Centralizers of polynomials

By ROBERTO TAURASO

ABSTRACT. - We prove that the elements of an open dense subset of the non-
linear polynomials’ set have trivial centralizers, i. e. they commute only with their
own iterates.

0. Let C[z] be the set of complex polynomials endowed with the topology
induced by the norm ||P|| = supy<;<,{|a;|} where n is the degree of P and

P(2) = ap2" + Gp_1 2" + ...+ ay.

Given a non-linear polynomial P € C|z], we define the centralizer Z(P), as
the set of all non-linear polynomials () which commute with P:

ZP)H{(QeClz] : PoQ=QoP and deg(Q) > 2.

If n = deg(P) > 2 then the number of polynomials in Z(P) of fixed degree is
at most n — 1 (see [Bo]), hence Z(P) is always countable.

The purpose of this paper is to investigate when the centralizer Z(P) con-
tains only the iterates of P. The following result is motivated by the fact that
the same problem has been already studied for other dynamical systems such
as the diffeomorphisms on the circle (see [Ko]), the expanding maps on the
circle (see [Ar]), and the Anosov diffeomorphisms on the torus (see [PaYo]).

Theorem 0.1 There exists an open dense subset of the set of all non-linear
polynomials whose elements P have trivial centralizer:

Z(P)={P" : k>1}.

The question arises whether it is possible to generalize this result for the
set of rational functions of degree at least two.

1. For a polynomial P of degree n > 2, the Julia set J(P) is defined as the
set of all points z € C such that the family of iterates {P*}}>1 is not normal in
any neighborhood of z. We recall that J(P) is a non-empty bounded perfect
set, which is completely invariant, i. e. P(J(P)) = P Y(J(P)) = J(P).

Moreover, if J(P) is the unit circle S' = {z € € : |z| = 1} or the interval
[—1,1] then P is conjugate to a Tchebycheff polynomial which is €T, for S*
where T,,(2) = 2™ and is T,, or —T,, for [—1, 1] where T,, is defined inductively
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in the following way T,,(z) = 227,,_1(2) — Th—2(2) and Ty = 1, T1(2) = 2. A
Tchebycheff polynomial has a very big centralizer because T, 0T,, = T,,0T,, =
Tym for n,m > 0, and this is the only kind of non-linear polynomial whose
centralizer has at least a polynomial for any degree (see [BT] and [Ber]).

Recently, G. M. Levin, has recovered in a modern way a very old result of
J. F. Ritt. This is its reformulation:

Theorem 1.1 [Le|, [Ri2] If two non-linear polynomials P and Q) commute
then one of the following conditions is necessary:

(a) P and Q have a common iterate, i. e. there exist integersi,j > 1 such
that P = Q7;

(b) the common Julia set is either a circle or an interval.

A. F. Beardon, starting from the work of I. N. Baker and A. Eremenko
([BE]), has succeded to characterize all pairs of non-linear polynomials P which
have the same Julia set (e. g. when they commute) in the term of the group
Y (P) of symmetries of the Julia set of P:

S(P) % {o €€ : a(T(P) = T(P)}

where £ is the group of the conformal Euclidean isometries of C, z % ez +c.
Since the Julia set of a non-linear polynomial P is bounded, then ¥(P) can not
contain any translation z — z + ¢ with ¢ # 0. Moreover, if 01,09 € X(P) then
their commutator oy0907 05" belongs also to X(P) and it is a translation,
therefore it is the identity map. Hence, o1 and o5 commute and it follows that
Y(P) is a group of rotations about a common fixed point ( € C. The next
theorem gives a complete description of this group:

Theorem 1.2 Let P be a non-linear polynomial then the following facts hold:

(a) [Bel] X(P) is a group of rotations around the point ( = —<2=*, called
centroid of P (it is the barycentre of the zeros of P). If ¥(P) is infinite then
J(P) is a circle. Otherwise X(P) is finite and, if we put the centroid in 0, the
order of X(P) is the largest integer d > 1 such that P can be written in the
form P(z) = 2°P(2%) for some polynomial P with 0 < a < n.

(b)[Be2] If Q is a polynomial which has the same degree of P and J(P) =
J(Q) then there is a symmetry o € 3(P) = X(Q) such that P = oQ).

These facts shed a new light on another result of J. F. Ritt which allow
us to be more precise when two commuting polynomials happen to have a
common iterate.

Theorem 1.3 [Ril] If two non-linear polynomials P and @ have a common
iterate then there exist a mon-linear polynomial R, two integers s,t > 1 and
two symmetries 01,09 € X(P) = X(Q) such that:

P(z) = 01R*(2) and Q(z) = 0oR'(2) VzeC.



Proof. We follow the Ritt’s proof emphasizing the steps where the theory of
Beardon is useful to semplify the reasoning.

Since P and () have the same Julia set, there is a map ®, called Béttcher
function, univalent in some neighborhood U of oo such that

PoPod '(2) =a,2" and PoQod !(z) =b,,2™ V2 U

where b,,z™ is the leading term of ). By hypothesis, P and ) have a common
iterate, hence there exist integers r, u, v such that n = r* and m = r". If we
denote with (u,v) the G.C.D. of u and v then the polynomial R can be chosen
of the form:

R(z) = &7 (c[®(2))]"")

where ¢ € C is such that J(R) = J(P) = J(Q). For two suitable positive
integers s and ¢, the degrees of P, R and R' are equal and, by (b) of Theorem
1.2, there exist two symmetries 01,09 € X(P) such that P = 01 R® and QQ =
o R Q.E.D.

2. Now, we give the proof of Theorem 0.1.

Proof. Define the set S of all non-linear polynomials P such that Fix 5 (P) &

{ze C : P(z) = 2} has n + 1 different points where n > 2 is the degree of P,
and such that the following property holds

if z,y € FiX@(P) and x #y then P'(x)+ P'(y). (1)
It is clear that S is open and dense in the set of all non-linear polynomials.
Let P € S then, since P(0co) = oo and P’'(c0) = 0, by the property (1), at any
finite fixed point z of P, P'(z) # 0. Conjugating P by an affine transformation
we can assume that the centroid is 0 and that J(P) becomes S if it is a circle
or [—1,1] if it is an interval. Note that the conjugation preserves the property
(1).

J(P) can not be S* because otherwise P = €T, and at the fixed point
0, P(0)=0. If J(P) = [-1,1] then P =T, or P = —T,, and all the finite
fixed points of P are contained in [—1,1] because € \ [—1,1] is the basin of
attraction of co. Moreover, for x € [—1,1], T,,(z) = cos(na) with a = cos™!(z)
and therefore the derivative of T}, at z €] — 1, 1] is

/() — icos o do _ —nsin(na) _ nsin(na)
T, (r) = <da ( >>dx —sin(a) sin(a) -

Hence, if v € Fixp (P) \ {1, =1} then |cos(na)| = |cos(a)| and |[P'(z)| = n
because |sin(na)| = |sin(a)|. By hypothesis P has n different finite fixed
points and, by property (1), the degree n has to be less than 5. Moreover, one
can easily check that £73 and +7) do not belong to S whereas +£75 € S.



So, if P € S\ {13, —T»}, by Theorem 1.1, if @ € Z(P) then P and @
must have a common iterate and, by Theorem 1.3, there exists a non-linear
polynomial R such that:

P(z) =01 R*(z) and Q(z2) = 0o R'(2) VzeC (2)

where s,t > 1 and 01,09 € 3(P). Since J(P) is not a circle, by (a) of Theorem
1.2, the group X(P) is finite of order d > 1.
Now we distinguish two cases:

(i) If 0 € Fixg (P) then d = 1 and therefore P = R* and Q = R".
In fact, by (a) of Theorem 1.2, since J(R) = J(P), P(z) = 2*P(2%) for some
polynomial P. Assume that d > 2, then, since P’(0) # 0, a = 1 and computing
the derivative in a point z € C we obtain

P'(z) = P(2%) + dz?P'(2%).

Let o € X(P) be different from the identity. Let z; be a finite fixed point of P
different from 0 then 2z, = 0z is another finite fixed point of P because 0% = 1
and N
P(%) = 02, P(0%2) = 0P(2) = 021 = 2.
d

Since 2¢ = 24, if we compute the derivative in these points, we obtain
P'(z) = P(2%) + dzlP'(2%) = P'(2).
This contradicts the property (1) and d = 1.
(ii) If 0 ¢ Fix@ (P) then 01 = 05 and P = (01 R)* and @ = (01 R)".
In fact, by (a) of Theorem 1.2, R(z) = 2*R(2%) for some polynomial R. Since
P(0) # 0, then, by (2), a =0 and R(0) # 0. If 2z € Fixg (R) then
Pi(2) = 01 R¥(2) = 012 and Q(2) = 09 RY(2) = 092

because of = 0¢ = 1. Since 2z # 0 and P’ = @7, we can conclude by the above

equation that oy = gy. Moreover, P = 01 R* = (01 R)* and Q = 0o R' = (02 R)".

In both cases (i) and (ii), we have found a non-linear polynomial G such
that P = G* and Q = G*; now we show that s = 1, 1. e. @) is an iterate of P.
If z € Fixg (P) then P'(z) # 0 and therefore also G’(z) # 0. Since P and G
commute, we have

P(G(2)) = G(P(2)) = G(2),
and deriving P o G = G o P we obtain

P(G(2))G'(2) = G'(P(2))P'(2) = G'(2) P'(2).

These equations yield that also G(z) € Fixg (P) is a fixed point of P and
P'(G(2)) = P'(z). By property (1), G(z) = z and therefore G has as many
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fixed points as P. But, by hypothesis, the number of finite fixed points of P
is exactly n and therefore the degree of GG is at least n. This is possible only
when s = 1.
Hence we can conclude that the wanted open dense set is S\ {Ts, —T»}.
Q.E.D.
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