Rigidity at the Boundary
for Holomorphic Self-Maps of the Unit Disk
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Abstract - We prove a rigidity theorem which generalizes a result due to D. Burns
and G. Krantz (see [3]) for holomorphic self-maps in the unit disk of the complex
plane. Essentially, we found that some conditions on the (boundary) Schwarzian
derivative of a holomorphic self-map at specific points of the boundary of the disk
may be sufficient to conclude that the map is a completely determined rational map.

1. The aim of this paper is to investigate how rigid is the set of holomorphic
self-maps in the unit disk A of the complex plane C after imposing some con-
ditions on the boundary Schwarzian derivative. It is infact well known that the
Schwarzian derivative of a holomorphic self-map f carries a global information
on f: it vanishes identically if and only if f is a Moebius transformation.

The idea of considering the boundary Schwarzian derivative of a map f
naturally arises as soon as one tries to generalize the rigidity result established
in [3] in the following sense: consider a holomorphic self-map f of A such that,
in a neighbourhood of 1 in A, its expansion is

f&) =24 38" ()= = 1+ 7 (1)(= = 1)+ oz — 1)

then, after some calculations and by applying techniques similar to the ones
used in [3], it is easily seen that if Re(f”(1)) = 0 and Re(Sf(1)) = 0, f is

nothing but the parabolic automorphism given by

_ (2—1db)z + b
9= i) v

where b = Im(f”(1)). It can be also written as

1+f(z):1+z
1—f(z) 1-—=z

Observe that, in the particular case when f”(1) = f”(1) = 0, one finds out
just the result proved in [3], that is f = Ida.

+ib. (1)
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Assume now that for a holomorphic self-map f of A the radial expansion in 1
is

F&) =14 fale = 1)+ L")z =12+ £f" () = 1) +ofz — 1)

where #; = f'(1) is a positive real number. Set

o et Re(f"(1)) = B1(B1 — 1)

7 ’
then ﬁ is, in some sense, the radius of curvature at 1 of the boundary of
f(A). If a > 0, consider the disk internally tangent to A in 1 of radius ﬁ

and assume that f(A) is just contained in this disk. This condition obviously
holds when 3; = 1 and Re(f”(1)) = 0, that is when a = 0, because f(A) C A
(as in the above-mentioned case of parabolic automorphisms). This geometric
property implies (see Theorem 2.6) that necessarily Im(Sf(1)) = 0 (which is
equivalent to saying that the point 1 is a vertex for the boundary of f(A)).

Suppose furthermore that one knows that os,...,0n are N — 1 inverse
images of 1 such that for each of them the module of the radial limit G, =
|f'(ok)] is finite; then we proved (see Theorem 2.6) that Re(Sf(1)) is less or
equal to the non-positive real number

60> 1 )
Y2 B ok — 1P
(if N = 1, this number is intended to be 0). More precisely, if Re(Sf(1))
reaches the upper bound (2) then f is the rational map given by

1+ f(z) 1 142z XK1 optz

1—f(2):E.1—Z kZQBk O — 2

for z € A, where b = Im Gf;gg;)

Therefore, the original rigidity result contained in [3] has been successively
extended from the identity, to the parabolic automorphisms (1), and finally to

the more general family of rational maps (3).

+ a+ib (3)

2. Let A% {2 €@ : |z < 1} be the open unit disk of € whose boundary is
OA ={z€C : |z] =1} and let Hol(A, A) be the set of all holomorphic maps

from A into itself. If H % {w € € : Re(w) > 0} is the right half-plane of €
then, for o € JA, let ¢,(z) = 2= be the biholomorphism of A onto H with

inverse z = @, (w) = o%1. Given o € A and R > 0, the horocycle E(o, R)

of center o and (hyperbolic) radius R is the disk in A of (euclidean) radius
R/(R+ 1) tangent to OA in 7 which is analytically defined as

o — 2/
E = A
(0, R) {ze e <R},
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with the convention that E(o, +00) = A.
For f € Hol(A, A) and 0,7 € 0A, we define 3¢(o, 7) the following positive

real number | | |2
def T — g— 2z
0,T) = su
o) zeE{l—rf / }

in other words, this means that for any R > 0
f(E(o,R)) C E(t,Bf(0,T)R). (4)

For f € Hol(A,C), | € € is the non-tangential limit of f at o € A if
f(2) tends to [ as z tends to o in A within an angular sector of vertex ¢ and
opening less than 7. We summarize this definition by writing

Kelim /(=) =

Moreover, if f(z) tends to [ as z tends to o in A along the radius {ro | r €
10,1[} connecting 0 to o, we say that f has radial limit [ at o and we write

r-lim f(z) =

zZ—0

Clearly if [ is the non-tangential limit of f at o, it coincides with the radial
limit of f at o.
We recall the Julia-Wolff-Carathéodory Theorem for f € Hol(A, A):

Theorem 2.1 [1] Let f € Hol(A,A) and 0,7 € OA. Then
Ketim 7= /)

2= g — 2

If By(o,T) is finite, then
K-lim f(2) =7 and K-lim f'(z) = 758;(0, 7).

z—0

=T100¢(0, 7).

The Schwarzian derivative of a map f at a point z is defined as
sy 03 (11)°
f'(z) f'(z)

Suppose that I C R is an interval and v : I — € is a C? curve such that
v'(t) # 0Vt € I. Then (see, e.g., [5] or [6]) the (signed) euclidean curvature of

v is given by ”
(Y
G =1 (Mtwu)) '

and, if v is C3, its variation is
dk(t) _ Im(Sy(t))
dt RUGI.

We recall that a point of a curve where the variation of the curvature vanishes
is called a vertex.




Lemma 2.2 Let 7 € 0A; consider o1,---,0n distinct points in OA, and
0B1, -+, By positive real numbers, then, for any a + b € H, the map

N
of _ 1 :
T(z) def et (> @gpgk(z) + a+ib) VzeA,
k=1

is a rational map of order N such that, for j=1,---, N,

T(oj)=r, T'(0;) = 73;03;,
Y1 2Im(oka;)

T"(0;)=777 |3;(B; — 1) + Bra+ifj(b—

k=1,k=j Bk ok —ojf?

)|

) Moo 1
Re(0;S8T(0;))==68; >_

k=1,k+j E . o), — Uj|2'
Moreover, T is a proper map such that T(A) = E(7,1/a) and
Im(2°ST(2)) =0 Vz € JA.
In particular, T is a Blaschke product if and only if a = 0.
Proof. We can assume that j = 1 and 0, = 7 = 1, otherwise we may replace
the map 7" with T'(z) = 71'(0,2)).

Then, there is a neighbourhood U C € \ {0y, -+, 0x} of the point 1 where
T is holomorphic and

P.(2)T(2)=P_(z) forall ze U (5)
with
_1,1-s ISR
P.(z) = 3, + 7 . (Q(z) £ 1) and Q(z) = 25 g—2 + a + ib.

It is easy to verify that

Pi(l):%,
1
PL1)=—5(Q(1) £ 1),
. L 2
PLO=5 QM+ 1) = 3 o =,
3 N 1 3Uk 60k

leé,(l):_i(@(l) +1) + kz_: E ’ (0% — 1)2 o (o) —1)3|"



Therefore, deriving both sides of equation (5), we can find the following rela-
tions

M= =
T,(l):PL(l) ;ﬁilgl)T(l) _ 3,

(1)

N
=61(B1 — 1) + Bra+iB7 (b= L 2mm{o)

2 G o =1

_P"(1) - PY(DT(1) = 3PL()T'(1) - 3PL()T"(1) 3 <T”(1)>2

ST(1)

P(T'(1) 2 \ T7(1)
_g - g(@(l) +1)B1 + 36 kz:;i : (Ukzikl)z T
F2Q) + D1 Q) + DB — S(-1+ Q) + DY =
N1 1
=—60 ]CZ::Q E ‘7|Uk — 1‘2.

Finally T is holomorphic in a neighbourhood of A, and for z € A we have

2

1—|T(z)) N1 ,
m = Re <k1 @@ak(2> + a—+ Zb) > a,

and equality holds if and only if z € A\ {0y, ---,on}. This means that
T(A) C E(r,1/a) and T(0A) C 0E(7,1/a).

But since T is an open map in A, and A is compact and connected
T(A)=E(r,1/a) and T(0A)=0FE(r,1/a),

so 1" is a proper map.
For t € R set y(t) = T(e"). Since the curve T(OA) = JF(r,1/a) has
constant curvature 1 — %, then for all t € R

_ dk(t)  Im(Sy(t)) Im((e")2ST ("))

T O O]

O

In the following theorem we prove an inequality which is a little bit more

general than the analogous one obtained in [4]. Furthermore, this result for
N =1 and a = 0 is equivalent to (4).



Theorem 2.3 Let f : A — A be a holomorphic map; take 7 € OA and
o1, -+, 0on distinct points in OA such that 0 < Bf(ox, 7) < 00 fork =1,--- N.
Then

M al 1 ' 1— |2
|T_f(z)|22k;§15f(0k77) |0k—z|2+a vz eA. (6)

o= { ) >

2\ )P

Moreover, equality in (6) holds at some zy € A (and then at any z € A) if
and only if f coincides with the following rational map:

where

T(z) < go;l(é m G0, (2) + atib) VzeA (7)
where b= Tm(i,(f(0)).
Proof. Since, for 0 € A, Re(p,(2)) = |1a 7_'2‘;, the assertion is equivalent to
proving that the function
def ol 1
FEOE (1) = X 5o o) =

maps A into H, that is Re(F(z)) >0 Vz € A.
To do this, we define - for n =0,---, N - the maps

{ Fol2) = 2 (f(2) —a
Fu(2) = Fua(2) = 5ty 0 (2)

and prove, by induction on n € IN, that Re(F,(2)) > 0: the inequality (6)
follows just for n = N. If n = 0 it follows immediately from the definition of
a.

Assume that Re(F,(z)) > 0 for 0 < n < N, then the map f, = ¢ o F,
belongs to Hol(A, A) and

T — fu(2) _ 1 ‘ 27 7= [f(2) _
Onsl — 2 T—f(2) F.(2)+1 op1—2
1 ‘ 2T 7= [(2)

T—f(z) @& ¥ 1 oetz On41 — 2
T—f(2) ];::1 Bf(ok,T) op—z a+1

Passing to the K-limits as 2 — o,,41 in both sides of the above equation, then
f(2) — 7 and, by applying Theorem 2.1 to the map f, we obtain

K- lim 7= fulz) = 7071107 (0ns1,7) # 0. (8)

Z—0n+1 On+1 — z



Moreover f,(A) C A, because, otherwise, by the maximum principle, f, = 7
contradicting (8). Hence, once more from (8), by applying Theorem 2.1 to the
map f,, we have that 5y, (0,41,7) = Bf(0n41,7) and, from the definition of
B, (0nt1,T) we can conclude that

- lhEP 1 1 |ap

= fa@)R T Bronin ) low — 2P

Re(F(2)) = Re(e-(fn(2)))

that is, Re(F,41(2)) > 0.

Assume now that there exists a point zg € A such that the equality in (6)
holds, i.e. such that Re(F(z0)) = 0. Then Fy(z29) € H and by the maximum
principle, Fy = ib for some b € RR; since ¢, (0) = 1 for k = 1,---, N then
b=Im(e-(f(0)), that is f =T. 0

Theorem 2.4 Let f,g € Hol(A, A) and 0,7 € OA be such that

rlim T2 —9(2)

z=o (z—0)3

= 9)

for some l € C, and

L= [f()P 1= |g(2)?
= = = g(2)P

Then f = g if and only if | = 0. Moreover, To3l is a non-positive real number.

Vz e A. (10)

Proof. 1If f = g then obviously [ = 0. Assume now that f and g are not
indentically equal. We define the holomorphic map h = —p- (o, 0 f —p,0g),
which, from (10), maps A into A. Then, by the maximum principle, if there
is a point zp € A such that h(z) € OA then h is identically equal to a
constant and, from (10), since f and g have the same radial limits at o, this
constant is —¢ 1(0) = 7, therefore f = g. This contradicts our assumption,
so h € Hol(A,A). Since f — g never vanishes,

_ _ ) — 27 (f —
he —plor—d =9y T=Nlr=g)=21(/=9)
(T = )T —9) (= )T —g)+27(f —9)
therefore for any z € A
T — h(z) —47%
=T .
oms "I (e o)

Passing to the radial limits as z — ¢ in both sides of the above equation, by
(9) and by applying Theorem 2.1 to the maps f, g and h, we obtain that

—40°1
ﬁf(aa T)ﬁg(a’ T)

T00n(0,T) =

7



which yields to

7o'l = 1 hl0, )50, T)y(0,7) < 0

O

The following corollary states the already recalled result proved by D. Burns
and S. Krantz in [3]; observe, furthermore, that neither Herglotz representation
nor Hopf’s Lemma are required and that only the radial approach is considered.

Corollary 2.5 Let f € Hol(A,A) and o € OA be such that

r-lim M
=0 (z—0)3

—0. (11)

Then f = Ida.

Proof. First we observe that (11) corresponds to condition (9) of Theorem 2.4
for g = Ida. Moreover, we have

L (C NP (C TSP

o—z (0 —2)3

then, taking the radial limit for z — o, from (11) and by Theorem 2.1 it follows
that B;(o,0) = 1. Hence, from the definition of 8;(c, o) also the condition (10)
of Theorem 2.4 is certainly fulfilled for ¢ = Ida. Therefore, by the previous
theorem, f = Ida.
a
Finally, the announced rigidity theorem.

Theorem 2.6 Let f : A — A be a holomorphic map; take 7 € OA and
o1, -+, 0n distinct points in OA such that 0 < Bf(ok, 7) < 00 fork =1,--- N.
If, for some j € {1,..., N}, there exist complex numbers f"(o;) and f"(o;)
such that

f(z) =7 = fllo))(z —0;) = 5 /" (0;)(z — 0;)° + 5 f"(0;) (2 — 0;)°

L (z—0y) -
(12)
where f'(0;) = 170;8¢(0;,7), and the following relation is satisfied
aer Re(037f"(05)) = B4(05,7)(Bs(05,7) = 1) _ . [1—|f(2)]
e sl 7 Sgﬁﬂr—ﬂawk
(13)
then
I (025f(a) = 0. (14)
N
Re(21(03)) < ~6004(0;.7) : : (15)

k=1,k#j ﬁf(Uk;, 7') |Gk — Jj|2'



Moreover, equality in (15) holds if and only if f is identically equal to the
rational map

N
def —12 )@Uk()+a+z'b) Vze A
where
p def Im(J 7f"(0})) N iV: 21m(0k6j) (16)
ﬂf(”ﬁ ) k=1,k#j 6f Ok; T ) |Uk—aj|2

Proof. First of all, Theorem 2.3 and condition (13) imply that, for any b € R,

1- 2 31 1—|z|? 1—|T(2)
HEI BT R B
[T = F)P T3 Brlow, ) ok — 2] [T —=T(2)]
By Lemma 2.2, we already know that, for any b € R,
T ="T(0;) and f'(0;) = 70;8¢(0j,7) = T'(0;). (18)

From the definitions of @ in (13) and b in (16), and by Lemma 2.2, we also
have

Re(o37f"(05)) = Bf(0,7) - (Bs(oj, ) 1) + Br(0y,7)%a = Re(037T"(0));
— o a QIm(Ukaj) _ —r
Im(a?Tf (0;)) = B¢loj, 7 ) 12# ﬁf o) Jor— o2 ) = Im(UJQ»TT (75)),

so that

fos) =T"(0;). (19)
Since T' is analytic in a neighbourhood of o;, the equations (18) and (19)
together with the hypothesis (12) imply that

IO =T (7o) "0, 1. (20)

r-lim
z=0j (2 —0,)3

From (17) and (20), and by applying Theorem 2.4 for g = T" we get that ch;?l
is a non-positive real number. Therefore, from the definition of Schwarzian
derivative, we have

=3 1* 3¢ ¢ " 1 2

To;l = 67 (f" (o) =T"(0;)) = Bﬁf(o’jﬁ)gj (Sf(oj) = 8T(0;)),
which, by Lemma 2.2, immediately yields to (14) and (15).

Furthermore, equality in (15) holds if and only if I = 0, and, again by

Theorem 2.4, we can conclude that f = T. O



Remark 2.7 It is worth making some comments on condition (13) of the
previous theorem.

i) First we give a geometric interpretation of condition (13). For r €]0, 1]
and t €] — m, 7| set 7,.(t) = f(roje™). Since the K-limit f(0;) # 0, there is a
ro €]0, 1[ such that for any r €]rg, 1] there exists a neighbourhood V,. of 0 in
| — m, 7] such that /.(t) # 0 for all t € V,.. So we can compute the following
limit

2 hye 0) - T = 0] Retrolf0) o)

|f"(0)lio; f"(0;) B(oj,7)?
The real number &, can be regarded as the curvature at 7 of the boundary of
f(A). Hence, the corresponding hyperbolic curvature K. is easily calculated

T, Re0ITS(0) Byl Bsloy ) 1)
’ ! ﬁf(gj?7)2 '

On the other hand, the non-negative real number

1 — 2
(1= 1)
A\ )P
is the hyperbolic curvature of the smallest horocycle centered at 7 which con-
tains f(A). Therefore the condition (13) says that the horocycle E(r, K%),

which, in some sense, better describes locally at 7 the boundary of f(A),
contains f(A).

i) If we assume that the map f € Hol(A, A) is also C? at the point o; € A
then there is a neighbourhood U of 1 such that

Re(ajz-?f//(o-j)) — ﬂf(aj,T)(ﬁf(aj,T) — 1) . LJC(Z)P
: Brloj, 7)? _zeArgU{|7-_f<Z)|2}' (21)

Infact, taking 7 = o; = 1, the expansion of f at the point 1 is

PV =14 00 1)+ 370~ 102 2(2) witn iy 2CL =

where 3 = (f(0;, 7). After conjugating the map f in the half-plane H by
putting ® = ¢, o f o !, we have
2 2 ; 2
_f 3.y T
1+ &(w) b 1+w 71 (14 w)?
and, setting I'(w) = 37(p1 " (w))(1 + w)?, which tends to zero as w — oo, the
previous equation can be written for w = x + iy € H as

B(w) w'+2-Bw+1-F+f"(1) +T(w) _
pw + - f(1) = I'(w)
oyt 2=+ 1-F+iey+ (2 By) + (1) + T(w)

Bx + B +ify — f"(1) = T(w)

— (1 (w)),

10



Hence, after some little manipulations, we obtain that

2+ (x + 1+ GRe(f"(1) — B)
pla® +y?)
where O(w) tends to zero as w — 0.
Since f(A) C A, Re(w) > 0 for any w € H. Assume that {z,} N is a

sequence in A which tends to 1 tangentially in (22), and set w,, = z,, + iy, =
©1(z,). Then |y, | — oo, z, is positive and bounded and

Re(®(w)) = +O(w), (22)

lim inf Re(®(w,,)) = (hmmf T, + 1+ Re(f (1)) —p) >0.

n—-+00 n—-+o0o ﬁ

Therefore, when we impose that x,, — 07, we get

lim Re(®(w,)) = 2o W) =BB=1) (23)

n—-+oo 62 -
and we have just proved the inequality in (21).
Moreover, if z approaches 1 non-tangentially, that is if x — oo, then, by

(22), Re(®(w)) — oo and we can conclude that there exists a neighbourhood
U of 1 where

Re(f"(1)) —6(B - 1) 1-1f=)1?
72 [T = f(2)]?
So, remembering (23), also the equality in (21) is proved.

Condition (21) is strictly weaker than condition (13) because of the follow-
ing example:

Vze ANU.

< Re(®(w)) =

1 , 1
f(z):z—i-é(z—l) —1-1(2—1)3 Vz € A.

Infact, one can prove that f € Hol(A,A) and that f is C? at 1; moreover

f(1) = f'(1) = f"(1) = 1 and then a = 1, whereas mf {|11 %2}2} = 0 since

f has another fixed point on the boundary 0A, namely —1. Nevertheless one
has that Sf(1) =

iii) Notice that in [2], always assuming for f the regularity C* at o;, a
particular case of the inequality (21), precisely when (¢(o;, 7) = 1, appears at
p. 52. Moreover if Re(a??f”(aj)) =0, at p. 67, it is proved that

m(07Sf(0;)) =0 and Re(c;Sf(0;)) <0

which are certainly implied by (14) and (15).

11
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