NOME: MATRICOLA:

Corso di Laurea in Fisica, A.A. 2007/2008 Calcolo 2, Esame scritto del 03.09.2012

1) Si verifichi che la funzione $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ definita da

$$f(x,y) = \begin{cases} \frac{xy}{x+y} & \text{per } x+y \neq 0\\ 0 & \text{per } x+y = 0 \end{cases}$$

non è continua in $(0\,,0)$ ma ammette derivata direzionale in $(0\,,0)$ lungo ogni direzione.

2) Si verifichi che le rette normali al grafico della funzione

$$f(x,y) = x^2y + y^3$$

non sono mai parallele al vettore $(1,1,1) \in \mathbb{R}^3$.

3) Studiare la convergenza della serie

$$\sum_{k=1}^{+\infty} \left(\sqrt{k^3 + \sqrt{k}} - \sqrt{k^3} \right) \,.$$

4) Trovare i massimi e minimi locali della funzione

$$f(x,y) = x^3 + xy^2 - 3xy$$
.

5) Mostrare che il campo vettoriale

$$F(x,y) = \left(\ln(1+x^2+y^2) + \frac{2x^2}{1+x^2+y^2}, \frac{2xy}{1+x^2+y^2}\right),\,$$

definita sul piano $\big\{(x\,,y)\,;\,x,y\in\mathbb{R}\big\}\,,$ è conservativo e determinarne una sua funzione potenziale.

Soluzioni:

- 1): Per la continuità di f in (0,0) dobbiamo avere, per qualsiasi
 - successione $\Big((x_k\,,y_k)\Big)_{k\geq 1}$ in \mathbb{R}^2 convergente à $(0\,,0)\,,$ cioè per qualsiasi
 - due successioni $(x_k)_{k\geq 1}$ e $(y_k)_{k\geq 1}$ in \mathbb{R} convergenti à 0,

la convergenza

$$f(x_k, y_k) \longrightarrow f(0, 0) = 0$$
.

In particolare, se $(x_k)_{k\geq 1}$ è una succesione di numeri reali convergente à 0 e $(y_k)_{k\geq 1}$ soddisfa $x_k+y_k=\frac{1}{k}$, allora dobbiamo avere

$$x_k - k x_k^2 = k x_k \left(\frac{1}{k} - x_k\right) = \frac{x_k y_k}{x_k + y_k} \longrightarrow 0.$$

Ma, per ogni numero reale a > 0, con la scelta $x_k = \frac{a}{\sqrt{k}}$ vale

$$x_k - k x_k^2 = \frac{a}{\sqrt{k}} - a^2 \longrightarrow -a^2,$$

o, diversamente, con la scelta $x_k = \frac{1}{\sqrt[3]{k}}$ vale

$$x_k - k x_k^2 = \frac{1}{\sqrt[3]{k}} - \sqrt[3]{k} \longrightarrow -\infty,$$

Di conseguenza f non è continua in (0,0).

Per verificare che f ammette derivata direzionale in $(0\,,0)$ lungo ogni direzione, sia $(u\,,v)$ un versore arbitrario, cioè un qualsiasi vettore di lunghezza $\sqrt{u^2+v^2}=1$. La derivata direzionale di f in $(0\,,0)$ lungo $(u\,,v)$ è il limite

$$\lim_{t \to 0} \frac{f(0 + tu, 0 + tv) - f(0, 0)}{t} = \lim_{t \to 0} \frac{f(tu, tv)}{t}$$

che esiste sempre:

Se $u+v\neq 0$ allora abbiamo per ogni $t\neq 0$

$$\frac{f(tu,tv)}{t} = \frac{1}{t} \frac{tutv}{tu+tv} = \frac{uv}{u+v}$$

e risulta trivialmente

$$\lim_{t \to 0} \frac{f(tu, tv)}{t} = \frac{uv}{u+v} .$$

Se invece u+v=0 allora $f(t\,u\,,t\,v)=0$ per ogni $t\neq 0$ e quindi

$$\lim_{t \to 0} \frac{f(tu, tv)}{t} = 0.$$

2): Il piano tangente al grafico della funzione f(x, y) in (x_o, y_o) è il grafico della funzione lineare

$$L(x,y) = f(x_o, y_o) + \frac{\partial f}{\partial x}(x_o, y_o)(x - x_o) + \frac{\partial f}{\partial y}(x_o, y_o)(y - y_o) ,$$

quindi la sua equazione è

$$z = f(x_o, y_o) + \frac{\partial f}{\partial x}(x_o, y_o)(x - x_o) + \frac{\partial f}{\partial y}(x_o, y_o)(y - y_o) ,$$

cioè

$$\frac{\partial f}{\partial x}(x_o, y_o)(x - x_o) + \frac{\partial f}{\partial y}(x_o, y_o)(y - y_o) - (z - f(x_o, y_o)) = 0$$

Egli consiste da tutti i punti $(x, y, z) \in \mathbb{R}^3$ tale che il vettore

$$(x, y, z) - (x_o, y_o, f(x_o, y_o)) = (x - x_o, y - y_o, z - f(x_o, y_o))$$

è ortogonale al vettore normale

$$\left(\frac{\partial f}{\partial x}(x_o, y_o), \frac{\partial f}{\partial y}(x_o, y_o), -1\right) \tag{*}$$

Nel caso della funzione $f(x,y) = x^2y + y^3$ il vettore (*) è

$$(2x_oy_o, x_o^2 + 3y_o^2, -1),$$

quindi la retta normale al grafico di f(x, y) in (x_o, y_o) è parallela al vettore (1, 1, 1) esattamente quando

$$(2x_o y_o, x_o^2 + 3y_o^2, -1) = \lambda(1, 1, 1)$$
 per un $\lambda \in \mathbb{R}$.

Perché questo accada, dobbiamo avere $\lambda=-1$ e poi

$$2x_o y_o = \lambda = -1$$
, $x_o^2 + 3y_o^2 = \lambda = -1$.

Ma l'ugualità $x_o^2 + 3y_o^2 = -1$ non è possibile per nessun $(x_o, y_o) \in \mathbb{R}^2$.

3): Si tratta di una serie a termini positivi. Rimarcando che

$$\sqrt{k^{3} + \sqrt{k}} - \sqrt{k^{3}} = \frac{\left(\sqrt{k^{3} + \sqrt{k}} - \sqrt{k^{3}}\right)\left(\sqrt{k^{3} + \sqrt{k}} + \sqrt{k^{3}}\right)}{\sqrt{k^{3} + \sqrt{k}} + \sqrt{k^{3}}}$$

$$= \frac{\left(k^{3} + \sqrt{k}\right) - k^{3}}{\sqrt{k^{3} + \sqrt{k}} + \sqrt{k^{3}}}$$

$$= \frac{\sqrt{k}}{\sqrt{k^{3}}\left(\sqrt{1 + \frac{1}{k^{2}\sqrt{k}}} + 1\right)}$$

$$= \frac{1}{k} \cdot \frac{1}{\sqrt{1 + \frac{1}{k^{2}\sqrt{k}}} + 1},$$

possiamo usare confronto asintotico tra la nostra serie

$$\sum_{k=1}^{+\infty} \left(\sqrt{k^3 + \sqrt{k}} - \sqrt{k^3} \right) \tag{**}$$

e la serie armonica

$$\sum_{k=1}^{+\infty} \frac{1}{k} .$$

Infatti, poiché il limite

$$\lim_{k \to \infty} \frac{\sqrt{k^3 + \sqrt{k}} - \sqrt{k^3}}{\frac{1}{k}} = \lim_{k \to \infty} \frac{1}{\sqrt{1 + \frac{1}{k^2 \sqrt{k}}} + 1} = \frac{1}{2}$$

è nonzero, per il criterio del confronto asintotico la divergenza della serie armonica implica la divergenza della nostra serie (**).

4): I massimi e minimi locali di f sono punti stazionari, cioè annullano le derivate parziali di

$$f(x,y) = x^3 + xy^2 - 3xy .$$

Per trovarli, calcoliamo le derivate parziali di f:

$$\frac{\partial f}{\partial x} = 3x^2 + y^2 - 3y,$$

$$\frac{\partial f}{\partial y} = 2xy - 3x.$$

Risulta che i punti stazionari di f sono le soluzioni del sistema di equazioni

$$\begin{cases} 3x^2 + y^2 - 3y = 0 \\ x(2y - 3) = 0 \end{cases}.$$

Dalla seconda equazione si ottiene

$$x = 0$$
 oppure $2y - 3 = 0$, cioè $y = \frac{3}{2}$.

Per x=0dalla prima equazione risulta $y^2-3\,y=0\,,$ cioè

$$y = 0 \text{ o } y = 3,$$

mentre per $y = \frac{3}{2}$ la prima equazione prende la forma $3x^2 + \frac{9}{4} - \frac{9}{2} = 0$ e risulta

$$x = \pm \frac{\sqrt{3}}{2} \,.$$

Cosicché i punti stazionari di f sono :

$$(0,0), (0,3), (\frac{\sqrt{3}}{2},\frac{3}{2}), (-\frac{\sqrt{3}}{2},\frac{3}{2}).$$

Per poter stabilire la natura dei punti stazionari di f, calcoliamo anche le sue derivate parziali di secondo ordine :

$$\frac{\partial^2 f}{\partial x^2} = 6x$$
, $\frac{\partial^2 f}{\partial y \partial x} = 2y - 3$, $\frac{\partial^2 f}{\partial y^2} = 2x$.

Perciò la matrice hessiana di f è

$$H_f(x,y) = \begin{pmatrix} 6x & 2y-3 \\ 2y-3 & 2x \end{pmatrix}$$

e

$$\det H_f(x,y) = \begin{vmatrix} 6x & 2y-3 \\ 2y-3 & 2x \end{vmatrix} = 12x^2 - (2y-3)^2.$$

Ora, poiché

$$\det H_f(0,0) = -9 < 0$$
, $\det H_f(0,3) = -9 < 0$.

(0,0) e (0,3) sono punti di sella.

Poi, poiché

$$\det H_f\left(\frac{\sqrt{3}}{2}, \frac{3}{2}\right) = 12\frac{3}{4} = 9 > 0$$

e l'elemento nell'angolo sinistro superiore di $H_f\left(\frac{\sqrt{3}}{2}\,,\frac{3}{2}\right)$ è $3\sqrt{3}>0\,,$

il punto $\left(\frac{\sqrt{3}}{2}, \frac{3}{2}\right)$ è un punto di minimo locale.

Finalmente, poiché

$$\det H_f\left(-\frac{\sqrt{3}}{2}, \frac{3}{2}\right) = 12\frac{3}{4} = 9 > 0$$

e nell'angolo sinistro superiore di $H_f\left(-\frac{\sqrt{3}}{2}, \frac{3}{2}\right)$ si trova $-3\sqrt{3} < 0$,

il punto $\left(-\frac{\sqrt{3}}{2}, \frac{3}{2}\right)$ è un punto di massimo locale.

5): Ricordiamo che un campo vetoriale

$$F(x,y) = (F_1(x,y), F_2(x,y))$$

si chiama *irrotazionale* se verifica la condizione

$$\frac{\partial F_1}{\partial y} = \frac{\partial F_2}{\partial x}$$

e si chiama conservativo se ammette un potenziale, cioè una funzione P(x,y), definita sullo stesso dominio, che soddisfa

$$\frac{\partial P}{\partial x} = F_1, \quad \frac{\partial P}{\partial y} = F_2.$$
 (***)

Se un campo vettoriale

$$F(x,y) = (F_1(x,y), F_2(x,y))$$

e conservativo e le funzioni F_1 , F_2 sono continuamente differenziabili, allora il campo è necessariamente irrotazionale. L'implicazione reciproca non è in generale vera, ma un campo irrotazionale, definita su un dominio stellato (un dominio convesso è stellato!), è automaticamente conservativo.

Il nostro campo è irrotazionale. Infatti, abbiamo

$$F_1(x,y) = \ln(1+x^2+y^2) + \frac{2x^2}{1+x^2+y^2},$$

$$F_2(x,y) = \frac{2xy}{1+x^2+y^2}$$

e quindi

$$\begin{split} &\frac{\partial F_1}{\partial y} - \frac{\partial F_2}{\partial x} \\ &= \left(\frac{2y}{1+x^2+y^2} - \frac{4x^2y}{(1+x^2+y^2)^2}\right) - \frac{2y(1+x^2+y^2) - 4x^2y}{(1+x^2+y^2)^2} \\ &= 0. \end{split}$$

Poiché il dominio è tutto il piano che è convesso, risulta che il nostro campo è conservativo.

Per trovare il potenziale, dobbiamo risolvere il sistema (***) . A questo fine integriamo prima F_2 rispetto ad y ottenendo

$$P(x,y) = \int \frac{2xy}{1+x^2+y^2} dy = x \ln(1+x^2+y^2) + C(x),$$

ove C(x) è un valore costante rispetto ad y, ossia una funzione solo di x. Ora scegliamo C(x) tale che anche la prima equazione del sistema (***) sia soddisfatta : poiché

$$\frac{\partial P}{\partial x}(x, y, z) = \frac{\partial}{\partial x} \left(x \ln(1 + x^2 + y^2) + C(x) \right)$$
$$= \ln(1 + x^2 + y^2) + \frac{2x^2}{1 + x^2 + y^2} + C'(x)$$

sia uguale a

$$F_1(x, y, z) = \ln(1 + x^2 + y^2) + \frac{2x^2}{1 + x^2 + y^2}$$

dobbiamo avere $C'(x) \equiv 0 \iff C(x)$ costante.

Di conseguenza le funzioni potenziale del campo vettoriale dato sono

$$P(x,y) = x \ln(1 + x^2 + y^2) + C,$$

dove C è una costante.