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Via della Ricerca Scientifica, 00133 Roma, Italia

(e-mail: tauraso@mat.uniroma2.it)

(Received )

Abstract. Let f and g be two commuting holomorphic self-maps of the open unit
disc D in the complex plane with a common Wolff point τ ∈ ∂D: if this two maps
agree at τ up to the third order then f ≡ g.

1. Introduction
The purpose of this paper is to show a connection betweeen iteration theory and
the study of commuting holomorphic maps of the unit disc D := {z ∈ C : |z| < 1}.

The dynamical properties of a map f ∈ Hol(D, D) are well known (see the survey
article of Burckel [6]): if f is not the identity map then it has at most one fixed point
in D which is attracting provided f is not an elliptic automorphism (a rotation).
On the other hand, if f is fixed-point-free then there is still an attracting point τ ,
called Wolff point of f , but it is located on the boundary ∂D and the sequence of
iterates fn converges to τ uniformly on compact subsets of D.

Now take another map g ∈ Hol(D, D) and assume that it commutes with f :

f ◦ g = g ◦ f.

If f has a fixed point z0 ∈ D then

f(g(z0)) = g(f(z0)) = g(z0)

and, by uniqueness, g(z0) = z0, that is z0 is the fixed point also for the map g. A
similar result holds when f is fixed-point-free: in this case f and g have the same
Wolff point unless they are two hyperbolic automorphisms with the same fixed
points (see [2],[9]).

The common Wolff point τ contains a lot of interesting information about the
two maps. To extract this information we need the following regularity notion: we
say that f ∈ Cr

K(τ) if it has an expansion at τ of the form

f(z) = τ + f ′(τ)(z − τ) + . . . +
1
r!

f (r)(τ)(z − τ)r + oK(|z − τ |r),
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where oK means that the limit is taken non-tangentially (i. e. within an angular
region with vertex at τ):

K-lim
z→τ

oK(|z − τ |r)
|z − τ |r

= 0.

Moreover, we say that f ∈ Cr(τ) if oK(|z− τ |r) can be replaced by o(|z− τ |r) that
is the limit is taken in the full disc.

The Julia-Wolff-Carathéodory theorem says that some regularity at τ is expected
although τ belongs to the boundary ∂D: f ∈ C1

K(τ) and 0 < f ′(τ) ≤ 1. If f ′(τ) < 1
then f is called hyperbolic, whereas if f ′(τ) = 1 then f is called parabolic.

What happens if we compare the expansions of f and g at τ? As we will see,
to establish that f ≡ g it suffices to check that the two maps agree up to the
third order at τ . Note that this “identity principle” is not true neither when the
attracting point stays in D (zn and zm commute and their expansions at 0 agree
up to the (min(n, m) − 1)-order nor when the commuting property does not hold
(we will show an example in the last section).

In [4], we discussed this problem and we established the following result for the
“extreme” cases: when f is hyperbolic or the identity (this is due to Burns and
Krantz [5])

Theorem 1.1. If one of the following conditions holds then f ≡ g.

(1) f is hyperbolic with Wolff point at τ and f ′(τ) = g′(τ);

(2) f = Id, g ∈ C3
K(τ) and f(τ) = g(τ) = τ , f ′(τ) = g′(τ) = 1, f ′′(τ) = g′′(τ) =

0, f ′′′(τ) = g′′′(τ) = 0.

In this paper we will prove the following theorem for the “middle” case, that is
when f is parabolic, improving a previous result appeared in [4].

Theorem 1.2. If f is parabolic with Wolff point at τ and one of the following
conditions holds then f ≡ g.

(1) f ∈ C2(τ), g ∈ C2
K(τ), f ′′(τ) = g′′(τ) 6= 0 and Re (f ′′(τ)τ) > 0;

(2) f, g ∈ C2(τ), f ′′(τ) = g′′(τ) 6= 0 and Re (f ′′(τ)τ) = 0;

(3) f ∈ C3(τ), g ∈ C3
K(τ), f ′′(τ) = g′′(τ) = 0 and f ′′′(τ) = g′′′(τ).

2. The linear model in H
The main tool that we are going to use is the construction of a linear model for
our maps: a “change of coordinates” in a neighborhood of the Wolff point which
transforms f in an automorphism of the upper half-plane H = {w ∈ C : Im w > 0}
or of the entire plane C. To simplify notations, from now on we will work in the
upper half-plane which is biholomorphically equivalent to the unic disc D by the
Cayley transformation C(z) = i τ+z

τ−z that maps τ to ∞. Then, by Julia-Wolff-
Carathéodory theorem,

K-lim
w→∞

F (w)
w

= α
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where

α := inf
{

Im F (w)
Im w

: w ∈ H
}
∈ [0,+∞).

Therefore, if α > 0 then F ∈ C1
K(∞), α = 1/f ′(τ) and

F (w) = αw + Γ(w) with Γ(w) = oK(|w|).

If ∞ is the Wolff point of F then α ≥ 1. When α = 1 and F is not the identity
then Γ(w) ∈ Hol(H, H) and

Γ(w) = β + oK(1) if f ∈ C2
K(τ),

Γ(w) = β + γ
w + oK( 1

|w| ) if f ∈ C3
K(τ),

where β = if ′′(τ)τ , γ = 2Sf (τ)τ2/3 and Sf (τ) = f ′′′(τ) − 3
2 (f ′′(τ))2 (the

Schwarzian derivative of f at τ). Note that Re β ≥ 0 and if β = 0 then γ ≤ 0.
The following result due to Cowen [7] gives some precious information about the

orbits behaviour.

Theorem 2.1 (Cowen) Let F ∈ Hol(H, H) with Wolff point at ∞. Then there
is an open connected, simply connected set V , called fundamental set for F , such
that:

(1) V is F -invariant that is F (V ) ⊂ V ;

(2) for all compact set K of H, the sequence Fn(K) is evenly contained in V ;

(3) F is univalent in V .

The Poincaré distance in H is defined by

d(w,w′) = tgh−1

∣∣∣∣w − w′

w − w′

∣∣∣∣ ∀w,w′ ∈ H.

We say that F is of automorphic type (F ∈ A) if all orbits are separated in the
Poincaré distance:

lim
n→∞

d(wn+1, wn) > 0 ∀w ∈ H

where wn = xn +iyn = Fn(w). The above limit exists because F is a d-contraction.
If F is hyperbolic then F ∈ A, on the other hand if F is parabolic then it can be
of automorphic type or not. Furthermore, F 6∈ A if and only if

qn :=
wn+1 − wn

wn+1 − wn
→ 0.

Here is the construction of the linear model for F due to Baker and Pommerenke
(see [8],[1])

Theorem 2.2 (Baker-Pommerenke) Let w0 ∈ H and

σn(w) :=
wn − x0

n

y0
n

,
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then the limit
σ := lim

n→∞
σn

exists locally uniformly in H and satisfies σ(w0) = i. Moreover, there is an
automorphism Φ of H which fixes ∞ such that

H F−−−−→ H

σ
y yσ

H Φ−−−−→ H
The map σ 6≡ i if and only if F ∈ A.
If F 6∈ A let

ρn(w) :=
σn(w)− i

q0
n

,

then the limit
ρ := lim

n→∞
ρn

exists locally uniformly in H and satisfies ρ(w0) = 0. Moreover

H F−−−−→ H

ρ
y yρ

C w + 2i−−−−−→ C
The following key-lemma will be very useful later.

Lemma 2.1. Let F , G be two commuting maps with Wolff point at ∞. If one of
the following conditions holds then F ≡ G.

(1) F ∈ A and σ ◦ F = σ ◦G;

(2) F 6∈ A and ρ ◦ F = ρ ◦G.

Proof. Let V be a fundamental set for F . Since F is univalent in V and the set V

is F -invariant then also Fn, σn, ρn are univalent in V for any n ∈ N. If F ∈ A then
the limit σ is not constant and, by Hurwitz theorem, it is univalent in V . In the
same way, if F 6∈ A then the limit ρ (which is not constant) is univalent in V too.
Moreover, if G commutes with F and K is a non-empty compact subset of G(V )
then Fn(K) ⊂ V for some n ∈ N and

Fn(K) ⊂ Fn(G(V )) = G(Fn(V )) ⊂ G(V ).

Therefore the open set G(V ) ∩ V is non-empty because it contains Fn(K) and it
is possible to find a non-empty open set W ⊂ V such that G(W ) ⊂ V . Since σ is
injective in V and both sets F (W ) and G(W ) are contained in V then the condition

σ(F (w)) = σ(G(w)) ∀w ∈ W

implies that F ≡ G in H. In a similar way

ρ(F (w)) = ρ(G(w)) ∀w ∈ W

implies that F ≡ G in H. 2
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As a first application of the previous results we discuss the cases when f is
hyperbolic or f is the identity map.

Proof. [Proof of Theorem 1.1.]
Case (1). We know F (w) = αF w + ΓF (w), G(w) = αG w + ΓG(w). Since F and G

commute then

Fn(G(w))− x0
n

y0
n

=
G(wn)− x0

n

y0
n

= αG
wn − x0

n

y0
n

+(αG − 1)
x0

n

y0
n

+
ΓG(wn)

wn

(
wn − x0

n

y0
n

+
x0

n

y0
n

)
By a result due to Cowen (see Lemma 2.2 in [7]), wn goes to∞ non-tangentially and
therefore the sequence x0

n/y0
n is bounded and, up to subsequence, we can assume

that it converges to the real number M . Moreover

lim
n→∞

ΓG(wn)
wn

= 0.

Thus by Theorem 2.2, taking the limit, we find

σ(G(w)) = αG σ(w) + (αG − 1) M.

Similarly
σ(F (w)) = αF σ(w) + (αF − 1) M.

If f ′(τ) = g′(τ) then αF = αG and therefore σ ◦ F ≡ σ ◦ G. Since F ∈ A, by
Lemma 2.1, we find that F ≡ G.
Case (2). By hypothesis

G(w) = w + Γ(w) with K-lim
w→∞

wΓ(w) = 0.

If G is not the identity map then, by the maximum principle, T (H) ⊂ H where
T (w) := −1/Γ(w). Furthermore

K-lim
w→∞

T (w)
w

= K-lim
w→∞

−1
wΓ(w)

= ∞

and this is a contradiction because, by the Julia-Wolff-Carathéodory theorem
applied to the map T , this limit has to be finite. 2

3. The parabolic case
First we establish a result about the kind of convergence of the orbits of F to ∞.
The first case has been proved by Bourdon and Shapiro [3].

Proposition 3.1. Let F ∈ Hol(H, H) be parabolic with Wolff point at ∞.

(1) If F ∈ C2(∞) and β 6= 0 then wn goes to ∞ non-tangentially if and only if
Im(β) > 0.

(2) If F ∈ C3(∞) and β = 0 then γ < 0 and wn has a subsequence that goes to
∞ non-tangentially.
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Proof. Case (1): if F ∈ C2(∞) then

wn

n
=

w

n
+ β +

1
n

n−1∑
j=0

Γ(wj).

Therefore, since Γ(w) = o(1),
lim

n→∞

wn

n
= β.

Hence
lim

n→∞

xn

n
= Re β and lim

n→∞

yn

n
= Im β

and if β 6= 0 then wn goes to ∞ nontangentially if and only if Im (β) > 0.
Case (2): now β = 0, F ∈ C3(∞) and γ < 0 by Theorem 1.1 because F si not the
identity map. Therefore

wn+1 = wn +
γ

wn
+ o(

1
|wn|

) = wn +
γ wn + |wn| · o(1)

|wn|2
.

Taking the real part we find that

xn+1 = xn ·

1 +
γ +

|wn|
xn

· Re (o(1))

|wn|2

 .

Assume by contradiction that the sequence wn has no subsequence which goes to
∞ nontangentially. Then the sequence |xn|/yn is bounded away from zero and the
sequence

|wn|
xn

=
|xn|
xn

√
1 +

(
yn

xn

)2

is bounded.

Hence evenly

cn := 1 +
γ +

|wn|
xn

· Re (o(1))

|wn|2
∈ (0, 1).

and
|xn+1| = cn|xn| ≤ |xn|

which means that also the sequence xn is bounded. Since |wn| goes to infinity then
yn can not be bounded therefore |xn|/yn goes to zero against our assumption. 2

The following theorem establishes a necessary and sufficient condition so that
two parabolic commuting maps coincide.

Theorem 3.1. Let F,G ∈ Hol(H, H) be two parabolic commuting maps with Wolff
point at ∞. Then the following limit exists locally uniformly in H

H(w) := lim
n→∞

ΓG(wn)
ΓF (wn)

.

Moreover, F ≡ G if and only if H ≡ 1.

Prepared using etds.cls



6 R. Tauraso

Proof. First assume that F ∈ A. Thus by Theorem 2.2, taking the limit in

σn(F (w)) = σn(w) +
ΓF (wn)

y0
n

we find that
σ(F (w)) = σ(w) + aF

where

aF = lim
n→∞

ΓF (wn)
y0

n

∈ R \ {0}.

It can not be zero otherwise

q0
n =

1

2i
y0

n

ΓF (w0
n)

+ 1
→ 0

against the fact that F ∈ A.
Moreover, since F and G commute

σn(G(w)) = σn(w) +
ΓF (wn)

y0
n

· ΓG(wn)
ΓF (wn)

and taking the limit we find

H(w) =
σ(G(w))− σ(w)

aF
=

σ(G(w))− σ(w)
σ(F (w))− σ(w)

.

Hence H ≡ 1 if and only if σ ◦ F ≡ σ ◦G and, by Lemma 2.1, this is equivalent to
F ≡ G.

Now we consider the case when F 6∈ A. Thus by Theorem 2.2, taking the limit
in

ρn(F (w)) = ρn(w) +
ΓF (wn)
y0

nq0
n

we find
ρ(F (w)) = ρ(w) + 2i

and

lim
n→∞

ΓF (wn)
y0

nq0
n

= 2i.

Moreover

ρn(G(w)) = ρn(w) +
ΓF (wn)
y0

nq0
n

· ΓG(wn)
ΓF (wn)

and taking the limit

H(w) =
ρ(G(w))− ρ(w)

2i
=

ρ(G(w))− ρ(w)
ρ(F (w))− ρ(w)

.

Hence H ≡ 1 if and only if ρ ◦ F ≡ ρ ◦G and, by Lemma 2.1, this is equivalent to
F ≡ G. 2
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Note that in the previous theorem the condition that F and G commute is
necessary. For example, taking

F (w) = w + i and G(w) = w + i− 1
(w + i)N

with N ≥ 1, then it is simple to verify that these two maps coincide up to the
(N + 1)th-order at ∞ and H ≡ 1 even if they are not equal.

Now we are ready to prove our main result.

Proof. [Proof of Theorem 1.2.] First we prove that the regularity conditions for F

and G at τ and the Proposition 3.1 imply that H is identically constant.
Case (1): since βF = if ′′(τ)τ 6= 0 and Im βF = Re (f ′′(τ)τ) > 0 then wn goes to
∞ non-tangentially and

H(w) = lim
n→∞

ΓG(wn)
ΓF (wn)

= lim
wn→∞

βG + oK(1)
βF + oK(1)

=
βG

βF
.

Case (2): since βF 6= 0 and Im βF = 0 then wn goes to ∞ tangentially and

H(w) = lim
n→∞

ΓG(wn)
ΓF (wn)

= lim
wn→∞

βG + o(1)
βF + o(1)

=
βG

βF
.

Case (3): since βF = 0 then γF = 2/3f ′′′(τ)τ2 < 0, wn has a subsequence that goes
to ∞ non-tangentially and

H(w) = lim
j→∞

ΓG(wnj
)

ΓF (wnj
)

= lim
wnj

→∞

γG + wnj
oK(1/|wnj

|)
γF + wnj

oK(1/|wnj
|)

=
γG

γF
.

By the conditions on the derivatives we obtain that H ≡ 1 and therefore F ≡ G by
the previous theorem. 2

Note that if F (w0) = G(w0) for some w0 ∈ H and F ◦ G = G ◦ F then
Fn(w0) = Gn(w0) for all n ∈ N. We have already seen that the regularity conditions
for F and G imply that the map H is identically constant. Again this constant is
just 1 and therefore F ≡ G: if F ∈ A then

H(w0) =
σ(G(w0))− σ(w0)
σ(F (w0))− σ(w0)

= 1,

if F 6∈ A then

H(w0) =
ρ(G(w0))− ρ(w0)
ρ(F (w0))− ρ(w0)

= 1.

This remark is non-trivial provided the sequence w0
n is not a Blaschke sequence,

that is
∞∑

j=0

Im
(

−1
F j(w0)

)
< ∞.

This happens for the parabolic map of automorphic type

F (w) = w + 1− 1
w

.
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In fact, we have that
lim

n→∞

wn

n
= 1

and therefore |wn| ≈ n. Moreover

Im (wn) = Im w +
n−1∑
j=0

Im
(
−1
wj

)

≤ Im w +
n−1∑
j=0

1
|wj |

≤ C log n

Im (wn) = Im w +
n−1∑
j=0

Im (wj)
|wj |2

≤ Im w + C
n−1∑
j=0

log j

j2
< +∞

Hence
∞∑

j=0

Im
(
−1
wj

)
= lim

n→∞
Im (wn)− Im w < +∞.
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