Hendrik Speleers

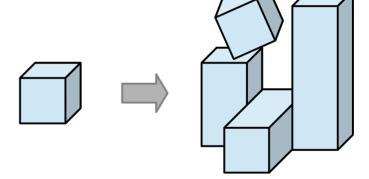
Overview

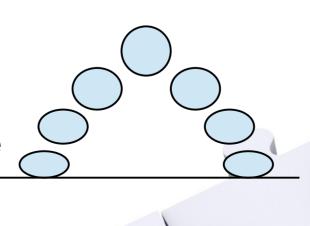
- Homogeneous coordinates
- Affine transformations
 - 2D and 3D
 - Changing coordinate systems
- Viewing in 3D
 - Camera setup
 - Perspective projection
 - Canonical view volume: 3D clipping

Coordinate systems

- Homogeneous coordinates
 - Key concept in computer graphics
 - Why? Points and vectors can now be mixed in operations
- Points: (*x*, *y*, *z*, 1)
- Vectors: (x, y, z, 0)
- Some operations
 - Subtraction: (*, *, *, 1) (*, *, *, 1) = (*, *, *, 0)
 - Addition: (*, *, *, 1) + (*, *, *, 0) = (*, *, *, 1)
 - Affine linear combinations of points produce another point

- Transformations
 - Translations, rotations, scaling, ...
- Why are transformations useful?
 - Constructing complex objects
 - They are usually composed of simple objects
 - Moving camera around
 - Different views on the same scene
 - Computer animation
 - Translate/rotate/warp object over time





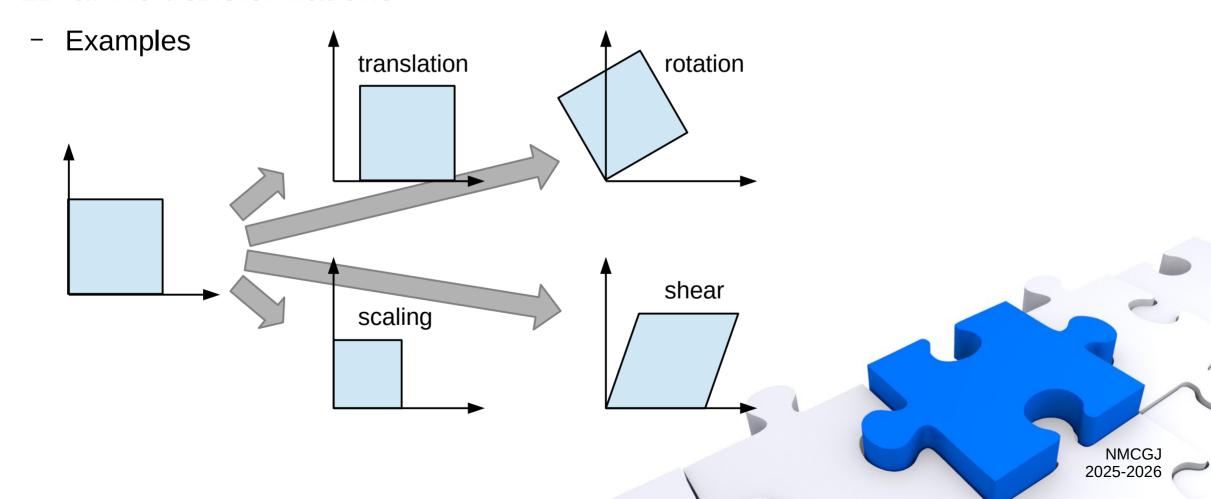
2D affine transformations

Coordinates of Q are linear combination of coordinates of P

$$Q = \begin{pmatrix} Q_{x} \\ Q_{y} \\ 1 \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_{x} \\ P_{y} \\ 1 \end{pmatrix} = MP$$

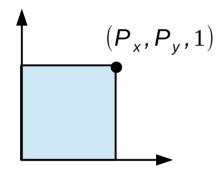
- Properties
 - Preservation of affine linear combinations
 - Preservation of lines
 - Preservation of parallelism of lines
 - Preservation of relative ratios
 - Areas are scaled with |det(M)|

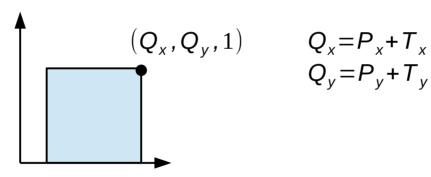
2D affine transformations



2D affine transformations

Translation



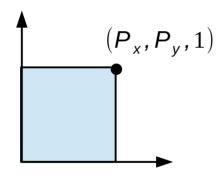


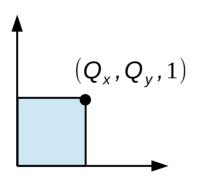
$$Q_x = P_x + T_x$$
$$Q_y = P_y + T_y$$

$$Q = \begin{pmatrix} Q_x \\ Q_y \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & T_x \\ 0 & 1 & T_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_x \\ P_y \\ 1 \end{pmatrix} = TP$$

2D affine transformations

Scaling



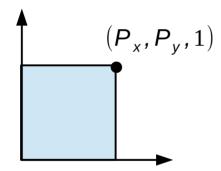


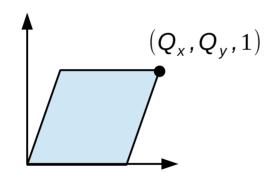
$$Q_x = S_x P_x$$

$$Q_y = S_y P_y$$

$$Q = \begin{pmatrix} Q_x \\ Q_y \\ 1 \end{pmatrix} = \begin{pmatrix} S_x & 0 & 0 \\ 0 & S_y & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_x \\ P_y \\ 1 \end{pmatrix} = SP$$

- 2D affine transformations
 - Shear



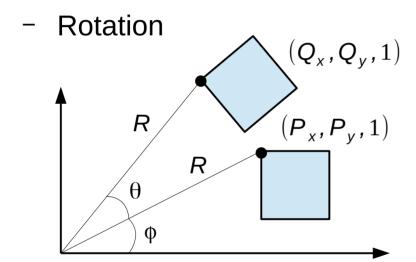


$$(Q_x, Q_y, 1) \qquad Q_x = P_x + hP_y$$

$$Q_y = P_y$$

$$Q = \begin{pmatrix} Q_{x} \\ Q_{y} \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & h & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_{x} \\ P_{y} \\ 1 \end{pmatrix} = S_{h}P$$

2D affine transformations



$$Q = \begin{pmatrix} Q_x \\ Q_y \\ 1 \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_x \\ P_y \\ 1 \end{pmatrix} = RP$$

$$P_x = R\cos\phi$$
$$P_y = R\sin\phi$$

$$Q_x = R\cos(\phi + \theta)$$
$$Q_y = R\sin(\phi + \theta)$$

$$\cos(\phi + \theta) = \cos\phi \cos\theta - \sin\phi \sin\theta$$

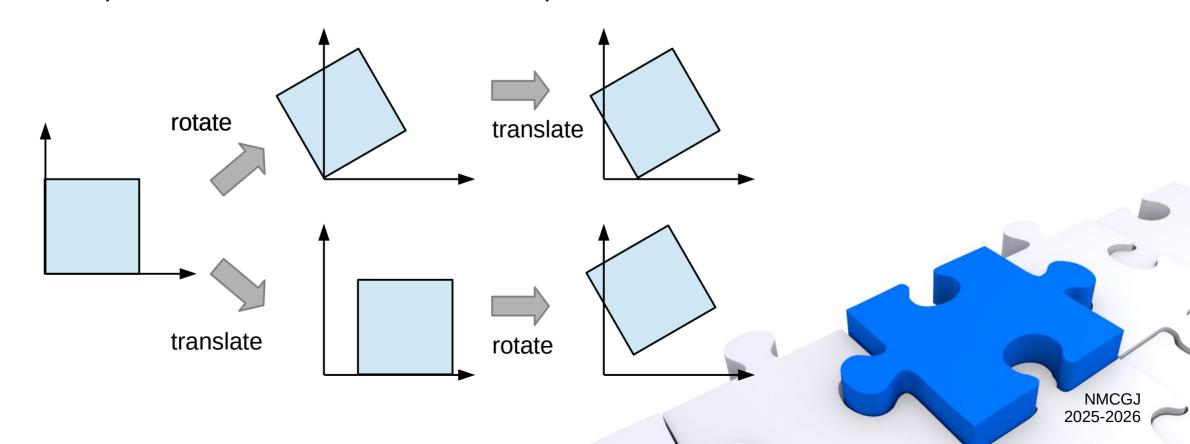
$$\sin(\phi + \theta) = \sin\phi \cos\theta + \cos\phi \sin\theta$$

- 2D affine transformations
 - Undo transformation by inverting matrix

$$T^{-1} = \begin{pmatrix} 1 & 0 & -T_x \\ 0 & 1 & -T_y \\ 0 & 0 & 1 \end{pmatrix} \qquad S^{-1} = \begin{pmatrix} 1/S_x & 0 & 0 \\ 0 & 1/S_y & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad S_h^{-1} = \begin{pmatrix} 1 & -h & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad R^{-1} = \begin{pmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- Composite transformations
 - Window-to-viewport transform: scaling + translation
 - Example: Rotation around a point: $Q = (T^{-1}RT)P$
 - Translate rotation center to origin (*T*)
 - Rotate around origin (R)
 - Translate origin back to rotation center (T^{-1})

- 2D affine transformations
 - Composite transformations: Order is important!!!



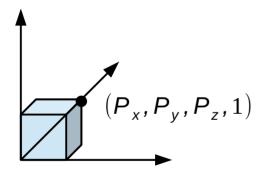
3D affine transformations

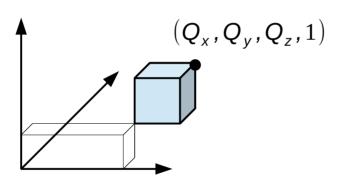
- Same idea as 2D, but now 4x4 matrices

$$Q = \begin{pmatrix} Q_x \\ Q_y \\ Q_z \\ 1 \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_x \\ P_y \\ P_z \\ 1 \end{pmatrix} = MP$$

- Properties
 - Preservation of affine linear combinations
 - Preservation of lines and planes
 - Preservation of parallelism of lines and planes
 - Preservation of relative ratios
 - Volumes are scaled with |det(M)|

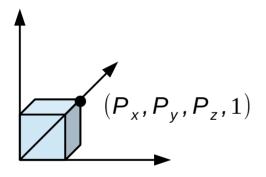
- 3D affine transformations
 - Translation

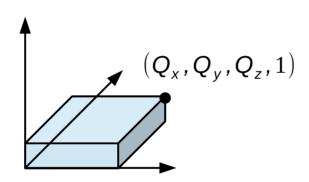




$$Q = \begin{pmatrix} Q_x \\ Q_y \\ Q_z \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & T_x \\ 0 & 1 & 0 & T_y \\ 0 & 0 & 1 & T_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_x \\ P_y \\ P_z \\ 1 \end{pmatrix} = TP$$

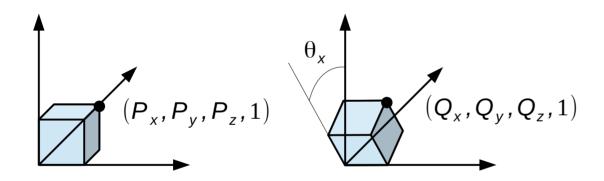
- 3D affine transformations
 - Scaling





$$Q = \begin{pmatrix} Q_x \\ Q_y \\ Q_z \\ 1 \end{pmatrix} = \begin{pmatrix} S_x & 0 & 0 & 0 \\ 0 & S_y & 0 & 0 \\ 0 & 0 & S_z & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_x \\ P_y \\ P_z \\ 1 \end{pmatrix} = SP$$

- 3D affine transformations
 - Rotation around X-axis (similar for other axes)

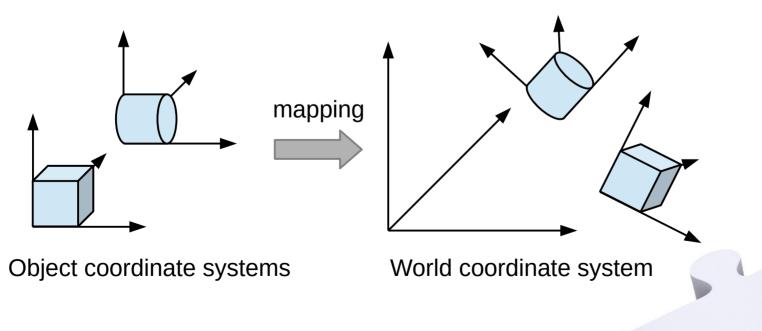


$$Q = \begin{pmatrix} Q_{x} \\ Q_{y} \\ Q_{z} \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta_{x} & -\sin \theta_{x} & 0 \\ 0 & \sin \theta_{x} & \cos \theta_{x} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_{x} \\ P_{y} \\ P_{z} \\ 1 \end{pmatrix} = R_{x} P$$

- 3D affine transformations
 - Composite transformations
 - Same ideas as 2D
 - Example: Rotation around arbitrary axis *U*: $Q = (R_y^{-1} R_z^{-1} R_x R_z R_y) P$
 - 2 rotations such that *U* is aligned with *X*-axis
 - *X*-rotation over desired angle
 - Undo the 2 rotations to restore *U* to the original direction
 - Columns in matrix reveal transformed coordinate frame
 - First 3 columns: mapped X/Y/Z-axes
 - Last column: mapped origin

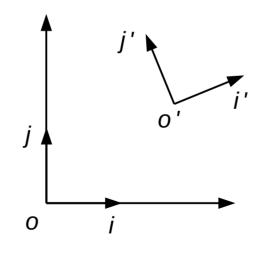
NMCGJ

- Changing coordinate systems
 - Most natural approach
 - Objects are modeled in their own coordinate system
 - Compute coordinates of transformed object in world coordinate system

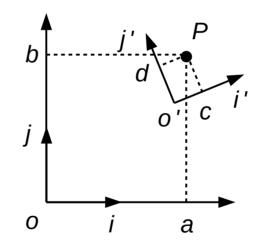


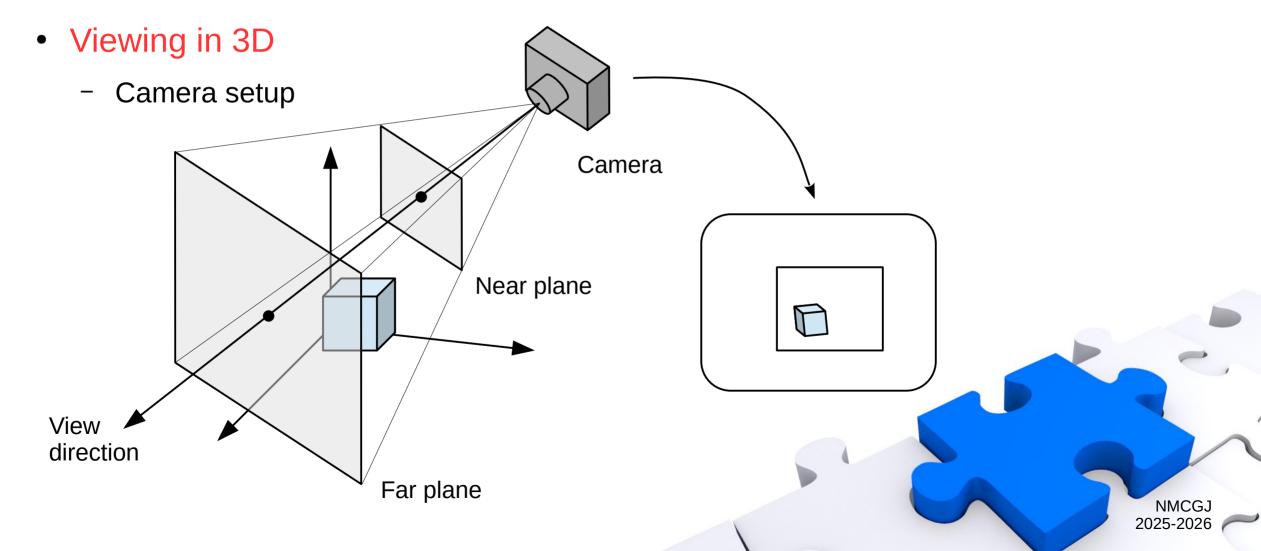
- Changing coordinate systems
 - Global vs. local coordinate system
 - o = (0, 0, 1); unit vectors i = (1, 0, 0), j = (0, 1, 0)
 - $o' = (m_{13}, m_{23}, 1)$; unit vectors $i' = (m_{11}, m_{21}, 0), j' = (m_{12}, m_{22}, 0)$
 - Transformation matrix M

$$M = \begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ 0 & 0 & 1 \end{pmatrix}$$



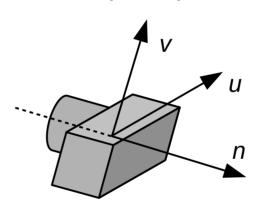
- Changing coordinate systems
 - Transformation matrix M
 - Transforms $\langle o, i, j \rangle$ into $\langle o', i', j' \rangle$ $o' = Mo \quad i' = Mi \quad j' = Mj$
 - Transforms local coordinates of P into global coordinates of P





Viewing in 3D

- Camera definition: any position and any orientation (6 dof)
- Attach coordinate system to camera
 - Origin (= eye): position of camera
 - U-axis: points 'rightwards'
 - V-axis: points 'upwards'
 - N-axis: opposite viewing direction
- Angles of orientation of this system are called:
 - Pitch: around *U*-axis (nose up or down)
 - Yaw: around V-axis (nose left or right)
 - Roll: around *N*-axis



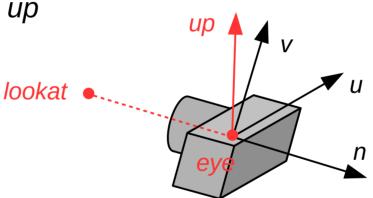
Viewing in 3D

- Suppose we have eye, lookat, and up

$$n = \frac{eye - lookat}{\|eye - lookat\|}$$

$$u = up \times n$$

$$v = n \times u$$



- Change coordinates to camera system
 - From world system to camera system: matrix V
 - From object system to world system: matrix M
 - So... objects are expressed by

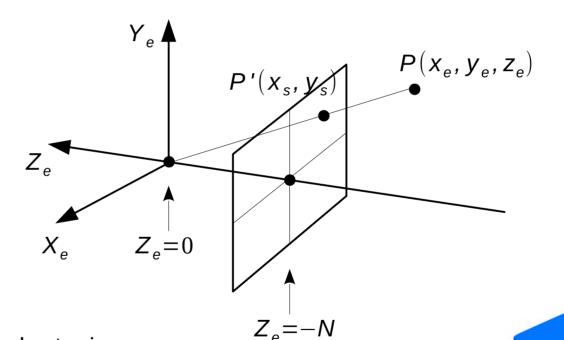
$$Q = VMP$$
 Viewing + Modeling Transformation

- Viewing in 3D
 - All objects are now expressed in camera system
 - What's left to do?
 - Perspective projection
 - 3D clipping
 - Cut everything outside view pyramid
 - Depth
 - Needed for removal of hidden points

Viewing in 3D

- Perspective projection
 - Project 3D point on 2D plane

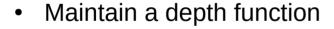
$$x_s = \frac{N}{-Z_e} x_e$$
 $y_s = \frac{N}{-Z_e} y_e$



- Properties:
 - Division by z_e: perspective foreshortening
 - Effect of *N*: scaling of the picture
 - Straight lines project to straight lines

Viewing in 3D

- Adding depth
 - Which point is closer: P_1 or P_2 ?

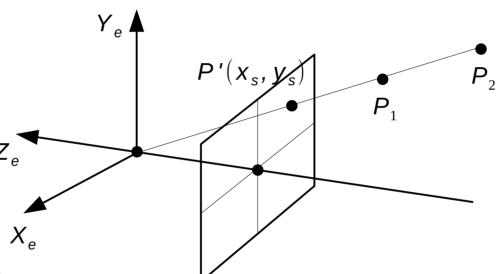


- Same denominator z_e

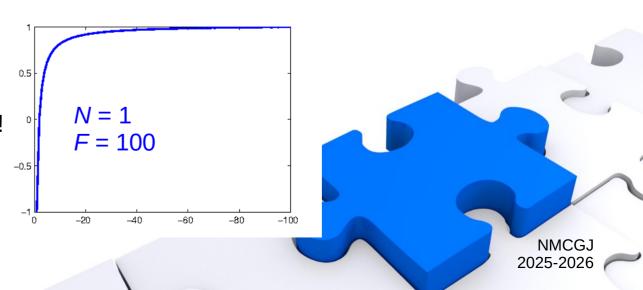
- Pseudo-depth = -1 at near plane

Pseudo-depth = +1 at far plane

$$z_s = \frac{az_e + b}{-z_e}$$
 $a = \frac{-(F+N)}{F-N}$ $b = \frac{-2FN}{F-N}$

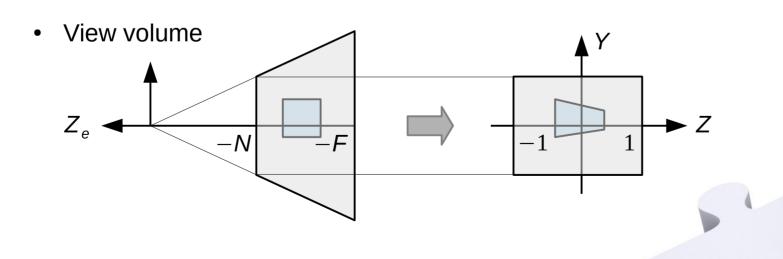


- Viewing in 3D
 - Hidden surfaces: Z-buffer
 - During rasterizing
 - Interpolate pseudo-depth between vertices
 - Store depth of pixel in *Z*-buffer
 - If new depth < old depth: recolor pixel
 - Artefacts with *Z*-buffer
 - Pixel-precision (one value per pixel)
 - Pseudo-depth interpolated, not real depth!



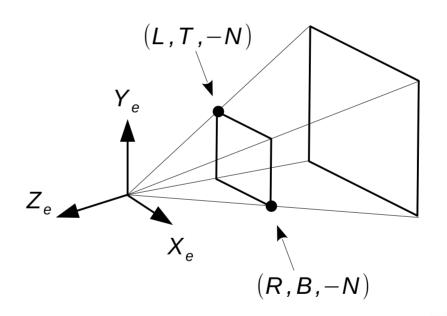
- Viewing in 3D
 - Perspective transform
 - Projection + depth testing: transformation matrix?

$$x_s = \frac{N}{-Z_e} x_e$$
 $y_s = \frac{N}{-Z_e} y_e$ $z_s = \frac{a z_e + b}{-Z_e}$



Viewing in 3D

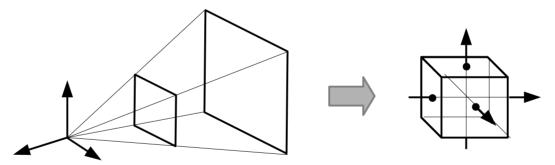
Perspective transform



- From view pyramid to unit box $[-1, 1] \times [-1, 1] \times [-1, 1]$
 - Perspective + additional scaling and translation
- Homogeneous coords have 4^{th} value != 1 (Division by $-z_e$ required)

NMCGJ 2025-2026

- Viewing in 3D
 - Canonical view volume (CVV)
 - We have transformed everything into a unit box



- 3D clipping
 - Four sides of view pyramid (x = -1, 1 and y = -1, 1)
 - Near and far planes (z = -1, 1)
 - Clipping against CVV is very efficient

- Viewing in 3D
 - Putting it all together
 - Every point is transformed by the modeling transformation
 - ... then the viewing transformation
 - ... then the perspective transformation
 - ... then clip against the CVV
 - ... then keep the 2D perspective coordinates
 - ... then do the window-to-viewport transformation
 - This can all be specified in OpenGL!

