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Let F and G be two holomorphic maps of the unit polydisc
A = (2, 2) €C™ ¢ |z <1 for i=1,...,n}

which are continuous on the closure A" of A™. According to A. L. Shields [17]
(for n = 1), D. J. Eustice [4] (for n = 2) and L. F. Heath and T. J. Suffridge
[8] (for any finite n > 1), if F' and G commute under composition, they have
a common fixed point in A”. See T. Kuczumow [11] and I. Shafrir [16] for the
infinite dimensional case.

Several questions arise concerning the cardinality and the location in A"
of the set of all common fixed points. Some of these questions are investigated
in this article, under the additional hypothesis that F' and G map into itself

the Silov boundary of A", which is the n-dimensional torus
T”déf{x: (x1,...,2,) €C"™ : |y =1 for i=1,...,n},

and their restrictions to T" are both expanding.
Some of the results of this paper are summarized by the following theorem,

in which F and G denote also the restrictions of these maps to T":

Theorem. Let F' and G be two holomorphic maps of A™ which are continuous
on A", map T" in itself and are expanding on T". If these maps commute on
T" then they commute on A" and have a unique fixed point in A".

If moreover the numbers n(F) and n(G), respectively of the fixed points of
F and G on T", are relatively prime, then F' and G have a unique common

fixed point also on T".

The proof of this theorem is a consequence of some results of independent

interest concerning the behaviour of F' and G on T", which extend to any
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dimension a theorem established by A. S. A. Johnson and D. J. Rudolph [10]
in the one-dimensional case. The main technique will be that of replacing, via
conjugation by a suitable homeomorphism, the two maps F' and G of T" by
two hyperbolic linear endomorphisms A and B of the universal covering space
IR". The existence of a common fixed point of F' and G will then be shown
to be equivalent to the solvability of a diophantine matrix equation. In the
second part, as a consequence of the existence of a smooth invariant measure
on T" for F', we show that this map have one and only one fixed point inside
A" hence it is the unique internal common fixed point. Some of the results
established in this part extend to the n-dimensional case some facts obtained
by J. H. Neuwirth [13] and myself [20].

I wish to thank Professor Edoardo Vesentini for his useful suggestions and

continuous encouragement.

81. Let M be a closed smooth manifold, i.e., a compact connected smooth
manifold without boundary. In differentiable dynamics two of the more studied
classes of maps are: the Anosov diffeomorphisms and the expanding maps.

A C!' diffeomorphism F : M — M is called an Anosov diffeomorphism if
for some (and hence any) Riemannian metric on M there are constants ¢ > 0,
A > 1 such that at any point x € M there is a splitting of the tangent space
T, M = E®@& E" which is preserved by the differential D, F' and for all integers
kE>1

[|D,F*()|] < eA¥||v]| Vv € E* and ||D,F~*(v)|| < c\*||v|| Vv € E“.

A C' map F : M — M is expanding if for some (and hence any) Rieman-
nian metric on M there are constants ¢ > 0, A > 1 such that at any point

x € M and for all integers k£ > 1
|| D F*(0)|] > eA¥||v|| Vo € T, M.

Let A(X) be the set of Anosov diffeomorphisms of X and call £(X) the

set of the expanding maps on X. For the main properties of these maps we



refer to the papers of Franks ([5],(6]), Manning ([12]) and Shub ([18], [19]) and
the recent book of Aoki and Hiraide ([2]).

Not all smooth closed manifolds are acted upon by Anosov diffeomorphisms
or expanding maps: one class of manifolds which have been investigated with
reference to this problem, see [14] and [3], are the compact flat manifolds (Rie-
mannian manifold with sectional curvature identically zero) and in particular
the n-dimensional torus T™. Note that A(T") = () iff n = 1, whereas £(T") is
always not empty.From now on we will assume that M = T".

We recall some properties of the affine maps of T™ that we will need in
the following. Let 7 : R™ — T™ ~ IR"/Z" be the natural projection. Then if

w € R", we define the toral rotation R, : T" — T™:
Ru(m(y)) =7m(y +w) vy € R".
If S e Z™" | we define the toral endomorphism ®g : T" — T":
®g(n(y)) = n(Sy) Yy € R™

The composition of a rotation with an endomorphism, R, o ®g, will be called
an affine toral map. The main properties of these endomorphisms are:

1) ®g is a homomorphism of the group (T", -). It is surjective iff det(.S) # 0
and in this case it is a self covering map with a constant number of sheets equals
to |det(S)|. ®g is an automorphism iff det(S) = +1.

2) Fixps (g) & {2 € T : dg(z) = x} is a subgroup of (T, ). If S does
not have 1 as an eigenvalue, then the number of fixed points n(®g) is finite
and equals to |det(S — I)| (see [7]).

3) &g € A(T") iff dg is an automorphism and S is hyperbolic i.e., all the
eigenvalues of S have absolute value different from 1. &g € £(T") iff S has all

the eigenvalues of S of absolute value greater than 1 (see [2]).

If F: T" — T" is a continuous map, there exists a lifting F of F such that



the following diagram commutes:

F

R* — R"
m |l
T" . T

The lifting F determines a unique homomorphism of Z", the group of the
covering transformations, represented by the integral matrix A which satisfies

the equation
A(u) = F(y 4+ u) — F(y) Yu € Z" and Yy € R". (1)

Thus the map F' and the toral endomorphism ® 4 induce the same homomor-
phism of 71 (T") ~ Z", the fundamental group of T", and since the universal
covering space R™ is contractible, this means that they are homotopic (see [7]).
Any F € A(T")UE(T™) is topologically conjugated to the endomorphism ® 4
i.e., there exists a homeomorphism h of T™ such that ho F o h™t = 4.
Since A(T™) and £(T™) are invariant under this topological conjugation the
structure of the spectrum of the linear map A is described in 3). Hence all
topological properties of F' can be recovered by those of the associated endo-
morphism ®4: by 1) N, the degree of F, is equal to |det(A)| > 1 and by 2) the
cardinality of the set Fixpn(F') is equal to n(F) = n(®,4) = |det(A —1)| > 1.
Note that N = 1 iff F € A(T").

Let F, G be two continuous map which commute on T", that is
(FoG)(z)=(GoF)(x) VxeT"

and let F' and G be two of their liftings. By the commutativity of F and G

there exists r € Z" such that

F(G(y)) = G(F(y)) +r Yy eR", (2)

As in (1), let &4 and ®p be the toral endomorphisms associated respectively
to F and GG. We denote by S the set of all continuous maps & : R" — R"
such that

a(y+u) =y+a(u) Yu e Z" and Yy € R". (3)
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Now assume that F,G € A(T") U E(T"). Then the linear maps A and B are

invertible and we can define for & € S the maps
F@a) () (A oao F)(-) and Go(a)() ¥ (B 'oaoG)(-)— B0

where # € R" is a parameter that will be chosen in a suitable way. The maps

F and Gy send S into itself because for all w € Z" and y € R"
F@)y+u) = (At oaoF)(y+u)= (A" 0d)(F(y) + Au) =
= AN (a(EF(y)) + Au) = F(@)(y) +u
that is F(&) € S. The same kind of arguments holds for Gy. It can be proved
that the map F has exactly one fixed point & in § and its projection « is
a homeomorphism of T" (see [2] page 244). Now, it will be shown that the

parameter ¢ can be chosen in such a way that the maps Gy and F have the

same fixed point. The first step is the following lemma:
Lemma 1.1 The matrices A and B commute.

Proof. Let u € Z". Since B(u) € Z", (1) implies that

A(B(u)) = F(y + B(u)) = F(y) = F(y + G(u) - G(0)) = F(y) Yy € R".

Choosing y = G(0) yields
A(B(u)) = F(G(u)) - F(G(0)) (4)
and, in the same way, since A(u) € Z",

B(A(u)) = G(F(u)) — G(F(0)). ()

Hence subtracting (5) from (4) we have, by (2), that A(B(u)) = B(A(u)) for
all u e Z".

The second step is to make the maps F and Gy commute:



Proposition 1.2 If we choose § = (A —I)~r then the maps F and Gy com-

mute in S.
Proof. First of all, for every @ € S and y € R"

F(Go(@))(y) = (A oGy(a)o F)(y) =
= A Y B loaoG)(F(y)—-A'B 9=
= A'B'a(G(F(y)) — A'B7'9

Similarly

Go(F(a)(y) = (B 'oF(a@)oG)(y) —B 9=

Then (2) and (3) yield

and by (6) and lemma 1.1, we find that F and Gy commute iff
F(Go(@)(y) — Go(F(a)(y) = —AT"B0-A"'Br+B719=0

that is iff 6 = (A — I)~'r.
Q.ED.

From now on we choose § = (A—1I)~'r and we prove the following theorem.

Theorem 1.3 If F,G € A(T") UE(T™) commute, there exists a homeomor-
phism o of T™ onto itself such that @ € S and

aoFoa =30, (7)
aoGoat=Ryodp

Proof. We know that the map F has a unique fixed point & € S and by

proposition 1.2 the maps F and Gy commute in S.



Hence F(Go(@)) = Gyo(F(a)) = Gp(&) and the uniqueness of a yields
Go(@) = & Thus

{doF:Aod (8)

doG=DBoda+9

and, since « is a homeomorphism of T™, the projection of (8) onto T" gives (7).
Q.E.D.

If ;G € A(T") U &(T") commute then, by theorem 1.3, they may be
conjugated to two affine toral maps which turn out to offer a better view of
the set of their common fixed points. The following theorem yields an existence

criterion.

Theorem 1.4 Two commuting maps F,G € A(T™)UE(T") have a common
fized point on T™ iff the following equation in p,q € Z™ is solvable:

(A=Dg—(B-=I)p=r. (9)

If that is the case, for every solution (p,q), a ' (7((A — I)71p) is a common
fixed point.

Proof. The point w = 7(y) € T" is a common fixed point iff there exist

p,q € Z" such that

{I?(y)zyﬂ?
Gly)=y+q
Then, by (8),
{(Ao&)(y)—(&of?)(y)—@( +p) = a(y) +p
(Boa)(y)=(aoG)(y) —0=a(y+q)—0=aly) +q—0

which yields (9).
On the other hand, the solvability of (9) with respect to p,q € Z" implies
that o' (7((A — I)7'p)) € T" is fixed point of F and G.
QE.D.

The existence of a common fixed point semplifies the equations (7):
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Corollary 1.5 If F,G € A(T") U E(T") are two commuting maps with at
least one common fized point on T", there exists a homeomorphism h of T"

such that
hoFoht=dy4
hoGoh™ =dp
Proof. By theorem 1.4, the existence of a common fixed point, implies that

(9) is solvable. If (p,q) is a solution we can choose h = R, o o with ¢ =

—(A — I)7'p. In fact, by (7), since (I — A)p =p € Z,
hoFoh™ ' =R,0®40R_,=Ri_ay,0oPs=oy
and, by (9), [ —B)p+0=q€ Z,
hoGoh™' =R, goPgoR_, =Ry _pyre0Pp=Pp.

Q.E.D.
As a consequence of theorem 1.4 we are able to establish a sufficient condi-
tion for the existence of a common fixed point, depending only on the number

of fixed points of the two commuting maps:

Theorem 1.6 Let F,G € A(T™) U E(T") be two commuting maps, if n(F)
and n(QG) are relatively prime then there exists one and only one common fixed

point on T".

Proof. Existence: (A—1I),(B—1) € Z""" have a left greatest common divisor
D e Z™" (i.e., D is a left divisor of (A —I) and (B — I) and every other left
divisor of (A — I) and (B — I) is a left divisor of D). Moreover there exist
P,Q € Z™"" such that

(A-1)Q—(B—-1)P=D (10)

(see chapter 14 in [9]). Since D is a common left divisor, det(D) € Z divides
n(F) = |det(A —I)| > 1 and n(G) = |det(B — I)| > 1. But by hypothesis
n(F),n(G) are relatively prime, hence det(D) = £1 i.e., D € GL(n, Z).
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Multiplying both sides of (10) by D~!r € Z" on the right, we can write
(A-DQD'r)—(B-1P(D'r)=D(D 'r)=r

and (9) is solvable with p = P(D™'r) € Z" and ¢ = Q(D~'r) € Z".
As for uniqueness, since there exists at least one common fixed point, we

obtain from corollary 1.5 that
Fixpn (F) N Fixpn (G) = b~ (Fixpn (®4) N Fixpa (@5)).

The order of the subgroup Fixpn(®4) N Fixpa (P p) divides n(F) and n(G), so
card(Fixp» (F) N Fixpn (G)) = 1.
Q.E.D.

§2. Let Hol(A™, A™) be the set of all holomorphic maps of A" into A" and
Z(A™) € Hol(A™, A™) N C(A", A") N C(T", T").

If F = (f1,...,f.) € Z(A™) then every component map f; : A" — A is inner
in A" and continuous on A": hence every f; for i = 1,...,n is a rational

function with the following form (see chapter 5 in [15]):

M;(2)Q,(3)
filz) = ———-%~ (11)
(2) 0.02)
where Q; is a polynomial in C[zy,...,2,] which has no zero in A", Q, is
the polynomial ); with the conjugated coefficients; % stands for (i, . i)

M; is a monomial whose coefficient has absolute value 1 and is such that
Pz) M;(2)Q;(2) is a polynomial in Cz1, ..., ).

If f € L'Y(T",C), then the value of the Poisson integral P[f] computed in
a point z of the polydisc A™ is

PUfI() = [ F@)P.(@)du(x) (12)

where v is the normalized Lebesgue measure on T" and the Poisson kernel

P.(x) def " li;_'j‘; for all z € T™. Now, we recall two of its main properties

that we will use later (see chapter 2 in [15]).
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1) If f is continuous on A" and n-harmonic in A", that is f is harmonic
in each variable, then

Plfl(z) = f(z) Vz € A™. (13)

2) If f € L'(T™,C) then

lim P[f](rw) = f(w) for almost every w € T". (14)

r—1-

The following lemma will be useful later

Lemma 2.1 Let r,s > 1 such that r +s =n and

M(u,v)Q(£,3)  Plu,v) —— s A
Q. 0) —Q(u,v).A X A A

be a rational function of the form (11) (where we identify z with (u,v)). If

f(u,v) =

there exists (U, 0) € T" x A® such that |f(a,v)| =1 then f does not depend on

the variable v.

Proof. Assuming f(@,?) = 1, by the maximum principle f(@,-) = 1. Write
Q(u,v) in the form a(u)v? 4 ...+ b(u) € Cluy,. .., vs] where v? = o' ... 0%,
with d; € IN, and |d| © 4y + ... +d, is the degree of Q(u,v) with respect to
the variable v. By the hypothesis on @, Q(u,0) = b(u) # 0 for all u € T".

Let M(u,v) = e®u®v? then d; > d; for i = 1,...,s. If |d'| > |d| then we
should have P(u,0) = 0 for all u € T" whereas

P(a,0) = f(u,0)Q(w,0) = b(w) # 0. (15)

Hence d' = d and P(u,0) = e?u?'a(2) = ¢?u?"a(u) for all u € T".
Let 0(¢) € (¢,...,¢) € A" for ( € A, then

9(¢) & Q(a,v(¢)) = a(@)(! + ... + b(a) € C[(].

If |d| > 0 the polynomial ¢ has |d| zeros and the absolute value of the product
of such zeros is, by (15)

e?u a(i)




Hence at least one zero, say ¢ belongs to A that is ¢(¢) = Q(@,v(¢)) = 0 and

we have a contradiction because (ﬂ,v(f)) e A". Sod =0, and f does not
depend on the variable v.

Q.E.D.

The following proposition generalizes a result proved for n = 1: see [13]

and [20].

Theorem 2.2 If F € T(A") and expanding on the Silov boundary T™ then F

has one and only one fized point in A".

Proof. Assume that F' does not have any fixed point in A™. Then, the sequence
{F*} of the iterates of F' is divergent on the compact sets of A" and there
exists a subsequence {F*} converging to a map in Hol(A", d(A")) (see [1]).
By the maximum principle, at least one component of this limit map, say the
first, is identically equal to ¢ € T'. Hence the subsequence {(F*/);} converges
uniformly on the compact sets of A" to the constant c.

Put p,(C) L ¢m with m € N and ¢ € A; then py, o (F*i); is holomorphic
in A™ and continuous on A", Therefore we can apply (13) and for all z € A"

we have

/Tn Pin((F*)1(2)) Po(@)dv(x) = Plpm © (F)1](2) = pm(F*)1(2)).  (16)

Now, the limit of (16), for j — oo equals p,,(c). Since the complex vector
space generated by the functions p,,, Dy, for all m € N is dense in C(T?, C) (it
is the space of the trigonometric polynomials, see [15]), for all g € C(T?!, C)

lim | g((F").(x)) P (2)dv(z) = g(c). (17)

j—oo Jn

Note that the complex vector space generated by the Poisson kernels P, for

all z € A" is dense in L'(T", C), because, if f € L>(T", C) is such that
f(z)P,(z)dv(z) =0 Vz € A"
Tn
then, by (14), f(x) = 0 for almost every x € T™.
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Therefore, by (17) and the identity [p. P,(z)dv(x) = 1, the following equa-
tion holds for all h € L'(T",C) and g € C(T*, C):

lim 9((ij)1(fv))h(f€)dV(ﬂf)29(6)/ h(x)dv(z). (18)

j—oo Jn n

Since Fjpn is C*-expanding, there exists an invariant probability measures up
equivalent to the Lebesgue measure v (see for example [23]). Therefore, by
the Radon-Nikodym theorem, it is possible to find h € L'(T",R) such that
dpp = hdv; thus, by (18),

lim | g((F%)i(2))dpr(z) = 9(6)/ h(z)dv(z) = g(c)ur(T") = g(c). (19)

J—0o0 JTn n

By the invariance of the measure p, for all g € C(T!,C) and all j € IN, then

L o((F @) dur(@) = [ glan)dur(). (20)

and, by (19), this implies

| g@n)dur(@) = g(e) ¥g € C(T",C). (21)
Let {g;} be a bounded sequence in C(T!, C) that converges pointwise to I,
the characteristic function of the set {c}, and let E = {c} x T"". Then

lim . gi(x1)dpp(z) = }ggogz(c) = I(c) = 1. (22)

1—0o0 JT
On the other hand, since v(E) = 0 also up(E) = 0 (because pr and v are
equivalent) and (21) yields

tim [ gi(endue(@) = [ L(@)due(e) = [ Te(@)dpr(z) = pur(E) =0

i—o0 JT

which contradicts (22). Hence F' must have at least one fixed point in A™.
An inductive argument will show that the existence of at least two fixed

points in A" leads to a contradiction. If n = 1, F' is the identity map (see

[22]) which is not expanding on T!. Now suppose that uniqueness has been

established for 1 <r < n. Since A" is homogeneous, we can assume that one
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of the fixed points is in 0. Let a € A™\ {0} be another fixed point. There

exists a complex geodesic ¢ € Hol(A, A™) whose range contains 0 and a and
o(A) C Fixan(F) ¥ {z € A" : F(z) =z}

(see [21]). At least one component of ¢, say the first, is an automorphism
of A, hence, the closure of the range of this complex geodesic intersects the
boundary of the polydisc in at least one point Z € T! x AT Therefore,
by permuting the last n — 1 variables, we can assume that Z is of the form
(u,0) € T" x A® withr > 1, s >0and r + s = n.

Since F' is continuous on A" we have that F(@,?) = (@,7). At each fixed
point of F'in A", the eigenvalues of the differential of I’ have absolute value

less or equal to 1 (see [22]). Hence

|det(Dy)F)| <1 V¢ € A implies that |det(Dgq (F)) < 1.

On the other hand, since F' is expanding, |det(D,F')| > 1 for each fixed
point (u,v) € T"; therefore the intersection (i,7) can not stay on the Silov
boundary T". Then, since f;(u,0) = w; for ¢ = 1,...,r, by lemma 2.1 the
first » component maps fi,..., f, of I, do not depend on the last s vari-
ables. So we can define the map Fy = (f1,..., f.) € Z(A") that has 0 and
(@1(3),---,r(3)) € A" as fixed points. Note that they are certainly different
because (; is an automorphism of A which fixes 0. Moreover,

D,FF 0

* *

D F* = ‘ V(u,v) € T x T*.

If w € T,,(T7), by the expanding hypothesis, the matrix D, v)F* is invertible

and there is a w’ € R’ such that
| Dy Ffwl| = 1D o) F* (w, w) || > eX¥||(w, w)|| > eX¥||w]].

Hence also Fj is expanding on T" and this contradicts the inductive as-

sumption.

Q.E.D.
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Now, in order to establish the theorem stated at the beginning of this
paper, note that, by (13) the commutative property is easily extended from
T" to A", and that, by theorem 2.2, F' has a unique fixed point a € A™. Since
F(G(a)) = G(F(a)) = G(a) then G(a) = a. The second part of the theorem

is proved in theorem 1.6.
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