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Abstract. It is proven that the sets of periods for expanding maps on n-
dimensional flat manifolds are uniformly cofinite, i.e. there is a positive integer my,
which depends only on n, such that for any integer m > mg, for any n-dimensional
flat manifold M and for any expanding map F on M, there exists a periodic point
of F whose least period is exactly m.

Expanding maps were first introduced in a differentiable setting by M. Shub
n [12], and then studied by D. Ruelle in [11] who proposed a more general
definition based on a simple metric property: they are open continuous maps
which locally expand distances. In general, it is rather difficult to prove the
existence of at least an expanding map on a metric space, but there is a class of
connected compact manifolds where the set of expanding maps is always non-
empty: flat manifolds. The term flat derives from the fact that flat manifolds
are connected Riemannian compact manifolds whose Levi-Civita connection
has curvature that identically vanishes (e.g. the n-torus, the Klein bottle...).

Due to the strong topological properties of expanding maps on flat mani-
folds, in this note, I am able to determine the uniform cofiniteness of their sets
of periods. This work has been inspired by the paper [7] where B. Jiang and
J. Llibre studied the sets of periods for generic continuous maps of the n-torus
and obtained a similar result in the expanding case.

I wish to thank the referee for very helpful comments and suggestions.

1. Preliminaries.

Let M be a compact connected topological n-dimensional manifold.

Definition 1.1 An open continuous map F': M — M is expanding if there
exist a metric d compatible with the topology of M and constants ¢y > 0,
A > 1 such that for z,2’ € M

d(z,2') < e 1implies d(F(z), F(x')) > M\d(x,2). (1)

We will denote by £(M) the set of all maps expanding on M.
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We briefly summarize the properties of expanding maps which will be useful
later (see [12] for more details). Let F' € £(M) then

(i) F is a self-covering map, N-to-1 with N > 2;

(ii) F* € E(M) for all k > 1;

(iii) the set of fixed points Fixy(F) % {z €M : F(z)=x} is non-empty
and finite, and the set of periodic points Uy, Fixa(F*) is countable and dense
in M, N -

(iv) the homomorphism F* induced by F on the deck transformation group
of the universal covering space of M is injective and characterizes the topolog-
ical properties of /. This means that expanding maps which induce the same
homomorphism are topologically conjugate: if ® € £(M) and F* = ®* then
there exists a homeomorphism «g of M such that

F:a610®0a0.

In this note we are interested in a particular class of manifolds: flat mani-
folds (see [4] as a general reference).

Definition 1.2 A cocompact, torsion free, discrete subgroup I' of O(n)<R",
the group of the affine isometries of R", is called a Bieberbach group and
M = R"/T is the flat manifold associated to I

The following statements will allow us to find a better representation of a
given flat manifold and of its expanding maps. Let I' be a Bieberbach group
then

(v) ([2]) the holonomy group of I, i. e. ¥ “r/irn ({I}><IR™)), has finite
order |U[;

(vi) ([3]) there is an element (B,b) of the affine group Aff(IR"), which
conjugates I' to a subgroup I" C Aff(R"), called affine Bieberbach group, such
that for any v € I":

v=(U,u) with U € GL(n,Z) and |V|u € Z".

Note that |det(U)| = 1. Moreover, I'' N ({I}><IR") = {I};<Z" and the holon-
omy group becames W' = T"/({I}><Z");

(vii) ([8]) if ¢ : T" — T" is an injective homomorphism of the affine Bieber-
bach group I, there exists (A,a) € Z"*"><R" C Aff(R") such that, for all
v=(Uu) el

o(v) = (4, a)ﬁ(fy) = (A a)y(A,a) ' = (AUA™ Au+ (I — AUA Ha).

Let M = R"/TI" be a flat manifold and let M’ be the quotient space R" /I,
where I" = (B, b)['(B,b)~! is the affine Bieberbach group given by (vi). Then,
(B, b) induces a homeomorphism from M onto M. For this reason, from now
on, the flat manifold M will be considered as the quotient space of R" by the
affine Bieberbach group I rather than the Bieberbach group T'.
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Let F' be an expanding map of M then, by (iv), F' induces an injective
homomorphism ¢ on the deck transformation group I of the universal cov-
ering R". By (vii), there is an affine map (A, a), that is a lifting to R™ of
a map @4, € E(M), which induces on I a homomorphism @%A@) equal to
¢. Therefore, again by (iv), F' and ® 4, are topologically conjugate and we
will say that ®(4 ) is the endomorphism associated to F. Note that, by (1),
the map ®(4,) is expanding iff all the eigenvalues of the integer matrix A are
outside the closed unit disc in C.

Now we are ready to establish a result, proved by D. Epstein and M. Shub in
[5], which really motivates the study of expanding maps just on flat manifolds.

Theorem 1.3 If M is a flat manifold, then (M) is not empty.

Proof. The flat manifold M can be represented as quotient space R" /I where
I is an affine Bieberbach group. The affine map ((|¥’| + 1)T, 0) induces on I
a homomorphism ¢ such that, for all v = (U,u) € T”,

p(7) = (%] + DL, 0)y(([¥'] + DL, 0) " = (U, (1¥'] + )u) = (I, [¥'|u) (U, w).

By (vi), |V'|u € Z", hence ¢(v) € TV,
Therefore, the affine map ((|V’[41)L, 0) is the lifting of the map ®(j¢/|41)01,0)
which belongs to £(M) because (|¥'| +1) > 2. 0

2. Fixed points.
Let M be a flat manifold and let F' € £(M). We know by (iii) that the

number of fixed points of F' is finite. Now, we want to compute exactly the
number N (F) & card(Fix(F)). The following remarks and the next lemma
will be of value for this purpose.

Since, by (vi), I<Z" is a subgroup of the affine Bieberbach group I", then

M is always covered by the torus T" % R”™/(I<Z"). When this covering is
not trivial, i. e. when ¥’ # {(I,0)}, the manifold is called an infra-torus. If
®(4,q) is the endomorphism associated to F' then the following commutative

diagram holds
(A,a)

R" — R"
7 l l T
Tn RﬁA Tn
! l '

®
(4,0)
M - M

where: R, : T™ — T" is a toral rotation, R,(z) = x +a and ®4 : T" — T" is
a toral linear endomorphism ® 4(x) = Ax.

Lemma 2.1 Let A be a matriz in Z"™*" then:



(a) if A is non-singular then ® 4 is a self-covering of T™ with degree equal
to |det(A)| > 1;
(b) if the spectrum of A has no roots of unity, i. e. det(A* —T) =0 for all
k> 1 then
card(Fixpn (%)) = | det(A* — T)| Vk > 1.

Proof. (a) Since A is non-singular, ® 4 is a self-covering of T". Moreover there
exist two matrices P,Q € GL(n,Z) such that A = PDQ where D € Z"*" is
diagonal (see [6] p. 384). This means that 4 = ®p o & o &y where p and
® are homeomorphisms of T". Hence

card(®,'(0)) = card(®,'(0)) = | det(D)| = | det(A4)| > 1.

(b) A point z € Fixya(®) iff there exists y € R” such that (A*—T)y € Z".
Therefore, since det(A* — 1) # 0 for all k > 1,

Fixpn (0%) = Ker(®(ar_g1y) = @i, (0),

and, by (a), card(Fixp.(®%)) = | det(A* —T)|. 0
Here is the theorem which gives the explicit formula for NV (F).

Theorem 2.2 Let M be a flat manifold. If F € E(M) and P44 is the
endomorphism associated to F', then

1

NE) = 15

> [det(A D). 2)

‘ Uer(¥’)
where r is the map that assigns to each (U,u) € V' its rotational part U.

Proof. Since the maps F' and ®(4,) are topologically conjugate, N (F) =
N(®4,)) and it is enough to compute the number of fixed points of @4 q).
Since x € Fixp(P(a,q)) iff there exist y € R™ and (U,u) € I' such that

(4, a)(y) = (U, u)(y) and 7"(x'(y)) = =,

Fisga(Bia) = ox'( U (A-0)(u=a)) =#( U 8Ly (w(u=a)). ()

Now, we show that if (U, u) and (V,v) are two different elements of ¥’ then
CI)(_AI—U)<7T,(U —a))n CI)(_AI—V) (7'(v —a)) = 0.
Otherwise there exist y € R" and p,q € Z" such that

{ (A-U)y=u—a+p
(A=V)y=v—a+gq.



These equations yield (V,v+q) ™' (U, u+p)y = y. Since the action of I on R" is
properly discontinuous, (V,v+q) "} (U,u+p) = (I,0) and U = V contradicting
the hypothesis. By (3), since the degree of the covering 7" is equal to |V’

1
=

N(P4,q)) > card(CI)(_Al_U) (7' (u — a))).

| Uer(¥)

To complete the proof, it is enough to remark that card(CI)(_Al_U) (r'(u—a))) =
| det(A — U)| by the preceding lemma. O

3. Sets of periods and uniform cofiniteness.

Definition 3.1 For m > 1, the number of periodic points of least period m
for I is denoted by

pr(m) % card (FixM(Fm) VU FiXM(Fk)> .

k=1

The set of periods P(F') of the map F' is the set of positive integers m such
that pp(m) > 0.

By (iii), we know that pr(m) is finite for all m > 1 and P(F) is infinite.
But some periods may be missing: for example, ®_o,; € £(T") has no points
of period 2:

o1 (2) = N(@2,, )~ N(®_syy) = | det(4L—T)|—| det(—20—T)| = 3"—3" = 0.

However, B. Jiang and J. Llibre have proven in [7] that there is a positive
integer mq such that for any integer m > myq and for any expanding map F' of
T" there exists a periodic point of F' whose least period is exactly m. In the
next theorem we state that the above property is verified not only for T™ but
for each n-dimensional flat manifold M. The following lemma on algebraic
numbers (see [7] and [10] ) is needed.

Lemma 3.2 Let a be a nonzero algebraic number with minimal polynomial
Q € Z|x] of degree d. If |a| # 1 then

1

S I
o =112 garyrress

with M(a) % |a| 1L, max{1, |a;|} where a is the leading coefficient of Q and
ai,...,aq the roots of Q).

Here is the main result of this note.



Theorem 3.3 Let n be a positive integer. Then the sets of periods for expand-
ing maps on n-dimensional flat manifolds are uniformly cofinite, i.e. there is
a positive integer mg, which depends only on n, such that for any integer
m > myg, for any n-dimensional flat manifold M and for any expanding map
F on M, there exists a periodic point of F' whose least period is exactly m.

Proof. Let M be a n-dimensional flat manifold and let F' € £(M) with ®(4 4
the associated endomorphism. Suppose that aq, ..., «a, are the eigenvalues of

A and let o(A) ¥ max{|aul, ..., |on|}.
First observe that if U € r( V") and k > 1 then

(AFUY = (AFUTT A (AU TAT2R) L (AFU AR AR Y > 1. (4)

Since, by (v) and (vi), Ar(¥)A~! C r(¥’) and 7(¥’) is a finite group of order
|W'|, there is an integer 1 < jo < |W’'| such that AFU—1A-dok = =1, Let

V = (APUTTATR) (AU ATR) L (APRU T AR,
Then V € 7(¥’) and therefore V¥l = I. Hence, by (4),
(AkU—l)jo|‘1"| — Il gRaol¥'] — (Ak)jol\ll’l'
This means that, in absolute value, the eigenvalues of A¥U~! and A* are the

same: |oq|*, ... k.
Since, by (vi), |det(U)| =1 for all U € r(¥’), it follows from (2) that

1 1
NEF) =— > |det(A"=U)|=— > |det(4A*U" -T)|.
|\II Uer(¥’) “Ij Uer(¥’)
Therefore, for m, k > 1
N(Fk) ZUET(‘I/’) | det(AkU* |Oéz|k + 1
The eigenvalues aq, . .., a,, are algebraic numbers greater than 1 in absolute

value: the minimal polynomial of each «; is monic, has degree d; < n and
therefore 2 < M(a;) < o(A)™. Hence, by the previous lemma,

1 1
Oéz'—1> > .
12 AT Z 2

Let 1 <k <2Z Then

0|

|ai|m —1 | |k|al|m7k 1 |k |al| -1 |al| —1 1

L Ul T ,
la|F+1 — la|F + 1 2 o ik +1 = 2 T 2ntlg(A)?



and it follows from (5) that

m

N(F™) 1 a1 0(A)" =1 _ o(A)2 —1
N(ER = TEgia) T A = e elAy

The right member of the above inequality is an increasing function with respect
to o(A) for m > 2n®. Thus there is my > 2n3, which depends only on the
dimension n, such that the inequality

NE™) _ o(4) -
N(FF) = 20g(A)™ = 2m4n?

w3

>

—1_2m -1 m
i (6)
holds for all m > my.
Let € M be a fixed point of F™. Then it has a least period k with
1 < k < m. Moreover k divides m: indeed m = ¢k + r with ¢ > 0 and
0<r <k, soxr=Fm"(z)=F(F%(x)) = F(z), which implies that r = 0 by
the minimality of k. Therefore

pr(m) = card(Fix (F™) \ U Fix((F¥)),

klm,k<m

and, since the conditions k[m and k < m imply that 1 < k < %, we obtain by
inequality (6)

2
pr(m) > N(F™) — S N(F*) > N(F™)(1 - —) =0,
k|m,k<m 1<k<z
that is m € P(F) for m > my. 0

As a final remark, we give the complete list of all the missing periods for
expanding maps on flat manifolds up to dimension 3 (for higher dimensions
there are no results). As regards the n-torus, the situation is summarized in
the following table (see [1] and [7]).

Torus | Characteristic Polynomial of A | IN* \ P(®,)
T! T+ 2 2
T? 22+ 2x + 2 2,3
° +2 4
T 212 2.6
T3 —2 3
23+’ 42 2,4
a’ + x4+ 2 5

On the other hand, if we consider an n-infra-torus M then P(F') = IN* for all
F e &M) and n <3 (see [9] for n =2 and [13] for n = 3).
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