Liouville-type metrics, namely metrics
of the form

ds2 = (f1(x1) + f2(x2)) (dx2
1 + dx2

2).

A folklore conjecture states that these metrics are the only globally (resp. locally) integrable
metrics on T2, which, in some sense, can be interpreted as the analogue of Birkhoff conjecture,
in the realm of integrable geodesic flows on T2.

A partial answer to this conjecture (global case) is provided in [22], where the authors prove
it under the assumption that the system admits an integral of motion which is quadratic in
the momenta. Observe that while the case of quadratic integral of motion reduces to a system
of linear PDEs, the case of higher degree integrals of motions is very challenging and it turns
out to be equivalent to delicate questions on non-linear PDEs of hydrodynamic type (see, for
example, [12, 13]).

Recently, some advances about deformational rigidity of some Liouville metrics on the torus
have been provided by Henheik in [51].

This notion of integrability is related to the so-called algebraic integrability, namely the existence
of integrals of motion that are polynomial in the velocity. The relation between this notion of
integrability and the Birkhoff conjecture (algebraic Birkhoff conjecture) has been studied and
has lead to interesting results [11, 21]. Recently, using previous results of [11], Glutsyuk [40]
proved the algebraic Birkhoff conjecture.

Finally, we point out that the topological structure of the torus plays a fundamentel role in
the above-mentioned conjectures and results. For example, on the two dimensional sphere
there are plenty of non-trivial integrable metrics: the so-called Zoll surfaces. A Zoll surface
is a surface homeomorphic to the 2-sphere, equipped with a Riemannian metric all of whose
geodesics are closed and of equal length (the first non-trivial example was discovered by Zoll in
[113]). While the usual unit-sphere metric on S2 obviously has this property, there also exists
an infinite-dimensional family of geometrically distinct deformations that are still Zoll surfaces.
In particular, most Zoll surfaces do not have constant curvature. See [71] for more details.
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4. Lecture IV: Aubry-Mather theory and billiard dynamics

In this section we would like to discuss how the study of action-minimizing properties of bil-
liards can be used to shed some light on their dynamical properties. In particular, we shall see
how many of the questions discussed in the previous sections can be rephrased in these terms.
Let us start by briefly recalling the main ideas at the heart of this approach.

4.1. Aubry-Mather theory for twist maps of the annulus. At the beginning of the eight-
ies Serge Aubry and John Mather developed, independently, what nowadays is commonly called
Aubry–Mather theory. This novel approach to the study of the dynamics of twist diffeomor-
phisms of the annulus, pointed out the existence of many action-minimizing orbits for any given
rotation number. For a more detailed introduction, see for example [36, 95, 97]).

More precisely, let a, b ∈ R ∪ {±∞}, with a < b, and let

f : R/Z× (a, b) −→ R/Z× (a, b)

be a monotone twist map, i.e., a C1 diffeomorphism such that its lift to the universal cover f̃
satisfies the following properties (we denote (x1, y1) = f̃(x0, y0)):

(i) f̃(x0 + 1, y0) = f̃(x0, y0) + (1, 0) and x0 ≤ x1 < x0 + 1;
(ii) f̃ is orientation preserving and it preserves the boundaries of R× (a, b):

y1(x0, y0)→ a as y0 → a and y1(x0, y0)→ b as y0 → b;

(iii) If a > −∞, then f̃ extends continuously to R× {a} by a rotation:

f̃(x, a) = (x+ ω−, a);

similarly, If b < +∞, then f̃ extends continuously to R× {b} by a rotation:

f̃(x, b) = (x+ ω+, b);

(iv) ∂x1

∂y0
≥ c > 0 (monotone twist condition),

(v) f̃ admits a (periodic) generating function h (i.e., it is an exact symplectic map):

y1 dx1 − y0 dx0 = dh(x0, x1).

We call the interval (ω−, ω+) ⊂ R the twist interval of f (we remark that if a = −∞, then
ω− = −∞ and if b = +∞, then ω+ = +∞.

In particular, it follows from (v) that:

(6)
{
y1 = ∂h

∂x1
(x0, x1)

y0 = − ∂h
∂x0

(x0, x1) .

Remark 4.1. The billiard map is an example of monotone twist map (to fit with the above
definition, one can normalize the boundary length to be equal to 1). In particular, as we have
already pointed out, its generating function is given by h(x0, x1) = −`(x0, x1), where `(x0, x1)
denotes the euclidean distance between the two points on the boundary of the billiard domain
corresponding to γ(x0) and γ(x1).

Exercise 4.2. As it follows from Proposition 2.5, a billiard map f associated to a Birkhoff
billiard of perimeter 1 and given in (s,− cosϕ)-coordinates is an exact-symplectic twist map:
we already saw the existence of the generating function. Prove that it also satisfies the other
conditions, in particular the twist condition.
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Exercise 4.3 (Completely Integrable map & standard map). (i) The map F : R2 → R2 defined
for all (x, y) by

F (x, y) = (x+ y, y)

is the lift to R × R of an exact-symplectic twist map whose generatin function is the map
H : (R/Z)2 → R given by

H(x, x′) :=
1

2
(x′ − x)2.

Describe its dynamics and characterize it orbits in terms of their rotation number (compare
with the billiard in a disk).
(ii) This example can be generalized as follows. Consider v : R→ R, a 1-periodic smooth map
with zero average. Then F : R2 → R2 defined for all (x, y) by

F (x, y) = (x+ y + v(x), y + v(x))

is the lift of an exact-symplectic twist map; show that its generating function is given by

H(x, x′) =
1

2
(x′ − x)2 + V (x)

where V : R/Z→ Z satisfies V ′ = v.

As it follows from (6), orbits (xi)i∈Z of the monotone twist diffeomorphism f correspond to
‘critical points’ of the action functional

{xi}i∈Z 7−→
∑
i∈Z

h(xi, xi+1).

Birkhoff’s theorem stated in Theorem 2.6 still holds in this more general setting:

Theorem 4.4. Let f : A → A be an exact-symplectic twist map. Then for any rational
m/n ∈ (0, 1) there exist at least two distinct periodic orbits of rotation number m/n.

We recall this interesting result about invariant curves of twist maps (hence, it applies to billiard
maps): the so-called graph property. This is a famous result due to Birkhoff [18, 19].

Theorem 4.5 (Birkhoff invariant curve Theorem). Let f: R/Z × (a, b) −→ R/Z × (a, b) be
an exact-symplectic twist map. Assume that f admits an embedded, homotopically nontrivial,
invariant curve γ ⊂ R/Z× (a, b). Then, it the graph of a Lipschitz function.

Numerous proofs of this result have been given, see for instance [36, 57, 65].

These results are the starting point of an important and deep theory called Aubry-Mather
theory, developed by S. Aubry and J. Mather in 1980s (see [6, 7, 76]). Aubry-Mather theory
is concerned with the study of orbits that minimize this action-functional amongst all configu-
rations with a prescribed rotation number; recall that the rotation number of an orbit {xi}i∈Z
is given by ω = limi→±∞

xi
i
, if this limit exists (in the billiard case, this definition leads to the

same notion of rotation number introduced in subsection 1.2). In this context, minimizing is
meant in the statistical mechanical sense, i.e., every finite segment of the orbit minimizes the
action functional with fixed end-points.

Theorem (Aubry [6, 7], Mather [76, 36]) A monotone twist map possesses minimal orbits
for every rotation number in its twist interval (ω−, ω+). For rational numbers there are always
at least two periodic minimal orbits. Moreover, every minimal orbit lies on a Lipschitz graph
over the x-axis.
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We refer to [36, 95, 97] for self-contained presentations on Aubry-Mather theory for twist maps
and Hamiltonian flows.

Let us now introduce the minimal average action (or Mather’s β-function).

Definition 4.6. Let xω = {xi}i∈Z be any minimal orbit with rotation number ω. Then, the
value of the minimal average action at ω is given by (this value is well-defined, since it does
not depend on the chosen orbit):

(7) β(ω) := lim
N→+∞

1

2N

N−1∑
i=−N

h(xi, xi+1).

This function β : R −→ R enjoys many properties and encodes interesting information on the
dynamics. In particular:

i) β is strictly convex and, hence, continuous (see [36]);
ii) β is differentiable at all irrationals (see [78]);
iii) β is differentiable at a rational p/q if and only if there exists an invariant circle consist-

ing of periodic minimal orbits of rotation number p/q (see [78]).

In particular, β being a convex function, one can consider its convex conjugate:

α(c) = sup
ω∈R

[ω c− β(ω)] .

This function – which is generally called Mather’s α-function – also plays an important rôle in
the study of minimal orbits and in Mather’s theory (particularly in higher dimension, see for
example [75, 98]). We refer interested readers to surveys [36, 95, 97].

Observe that for each ω and c one has:

α(c) + β(ω) ≥ ωc,

where equality is achieved if and only if c ∈ ∂β(ω) or, equivalently, if and only if ω ∈ ∂α(c)
(the symbol ∂ denotes in this case the set of ‘subderivatives’ of the function, which is always
non-empty and is a singleton if and only if the function is differentiable).

4.2. Action-minimizing properties of billiards. In the billiard case, since the generating
function of the billiard map is the euclidean distance −`, the action of the orbit coincides – up
to a sign – to the length of the trajectory that the ball traces on the table Ω. In particular,
these two functions encode many dynamical properties of the billiard (see [95] for more details):

• For each 0 < p/q ≤ 1/2, one has: β(p/q) = −1
q
MLmax

Ω (p/q).

• β is differentiable at p/q if and only if there exists an invariant circle of rotation number
p/q foliated by periodic orbits.
• If Γω is a convex caustic with rotation number ω ∈ (0, 1/2], then β is differentiable at ω
and β′(ω) = −length(Γω) =: −|Γω| (see [95, Theorem 3.2.10]). In particular, β is always
differentiable at 0 and β′(0) = −|∂Ω|, where |∂Ω| denotes the length of the boundary
of Ω.
• If Γω is a convex caustic with rotation number ω ∈ (0, 1/2], then its Lazutkin invariant
Q(Γω) (see subsection 3.2) can be related to the value of the α-function. In fact, one
can show that (see [95, Theorem 3.2.10]):

Q(Γω) = α(β′(ω)) = α(−|Γω|).
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44 3 The minimal action and convex billiards

Let us return to the general case of a convex billiard Ω. Suppose for a
moment that the billiard possesses a convex caustic c. Then one can associate
the following two parameters to c :

1. its rotation number ω ∈ (0, 1/2), defined as the rotation number of the
circle homeomorphism on c induced by the geodesic flow via the points of
tangency;

2. its length l(c).

It turns out that there is a third parameter associated to a convex caustic,
the so–called Lazutkin parameter.

Definition 3.1.8. Let Ω be a convex billiard with a convex caustic c. Then
the Lazutkin parameter of c is defined as

Q(c) = |A − P | + |P − B| − |
!

AB|,

where P is any point on ∂Ω and A, B ∈ c are the points of tangency of c seen

from P ; see Fig. 3.6. Moreover, |
!

AB| denotes the length of the caustic’s part
from A to B, where we have oriented the caustic according to the geodesics
touching it.

PA

B

Fig. 3.6. The Lazutkin parameter of a convex caustic

In fact, if c is not a caustic but just any closed convex curve inside Ω, the
Lazutkin parameter can be defined in the same manner but may depend on
the point P ∈ ∂Ω. It is independent of P if, and only if, c is a caustic [55, 1].
Therefore, the Lazutkin parameter of a caustic is well defined.

What is the relation between (convex) caustics of a convex billiard Ω and
invariant circles for the corresponding billiard map φ? Certainly, to a convex
caustic in Ω corresponds an invariant circle for the billiard map, i.e. a simply
closed, homotopically nontrivial curve Γ in S1 × (−1, 1) with φ(Γ ) = Γ . The
converse, however, is not entirely true. By a theorem of Birkhoff (see [94]

In [95, 96] properties of Mather’s β and α functions have been studied more in depth. In
particular, explicit expressions for their (formal) Taylor expansions at, respectively, ω = 0 and
c = −|∂Ω| have been obtained. The coefficients in these expressions will be obtained in terms
of the curvature of the boundary and its derivatives.

Theorem 4.7. Let Ω be a strictly convex planar domain with smooth boundary. Denote by
k(s) > 0 the curvature of ∂Ω with arc-length parametrization s. Let `0 := |∂Ω| be the length of
the boundary and denote:

I1 :=

∫ `0

0

ds = `0

I3 :=

∫ `0

0

k2/3ds

I5 :=

∫ `0

0

(
9 k4/3 +

8 k̇2

k8/3

)
ds

I7 :=

∫ `0

0

(
9 k2 +

24 k̇2

k2
+

24 k̈2

k4
− 144 k̇2k̈

k5
+

176 k̇4

k6

)
ds

I9 :=

∫ `0

0

[
281

44800
k8/3 +

281 k̇2

8400 k4/3
+

167 k̈2

4200 k10/3
− 167 k̇2 k̈

700 k13/3
+

...
k

2

42 k16/3
+

559 k̇4

2100 k16/3

− 473 k̈3

4725 k19/3
− 10

...
k k̇ k̈

21 k19/3
+

5
...
k k̇3

7 k22/3
+

13142 k̇2 k̈2

4725 k22/3
− 10777 k̇4 k̈

1575 k25/3
+

521897 k̇6

127575 k28/3

]
ds.

Then:

• the formal Taylor expansion of β at ω = 0, β(ω) ∼∑∞k=0 βk
ωk

k!
, has coefficients:

β2k = 0 for all k
β1 = −I1
β3 =

1

4
I33

β5 = − 1

144
I43 I5

β7 =
1

320
I53
(

14

81
I25 − I3I7

)
=
I53
(
14 I25 − 81 I3I7

)
25920

β9 = −7 I63
(
I23 I9 −

1

5600
I3 I5 I7 +

7

583200
I35
)

;

• the (formal) Taylor expansion of (c + `0)−3/2α(c) at c = −`0 (note that α has in fact
a square-root type singularity at the boundary), (c+ `0)−3/2α(c) ∼ ∑∞k=0 αk

(c+`0)k

k!
, has
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coefficients:

α0 =
4
√

2

3
I−3/23

α1 =

√
2

135
I−7/23 I5

α2 =
1

56700
√

2

(
72 I3I7 + 7 I52

I311/2
)

α3 =
1

826686000
√

2

(
261273600 I32I9 + 21384 I3I5I7 + 1001 I53

I315/2
)
.

Remark 4.8. (i) The techniques used in the proof of the Theorem 4.7, allow one to obtain
explicit expressions up to any arbitary high order (we restrict to order 11 just for the sake of
this presentation).
(ii) The coefficients βk are algebraically related to the set of spectral invariants introduced by
Marvizi and Melrose [74] for strictly convex planar regions in order to investigate and give some
partial answers to Kac’s question on the isospectrality of planar domains. These computations
provide explicit expressions for those invariants as well (see the expressions for Ik’s).

An easy consequence of these formulae is the following corollary, which is a direct consequence
of the isoperimetric inequality (see [96, Corollary 1] and [95]).

Corollary 4.9. Let Ω be a strictly convex planar domain with smooth boundary. Then:

β3 + π2β1 ≤ 0

and equality holds if and only if Ω is a disc.

Proof. The proof easily follows from the expressions of β1 and β3, found in Theorem 4.7. In
fact, observe that:

β3 + π2β1 ≤ 0 ⇐⇒ I3
3 − 4π2I1 ≤ 0.

Now, using Hölder inequality (with p = 3
2
and q = 3):

I3 =

∫ `0

0

k2/3ds ≤
(∫ `0

0

(k2/3)3/2ds

)2/3(∫ `0

0

13ds

)1/3

= (2π)2/3`0
1/3 = (4π2I1)1/3.

Moreover, equality holds if and only if it holds in Hölder inequality. This means that k must
be constant (and strictly positive) and therefore, the curve must be a circle. �

Remark 4.10. In particular, the above corollary says that if the first two coefficients β1 and
β3 coincide to those of the β-function of a disc, then the domain must be a disc. Therefore,
the β-function univocally determines discs amongst all possible Birkhoff billiards. It would be
interesting to find a similar characterization for elliptic billiards. We can prove the following
result: the β-function determines univocally a given ellipse in the family of all ellipses.

Proposition 4.11. If E1 and E2 are two ellipses such that βE1 ≡ βE2, then E1 and E2 are the
same ellipse. More generally: if the Taylor coefficients βE1,1 = βE2,1 and βE1,3 = βE2,3, then the
same conclusion remains true.

The proof easily follows from expressing these coefficients by means of elliptic integrals (see [96,
Proposition 1])
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4.3. Birkhoff conjecture and spectral rigidity questions (revisited). We can now rephrase
the Spectral Rigidity Question for the maximal Length spectrum (see subsection 2.2) and
Birkhoff Conjecture (see subsection 3.4) in terms of these new objects.

Spectral Rigidity Question (revisited). Let Ω1 and Ω2 be two strictly convex planar do-
mains with smooth boundaries and assume that βΩ1 ≡ βΩ2. Is it true that Ω1 and Ω2 are
isometric?
More generally: if βΩ1(ω) = βΩ2(ω) for all ω ∈ (0, ε) for some small ε > 0, is it true that Ω1

and Ω2 are isometric?

Similarly, keeping into account the relation between the differentiability properties of Mather’s
β-function at rational rotation numbers and the existence of invariant circles foliated by peri-
odic points (see subsection 4.2), we can also rephrase Birkhoff conjecture in this context.

Birkhoff Conjecture (revisited). Let Ω be a strictly convex planar domain with smooth
boundary and assume that βΩ is differentiable in [0, 1/2). Is it true that Ω is an ellipse? More
generally: if βΩ is differentiable in [0, ε) for some small 0 < ε < 1/2, is it true that Ω is an
ellipse?

In fact, if βΩ is differentiable in an open interval, then the billiard map is locally integrable in
an open set. In fact, βΩ will be differentiable at all rationals in that interval and therefore there
will be caustics corresponding to these rotation numbers. By semi-continuity arguments, one
obtains caustics corresponding to irrational rotation numbers and hence a family of caustics
that foliate an open set. Observe that if β is differentiable in the whole domain of definition
(0, 1/2], then it must be a circle by the aforementioned result by Bialy.

The relation between the integrability of the billiard map and the differentiability of the cor-
responding Mather’s β function, implies that a solution to Birkhoff conjecture would lead to
a solution to the question whether ellipses are uniquely spectrally determined among convex
domain.

Exercise 4.12. Rephrase the results in [8, 64, 68] in terms of Mather’s β-function and spectral
rigidity of ellipses.

Remark 4.13. Compare this result with the previously mentioned result by Hezari and Zelditch
[53] (see subsection 2.3), where it is proved that ellipses of sufficiently small eccentricities are
Laplace spectrally unique (up to isometry) among all smooth domains (withouth any assumption
on symmetry, convexity, or closeness to other ellipses).
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