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Abstract. Let f and g be two commuting holomorphic self-maps of the open unit
disc D in the complex plane with a common Wolff point 7 € JD: if this two maps
agree at 7 up to the third order then f = g.

1. Introduction
The purpose of this paper is to show a connection betweeen iteration theory and
the study of commuting holomorphic maps of the unit disc D :={z € C : |z] < 1}.
The dynamical properties of a map f € Hol(D,D) are well known (see the survey
article of Burckel [6]): if f is not the identity map then it has at most one fixed point
in D which is attracting provided f is not an elliptic automorphism (a rotation).
On the other hand, if f is fixed-point-free then there is still an attracting point 7,
called Wolff point of f, but it is located on the boundary dD and the sequence of
iterates f™ converges to 7 uniformly on compact subsets of .
Now take another map g € Hol(ID, D) and assume that it commutes with f:

fog=ygolf
If f has a fixed point zy € D then
f(9(20)) = 9(f(20)) = 9(20)

and, by uniqueness, g(z9) = zo, that is zg is the fixed point also for the map g. A
similar result holds when f is fixed-point-free: in this case f and g have the same
Wolff point unless they are two hyperbolic automorphisms with the same fixed
points (see [2],[9]).

The common Wolff point 7 contains a lot of interesting information about the
two maps. To extract this information we need the following regularity notion: we
say that f € C} (1) if it has an expansion at 7 of the form
1

fE) =1+ f(M)z—7)+... + Hf““)(r)(z — ) +ox(z — 7",
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where ox means that the limit is taken non-tangentially (i. e. within an angular
region with vertex at 7):
Kaim 22210
z—T |z — T|T
Moreover, we say that f € C"(7) if ox(|z — 7|") can be replaced by o(|z — 7|") that
is the limit is taken in the full disc.

The Julia-Wolff-Carathéodory theorem says that some regularity at 7 is expected
although 7 belongs to the boundary dD: f € Cj(7) and 0 < f/(7) < 1. If f'(7) < 1
then f is called hyperbolic, whereas if f'(1) = 1 then f is called parabolic.

What happens if we compare the expansions of f and g at 77 As we will see,
to establish that f = ¢ it suffices to check that the two maps agree up to the
third order at 7. Note that this “identity principle” is not true neither when the
attracting point stays in D (2" and z™ commute and their expansions at 0 agree
up to the (min(n,m) — 1)-order nor when the commuting property does not hold
(we will show an example in the last section).

In [4], we discussed this problem and we established the following result for the
“extreme” cases: when f is hyperbolic or the identity (this is due to Burns and
Krantz [5])

THEOREM 1.1. If one of the following conditions holds then f = g.
(1) f is hyperbolic with Wolff point at T and f'(7) = ¢'(7);

(2) f=1d, g€ CL(r) and f(7) = g(r) =7, J'(r) = () = 1, ["(r) = ¢"(r) =
0, f"(r) = ¢"(r) =0.

In this paper we will prove the following theorem for the “middle” case, that is
when f is parabolic, improving a previous result appeared in [4].

THEOREM 1.2. If f is parabolic with Wolff point at T and one of the following
conditions holds then f = g.

(1) f€C*(1), g€ C%(1), f'(1) = g"(1) # 0 and Re(f"(r)7) > 0;
(2) f,geC(r), (1) = ¢"() # 0 and Re (f"(7)7) = 0;
(3) f€C3r), g€ C(r), f'(1) =g¢"(r) =0 and f" (1) = g"'().

2. The linear model in H

The main tool that we are going to use is the construction of a linear model for
our maps: a “change of coordinates” in a neighborhood of the Wolff point which
transforms f in an automorphism of the upper half-plane H = {w € C : Imw > 0}
or of the entire plane C. To simplify notations, from now on we will work in the
upper half-plane which is biholomorphically equivalent to the unic disc D by the
Cayley transformation C(z) = i that maps 7 to oo. Then, by Julia-Wolff-

Carathéodory theorem,

F
K-lim ﬂ =

w—00 w
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where
a:= inf{w(w) L w GH} € [0, +00).

Imw

Therefore, if @ > 0 then F € Ck(c0), « = 1/f/(7) and
Flw)=ow+T(w) with I'(w)=ok(Jw]).

If co is the Wolff point of F' then o > 1. When o = 1 and F' is not the identity
then I'(w) € Hol(H, H) and

Iw) =6+ ok (1) if f e C%(7),
D(w) =B+ 2 +ox(m) if feCk(r),

[w]

where 8 = if"(r)r, v = 2S¢(7)7%/3 and Sf(r) = f"(r) — %(f”(r))2 (the
Schwarzian derivative of f at 7). Note that Re 8 > 0 and if 8 =0 then v < 0.

The following result due to Cowen [7] gives some precious information about the
orbits behaviour.

THEOREM 2.1 (COWEN) Let F € Hol(H,H) with Wolff point at oo. Then there
is an open connected, simply connected set V', called fundamental set for F, such
that:

(1) V is F-invariant that is F(V) C V;
(2) for all compact set K of H, the sequence F™(K) is evenly contained in V;
(8) F is univalent in V.

The Poincaré distance in H is defined by

w—w'

d(w,w') = tgh™! YV, w' € H.

w—w'

We say that F is of automorphic type (F € A) if all orbits are separated in the
Poincaré distance:
lim d(wp41,wp) >0 VYweH

n—oo
where w,, = x,, +iy, = F"(w). The above limit exists because F' is a d-contraction.
If F' is hyperbolic then F' € A, on the other hand if F' is parabolic then it can be
of automorphic type or not. Furthermore, F' ¢ A if and only if

w —w
g = LnAl T Wn g
Wp41 — Wp

Here is the construction of the linear model for F' due to Baker and Pommerenke
(see [8],[1])
THEOREM 2.2 (BAKER-POMMERENKE) Let wy € H and
Wy, — x%

on(w) := 0

i
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then the limit

o:= lim o,
exists locally uniformly in H and satisfies o(wg) = i. Moreover, there is an
automorphism ® of H which fizes oo such that

H L H

o| |

H L H
The map o Z i if and only if F € A.

IfF g Alet
on(w) —i
pn(w) == ————,
(w) a
then the limat
p:= lim p,

exists locally uniformly in H and satisfies p(wo) = 0. Moreover

HLH

0| It
C w+ 24 C

The following key-lemma will be very useful later.

LEMMA 2.1. Let F', G be two commuting maps with Wolff point at co. If one of
the following conditions holds then F' = G.

(1) FeAandooF =00G;
(2) F€Aand poF =poG.

Proof. Let V be a fundamental set for F'. Since F' is univalent in V' and the set V'
is F-invariant then also F", o,, p, are univalent in V for any n € N. If F' € A then
the limit o is not constant and, by Hurwitz theorem, it is univalent in V. In the
same way, if F' ¢ A then the limit p (which is not constant) is univalent in V' too.
Moreover, if G commutes with F' and K is a non-empty compact subset of G(V)
then F(K) C V for some n € N and

F"(K)C F"(G(V)) =G(F™(V)) Cc G(V).

Therefore the open set G(V) NV is non-empty because it contains F™(K) and it
is possible to find a non-empty open set W C V such that G(W) C V. Since o is
injective in V and both sets F'(W) and G(WW) are contained in V then the condition

o(F(w))=0(Gw)) YweW
implies that F' = G in H. In a similar way
p(F(w)) = p(G(w)) Ve € W
implies that F = G in H. a
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As a first application of the previous results we discuss the cases when f is
hyperbolic or f is the identity map.

Proof. [Proof of Theorem 1.1.]
Case (1). We know F(w) = apw+T'p(w), G(w) = agw + T'g(w). Since F and G
commute then

FM(G(w)) — 2% _ G(wy,) — 2% ~ oe wy, — 22
Yn Yn Y
0 0 0
T I'a(w Wy — T T
Hag — 1) =2 + 6 (wn) < - "+g>

By a result due to Cowen (see Lemma 2.2 in [7]), w,, goes to oo non-tangentially and
therefore the sequence 20 /y° is bounded and, up to subsequence, we can assume
that it converges to the real number M. Moreover

T
lim ¢/ (wn)

n—oo W,

Thus by Theorem 2.2, taking the limit, we find

=0.

o(G(w)) = ago(w) + (ag — 1) M.

Similarly
o(F(w)) =apo(w) + (ap — 1) M.

If f/(r) = ¢'(7) then arp = ag and therefore 0 o FF = 0 o G. Since F € A, by
Lemma 2.1, we find that F = G.
Case (2). By hypothesis

Gw) =w+T'(w) with K-limwI'(w)=0.

w—00

If G is not the identity map then, by the maximum principle, T(H) C H where
T(w) := —1/T'(w). Furthermore
T -1
K-lim M = K-lim =00

w—00 w

and this is a contradiction because, by the Julia-Wolff-Carathéodory theorem
applied to the map T, this limit has to be finite. O

3. The parabolic case
First we establish a result about the kind of convergence of the orbits of F' to oc.
The first case has been proved by Bourdon and Shapiro [3].

PROPOSITION 3.1. Let F € Hol(H, H) be parabolic with Wolff point at oc.

(1) If F € C?%(c0) and 8 # 0 then w,, goes to oo non-tangentially if and only if
Im(B) > 0.

(2) If F € C3(c0) and 3 = 0 then v < 0 and w, has a subsequence that goes to
oo non-tangentially.
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Proof. Case (1): if F € C?%(c0) then

n—1
W,
On _ W -S°r
- n-i-ﬁ—i—nj:O (wy)

Therefore, since I'(w) = o(1),

Hence -
lim ~* = Re3 and lim In _ Im g

n—oo n n—oo MmN
and if 3 # 0 then w,, goes to oo nontangentially if and only if Im (5) > 0.
Case (2): now 3 =0, F € C3(c0) and 7 < 0 by Theorem 1.1 because F' si not the
identity map. Therefore

Wyt = W + = + o

YWy, + |wy| - o(1)

|wn 2

) = wp +
Taking the real part we find that

o 1 el R o)

Tpy1 =Tpn- | 1+ w2
n

Assume by contradiction that the sequence w, has no subsequence which goes to
oo nontangentially. Then the sequence |z, |/y, is bounded away from zero and the
sequence

2
M = M 1+ (yn) is bounded.
Tn

Hence evenly

and
|-73n+1‘ = Cn|xn| < |l‘n‘

which means that also the sequence z,, is bounded. Since |w,,| goes to infinity then
Yn can not be bounded therefore |z, |/y, goes to zero against our assumption. O

The following theorem establishes a necessary and sufficient condition so that
two parabolic commuting maps coincide.

THEOREM 3.1. Let F,G € Hol(H, H) be two parabolic commuting maps with Wolff

point at oco. Then the following limit exists locally uniformly in H

= lim Lo(wn)
H(w) = nl_wo T (wn)”

Moreover, F = G if and only if H = 1.
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Proof. First assume that F' € A. Thus by Theorem 2.2, taking the limit in

FF (U}n)
on(F(w)) = on(w) + i
we find that
o(F(w)) =c(w) + ar
where
ap = lim M c R\ {0}
It can not be zero otherwise
1
qg yo —0
) n__+1
r(wy)

against the fact that F' € A.
Moreover, since F' and G commute

on(G(w)) = op(w) +

and taking the limit we find

o(Gw)) —o(w) _ o(G(w)) —a(w)
ap o(F(w)) —o(w)

Hence H =1 if and only if 0 o F' = ¢ o G and, by Lemma 2.1, this is equivalent to
F=dG.

Now we consider the case when F' ¢ A. Thus by Theorem 2.2, taking the limit
in

FF w
on(F(w)) = pu(w) + EL2n)
Ynldn
we find
p(F(w)) = p(w) + 2i
and
T
lim —& O(Ug”) — 2.
n—oo  Ypdy
Moreover

Hence H =1 if and only if po F = p o G and, by Lemma 2.1, this is equivalent to
F=aG. m|
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Note that in the previous theorem the condition that F' and G commute is
necessary. For example, taking

Flw)y=w+i and Gw)=w+i— ——
(w) (w) TEen
with N > 1, then it is simple to verify that these two maps coincide up to the
(N + 1)th-order at oo and H =1 even if they are not equal.

Now we are ready to prove our main result.

Proof. [Proof of Theorem 1.2.] First we prove that the regularity conditions for F
and G at 7 and the Proposition 3.1 imply that H is identically constant.
Case (1): since frp = if"”(7)7 # 0 and Im Br = Re (f”(7)7) > 0 then w, goes to
oo non-tangentially and

Lg(wn) . Batokx(l)  Ba

W) = o wn) ~ i B ox (1) Br

Case (2): since 8r # 0 and Im Sr = 0 then w,, goes to co tangentially and

s Fa(wy) T Ba + o(1) _ 67(;
H(w) = nlingo Ty () = wilgloo 7@: Fo(l) =5

Case (3): since B = 0 then v = 2/3f"(7)7% < 0, w,, has a subsequence that goes
to oo non-tangentially and

H(w) = lim Po(wn;) _ lim V6t wnox(/lwn,l) v
j—o0 Fp(wnj) Wn ;=00 YE + wnjOK(1/|wnj|) e

By the conditions on the derivatives we obtain that H = 1 and therefore F' = G by
the previous theorem. O

Note that if F(wg) = G(wpy) for some wy € H and F o G = G o F then
F"(wg) = G™(wp) for all n € N. We have already seen that the regularity conditions
for F' and G imply that the map H is identically constant. Again this constant is
just 1 and therefore F' = G: if F' € A then

7(Gluo) — olwn) _ |

Hwo) = wo)) —olwo) -

if I ¢ A then
p(G(wo)) — p(wo) _
p(F (wo)) — p(wo)

n

This happens for the parabolic map of automorphic type

H(wo) =

This remark is non-trivial provided the sequence w;, is not a Blaschke sequence,

that is

1
Flw)=w+1— —.
(w) =w+ ”
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In fact, we have that

. Wn,
lim — =1
n—oo N

and therefore |wy,| = n. Moreover

n—1
Im (w,) = Imw—i—z Im (;1>
J

N
z)
g
+
H'M
A
Q
%
3

Im (w,) = Imw—|—7§: m ()

A
3
g
+
Q

ling
A
_l’_
8

Hence
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