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Geometria. — On fixed points of holomorphic maps of simply connected proper do-
mains in C. Nota di Roserto TAuraso, presentata(*) dal Socio E. Vesentini.

ABsTRACT. — A criterion for the existence of fixed point of one-dimensional holomorphic maps is

established.
Kevy worps: Fixed point; Holomorphic map; Wolff point.

Riassunto. — Puntt fissi di funzioni olomorfe. Si stabilisce un criterio di esistenza di punto fisso per fun-
zioni olomorfe di un dominio proprio, semplicemente connesso di C.

Let D be a simply connected, proper domain in C, and let f be a holomorphic map
of D into D, different from the identity map. According to the Denjoy-Wolff theorem,
unless F is an elliptic automorphism of D, the iterates f/* = fof... of of f converge as
k — o for the topology of uniform convergence on compact sets, to a constant func-
tion, mapping D onto a point ¢ € D (the closure of D). If ¢ € D then f(¢) = ¢ and ¢ is the
unique fixed point of /. In the present Note, a sufficient condition for the existence of a
fixed point ¢ € D of f will be established, together with a localization of c.

After collecting some known facts in §1, §2 will be devoted to investigating the
case of the open unit disc and §3 to the general case.

1. Let A= {zeC: |z| <1} be the open unit disk of C. For a € 4 the Mébius

transformation
M, (z) = 214 Vzed
1 —az

is a holomorphic automorphism of 4, which can be extended continuously to a homeo-
morphism of 4 onto itself. This extension will be denoted by the same symbol M, .

On 4 we introduce the Poincaré distance ¢(z, w) = tanh™! |M, (z)|, Yz, we 4
and define the open g-ball of center w €4 and radius R > 0: B, (w, R) = {z € 4:
elz,w) <R} ccd, and the horocycle of center 7€ 34 and radius R > 0: E(t,R) =
={zed: |t —z|?/(1 - |z]?) <R} cA. Then E(1,R) N34 = {7} and the open sets
B.(w,R) and E(7, R) are euclidean disks contained in 4 such that

U B,(w,R)= U E(-,R)=4.

E=>0 E>0

For any fe Hol (4, 4), ie. a holomorphic map f from 4 to 4, let Fix f be the set of
fixed points of f: Fi:u:fi{z e A: f(z) =z}. We collect here some known facts (cf.
eg [1]):

(*) Nella seduta dell’8 gennaio 1994.



198 R. TAURASO

1) fis a contraction for the distance ¢
(1) e(f(z), flw)) Selz,w) Vz,wed;
moreover, equality holds for some z #w e iff it holds for every z, wed iff
fe Aut(4),

2) (Julia’s Lemma). Let o € 84 and

1 —
hillﬂ]f 1 .._I";;}l i }‘f(c"}'

If A;(g) < @ then there exists a unique 7 € 4 such that f/(E(s, R)) c E(x, As(a)R),
VR > 0: moreover

lim f(re) =7 and lim |f'(r¢)| = As(o).

r— 1" Fr—1"

3) (Wolff’s Lemma). If Fix f = @ then there exists a unique point = = ( f) e 4,
Wolff point of £, such that

(2) f(E(z,R))cE(r,R) VR>0.

4) As a consequence of 1), if f has two different fixed points in 4 then f is the
identity map in 4.

5) If fis not an elliptic automorphism then the sequence of iterates { f* }n con-
verges, uniformly on compact sets of 4, to a point ¢ of 4. If Fix f# 0 then c € A and

fle) =c; if Fixf=0 then ¢ = 7(f) € 84, the Wolff point of f.

The next result was established by Goebel [6] in a more general context and will be
useful in the following.

For a, Bed, let KES{zed: |1-Fz|2/(1- |B|?) < |1 - 3z|2/(1 = |a|?)},
and let

(3) K< N g/«

aed

If Fixf# @ then K = Fix f, otherwise K = ( f).

Now, we conclude this first part with some classical results on bounded holomor-
phic function theory (see[8,5,7]). Consider a family { a; }; of points in 4 (not neces-
sarily all different), indexed by a set ] of consecutive positive integers starting from 1.
With #] we will mean the cardinality of the set J.

Set for 1 <=n < #]

i

BH(Z}iIH (—Iatj|/r1;-)([z—:t;-]/{l—EJ-E]) Yze

=1
with the convention that |a, |/a; =1 when a, = 0. If the family {z, }; is such that
> (1 - |a; |) < o then we can define the Blaschke product B associated to that fami-
fe]

ly: if | is empty then B(z) S1forallze 4, if | is finite then B is B, with # = # |, while in
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the infinite case we set

£

B(z) = lim B,(z) Vzed.

n—s ©

Remark. The definition of B is independent of the ordering of the elements «;.
The principal properties of the Blaschke product are:
1) when # ] = ® then the partial products B, — B uniformly on compact sets of 4;
2) B e Hol(4, 4);

3) |B(ra)| = 1 when r — 1~ for a.e. o € 34 with respect to the Lebesgue mea-
sure on 94 (that is B is an inner map);

4) the zeros of B in 4 are exactly {«; }; and a zero in the family is repeated as
many times as its multiplicity.
The map fe Hol (4, 4) has a factorization of the form
(4) f(z) =B(z)glz) Vzed

where B is a Blaschke product with zeros the family {«; }; that are exactly the zeros of f
with the same multiplicities and g € Hol (4, 4) is without zeros in A.

2. Itis easy to verify that if 7, T € 34, #, > 0 and f(E(z, R)) c E(r, ¢;,R) forallR > 0
then0 < A¢(2) = min {¢# > 0: f(E(s, R)) c E(t, tR)VR > 0} < ¢, < . For this reason
As(g) is called the boundary dilatation coefficient.

Hence, by Wolff’s lemma, if / has not a fixed point in 4 then

(5) () <1.

The next proposition follows easily from some basic results due to Carathéodory
(see [3, Sections 298-300] and cf. also[2]):

ProrosiTion 2.1. Let £, g and b be maps € Hol (4, 4), such that f = gh in 4 (g and 4
are divisors of f) then

(6) J.f[ﬂ*)=lg(a'}+lb(u'} Voeod.

Moreover let { £, }y c Hol (4, 4), if £, is divisor of £, i.e. f=f, g, with g, € Hol (4, 4), for
every # and f, —f uniformly on compact sets of 4, then

(7) Ail(a) = As(e) Voeodd.

Now, since the following relation holds
(8) 1= IM,)?=((1-]a]?)1 = |2|?))/|1 —az|* Vz,weld,

it is easy to compute A; when f is a Blaschke product:

Lemma 2.2, Let B be the Blaschke product associated to the family {«;},
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then for all z e 4
apla) =2 (1= |a;|2)/|o—a;|?.

Je]
Proor. If the family {«;}; is empty then there is nothing to prove.

Assume that # ] = » > 0: we can write the partial product of order #, B, as product
of n Mébius transformations

B,(z) =e" nM with e = [] (= lo;|/a;) eda.
i=1 r=1

Hence (6) and (8) yield for € 84

ZAM Zil—la 12)/ o —a;]?.

F=1
If #] = o, since B, — B uniformly on compact set of 4, then by (7)

Ag(g) = lim AHJU}:.;I (1= |a;|*)/|o—a;|?. 0

H—e G

For «, 8 € A the set Kf (defined in § 1) depends essentially on the distance function
¢- In fact by (8) it is easy to prove that K N4 = {z e 4: ¢(z, 8) < ¢(z, «)}. Namely, in
the case when 8 and « are different, the part of A that contains 38 and is delimited by the
non-euclidean bisector of the non-euclidean segment with extreme points « and f,

while K* = 4:

Fig. 1. — The set K{ is the dotted part of the picture.

3. If DcC is a domain we can define the Caratheodnry pseudo-distance on D
(see for example [4]) by ¢p (z, w} sup {¢(g(z), g(w)): g € Hol (D, 4)}. This pseudo-
distance is contracted by holomorphic maps, in the sense that if D, and D, are two do-
mains of C and F € Hol (D,, D,), then ¢p, (F(z), F(w)) < ¢p, (z, w) ¥z, w € D;. Since
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¢4 = ¢, Riemann’s mapping theorem implies that if D is a proper simply connected do-
main of C and F is any biholomorphic map from D onto 4 then ¢p is a distance in D
and

{9] FD(Z,M} =p(F{I], F(w}} :tﬂﬂh_l |M;:{z], (F{w}” V’:—:,wED.
So, it is possible to define, likewise the case of D = 4,

(10) KE{D,op) ={zeD:pp(z,8) <pplz,a)} Va,BeD.

Let D be a proper simply connected domain of C and f € Hol (D, D). Assume that f
is neither constant nor the identity map. Then, for £ € D, f ' (%) is a descrete subset of
D. Fixing arbitrarly an ordering and repeating each element with its multiplicity, we
construct from this set the family {«; }; of the counterimages of £. The following theo-
rem yields a sufficient condition about the geometrical behaviour of the counterimages
of { for the existence and uniquess of a fixed point of f in D.

TueoreMm 3.1. If there exists R = 0 such that

(11) #{/e]:2;€B,, U{”}} C(%,R) = (1 + tanhR)/(1 — tanhR)
then f has one fixed point in D. Furthermore, this fixed point belongs to the set
n K ,FD
je]

Proor. By (9) and (10), is is sufficient to prove the theorem in the case
D=A.

Uniqueness follows from § 1. Since the case R = 0 is trivial, assume that R > 0. The
map / has a fixed point in 4 iff the same happens to f = M, ofo M, '. Moreover, by (4)
f can be written as f = Bg, where B is the Blaschke product associated to the family of
the zeros of f, that is to {M;(«;)};. By the previous lemma, and by (6), for every
ce dd
(12) Af(g) = dp = -E; (1= |M(2;)]?)/ o — Mc(a;) |2

JE
Since by the hypothesis there exist C({,R) elements of the family {«,}; such that
p(L, a;) <R, that is |[M.(a;)| < tanhR, we have by (12) and (11)

2 1*|M~’:(“j’” 1 — tanhR

= 1.
&1+ |M(a))| > & R kR =

By (5), this means that there does not exist the Wolff point of f. Hence f has a fixed
point in A.
The second part of the theorem follows immediately from (3). O

Ai(a) 2

For example, any map fe Hol (4, 4) that has at least three zeros or a zero with
multiplicity = 3 in the set {z € 4: |z| < 1/2} satisfies the hypothesis and then has a
fixed point in A.

Note that, if we want to construct a map f = ¢*B € Hol (4, 4), with g € R and B a
Blaschke product having a pre-assigned Wolff point 7 € 4, it is sufﬁcmnt that the zeros
of B go to v «fast» and «tangentially».
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A possible choice is the following: for every integer j = 1 take «, € 4\ E(r, 2/) such
that lim «; = . In fact

M@ =)= S (1 g 1) |r - g ]t< 3 27 =1,

;=1
and by Wolff’'s lemma, we can take e "* = lim B(rr) € 4.
r—1
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