PUBLICATIONS, PREPRINTS, WORK IN
PROGRESS
[44] C.
Ciliberto, F. Flamini and A. L. Knutsen, "Urlich
bundle on a general blow-up of the plane", Annali Matematica
Pura ed Applicata (2023) pdf
[43] G. Bini, S. Boissiere, F. Flamini, "Some families of big and stable bundles on K3 surfaces and on their Hilbert schemes of points", Manuscripta Mathematica (2022). pdf
[42] F. Bastianelli, C.
Ciliberto, F. Flamini, P. Supino "Cones of lines having high contact with
general hypersurfaces and applications", Mathematische
Nachrichten (2022) pdf.
[41] F. Flamini, P. Supino
"On some components of Hilbert schemes of curves" to appear in Special
volume of Boll. Unione Mat. Ital. in occasion of Ciro
Ciliberto’s 70th birthday, (2022), 19 p. pdf.
[40] F. Bastianelli, C.
Ciliberto, F. Flamini, P. Supino "On Fano schemes of linear subspaces of
general complete intersections", Arxiv der Mathematik, 115 (2020), 639-645 pdf.
[39] G. Bini, F. Flamini,
"Big vector bundles on surfaces and fourfolds", Mediterranean Journal of
Mathematics, 17 (2020), n. 1, art. 17, pp. 1--20. pdf
[38] F. Bastianelli, C.
Ciliberto, F. Flamini, P. Supino "On complete intesections
containing a linear subspace", Geom. Ded., 204 (2020), pp.
231-239. pdf.
[37] F. Bastianelli, C.
Ciliberto, F. Flamini, P. Supino "Gonality of curves on general
hypersurfaces", Journal de Mathématiques Pures et Appliquées, 125 (2019), p. 94-118. pdf.
[36] C. Ciliberto, F. Flamini,
M. Zaidenberg "A remark on the intersection of
plane curves", Cont. Math. ("Functional Analysis and Geometry.
Selim Krein Centennial"), 733 (2019), pp. 109-128. pdf.
[35] Y. Choi, F. Flamini, S.
Kim "Moduli spaces of bundles and Hilbert schemes over n-gonal curves", Coll. Math., 70, no.2
(2019), pp. 295-321. pdf.
[34] C. Ciliberto, F. Flamini,
C. Galati, A.L. Knutsen "Degenerations of differentials and the moduli
problem of curves on a K3", Cont. Math. ("Local and Global Methods
in Algebraic Geometry", vol. in honor of Lawrence Ein), 712 (2018), 59-79. pdf.
[33] Y. Choi, F. Flamini, S.
Kim "Brill-Noether loci of rank-two vector
bundles on a general n-gonal
curve", Proc. American Mathematical Society 146, no.8 (2018), p. 3233-3248. pdf.
[32] F. Bastianelli, C.
Ciliberto, F. Flamini, P. Supino "A note on gonality of curves on general
hypersurfaces", Boll.Unione Mat. Ital., 11 (2018), no.1, pp. 31-38. pdf.
[31] A. Calabri,
C. Ciliberto, F. Flamini and R. Miranda, Corrigendum to the paper "On the
K^2 of degenerations of surfaces and the multiple point formula", Annals
of Mathematics 186 (2017), no.1, pp. 315-318. pdf.
[30] C. Ciliberto, F. Flamini,
C. Galati, A. L. Knutsen "Moduli of nodal curves on K3 surfaces", Advances
in Mathematics, 309 (2017),
624-654. pdf.
[29] C. Ciliberto, F. Flamini,
C. Galati, A.Knutsen "A
note on deformations of regular embeddings", Rend. Circ. Mat. Palermo, 66 (2017), 53-63, and
“Erratum to A note on deformations of regular embeddings”, Rend. Circ. Mat.
Palermo, 66 (2017), 65-67. pdf.
[28] M.L. Fania, F. Flamini,
"Hilbert schemes of some threefold scrolls over F_e",
Advances in Geometry, 16 (2016),
no. 4, p. 413-436. pdf.
[27] C. Ciliberto, F. Flamini,
M. Zaidenberg "Gaps for geometric genera", Archiv der Mathematik, 106 (2016),
531-541. pdf.
[26] C. Ciliberto, F. Flamini,
"Nodal curves on K3 surfaces: state of the art and open problems”, in Oberwolfach Reports (EMS), 12 (4), 2015, 2939–2967. pdf.
[25] G.M. Besana, M.L. Fania,
F. Flamini, "On families of rank-2 uniform bundles on Hirzebruch
surfaces and Hilbert schemes of their scrolls", Rendiconti Istituto Matematica Università Trieste, 47 (2015), pp. 27-44. pdf.
[24] C. Ciliberto, F. Flamini,
"Extensions of line bundles and Brill--Noether
loci of rank-two vector bundles on a general curve", Revue Roumaine de Mathématiques Pures et Appliquées, 60 - 3 (2015), 201-255.pdf.
[23] C. Ciliberto, F. Flamini,
M. Zaidenberg "Genera of curves on a very
general surface in IP^3" International Mathematics Research Notices, rnv055,
doi:10.1093/imrn/rnv055, 22 (2015), p. 12177--12205
pdf (see also Max-Planck-Institut fuer Mathematik
- Preprint Series 2014 (53)- MPIM14-53).
[22] G.M. Besana, M.L. Fania,
F. Flamini " Hilbert scheme of some threefold scrolls over the Hirzebruch surface F_1", Journal of the
Mathematical Society of Japan, 65 - 4 (2013), 1243-1272. pdf.
[21] C. Ciliberto, F. Flamini,
"Brill-Noether loci of stable rank-two vector
bundles on a general curve", EMS SERIES OF CONGRESS REPORTS, Vol.
"Geometry and Arithmetic". Editors C.Faber, G.Farkas, R.de
Jong, (2012), 61-74. pdf.
[20] C. Ciliberto, F. Flamini,
"On the branch curve of a general projection of a surface to a
plane", Transactions of the American Mathematical Society, 363 -
7 (2011), 3457-3471. pdf.
[19] F. Flamini, E. Sernesi, "The curve of lines on a prime Fano threefold
of genus 8", International Journal of Mathematics, 21, No.
12 (2010), 1561-1584. pdf.
[18] F. Flamini, "IP^r-scrolls arising from Brill-Noether
theory and K3-surfaces", Manuscripta Mathematica, 132 (2010),
199-220. pdf.
[17] A. Calabri,
C. Ciliberto, F. Flamini, R. Miranda, "Special scrolls whose base curve
has general moduli", Interactions of Classical and Numerical Algebraic
Geometry, Bates et al. (eds.), Contemporary Mathematics, 496 (2009),
133-155, pdf.
[16] F. Flamini, A.L. Knutsen,
G. Pacienza, "On families of rational curves in
the Hilbert square of a surface (with an appendix by Edoardo Sernesi)", pp. 639-678; Appendix: "Partial desingularization of families of nodal curves", E. Sernesi (Univ. Roma Tre), pp. 679-682, Michigan
Mathematical Journal
58 (2009), 639-682. pdf
[15] A. Calabri,
C. Ciliberto, F. Flamini, R. Miranda, "Brill-Noether
theory and non-special scrolls", Geometriae Dedicata , 139 (2009),
121-138.pdf.
[14] F. Flamini, A.L. Knutsen, G. Pacienza, E. Sernesi, "Nodal curves with general moduli on K3 surfaces", Communications in Algebra, 36 (2008), no. 1, 3955-3971. pdf.
[13]
A. Calabri, C. Ciliberto, F. Flamini, R. Miranda, "Non-special scrolls
with general moduli", Rend. Circolo
Matematico Palermo, 57 (2008), no. 1, 1-31. pdf.
[12] F. Flamini, A.L. Knutsen,
G. Pacienza, "Singular curves on a K3 surface
and linear series on their normalizations", International Journal of
Mathematics, 18 (2007),
no. 6, pp. 671-693. pdf.
[11] A. Calabri,
C. Ciliberto, F. Flamini and R. Miranda, ""On the genus of reducible
surfaces and degenerations of surfaces", Annales de l'Institut
Fourier, 57 (2007), no.2, pp.
491-516. pdf.
[10] A. Calabri,
C. Ciliberto, F. Flamini and R. Miranda, "On the K^2 of degenerations of
surfaces and the multiple point formula", Annals of Mathematics 165 (2007), no.2, pp. 335-395. pdf.
[9] A. Calabri,
C. Ciliberto, F. Flamini, R. Miranda, "Degenerations of scrolls to union
of planes" Rend. Lincei Mat. Appl. (Springer),
17 (2006), no.2, pp.
95-123. pdf.
[8] G. Bini, F. Flamini,
"Symmetric functions from the moduli spaces of curves via vanishing
theorems", Global Journal of Mathematics and Mathematical Sciences 1 (2005), no.1, pp. 77-90. pdf.
[7] F. Flamini,
"Equivalence of families of singular schemes on threefolds
and on ruled fourfolds", Collectanea Mathematica 55 (2004), no.1, pp. 37-60. pdf.
[6] A. Calabri,
C. Ciliberto, F. Flamini and R. Miranda, "On the geometric genus of
reducible surfaces and degenerations of surfaces to union of planes", Proceedings
of the Fano Conference - Torino - 29 September -5 October 2002, (2004), pp.
277-312. pdf.
[5] F. Flamini, ``Families of
nodal curves on smooth projective threefolds and
their regularity via postulation of nodes", Transactions of the
American Mathematical Society, 355 (2003), pp. 4901-4932. pdf
[4] F. Flamini, ``Moduli of
nodal curves on smooth surfaces of general type"; Journal of Algebraic
Geometry, 11 (2002), no.4, pp. 725-760. pdf.
[3] F. Flamini, ``Some results
of regularity for Severi varieties of projective surfaces"; Communications
in Algebra, 29 (2001),
pp. 2297-2311. pdf
[2] F. Flamini, C. Madonna
``Geometric linear normality for nodal curves on some projective
surfaces"; Bollettino Unione Matmeatica
Italiana, Sez. B (8), 4-B (2001), pp.
269-283. pdf.
[1] F. Flamini, ``Towards an
inductive construction of self-associated sets of points"; Le Matematiche. LIII (1998) pp. 33-41. pdf.
[2] C.Ciliberto, T. Dedieu, F. Flamini, R. Pardini "Birational geometry of surfaces. Preface", Bollettino UMI, 11, no. 1 (2018), 1-3 (Eds. Ciliberto-Dedieu-Flamini-Pardini). pdf.
[1] C.Ciliberto,
T. Dedieu, F. Flamini, R. Pardini, C. Galati, S. Rollenske, "Birational
geometry of surfaces. Open Problems", Bollettino UMI, 11, no. 1 (2018),
5-11 (Eds. Ciliberto-Dedieu-Flamini-Pardini). pdf.
· F. Flamini,
"Lectures on Brill-Noether theory", in Proceedings
of the workshop "Curves and Jacobians", Eds. J-M Muk, Y. R. Kim,
Korea Institute for Advanced Study, (2011), 1-20. pdf.
[3]
F.
Flamini, "A first course in Algebraic Geometry and Algebraic Varieties",
Essential Textbooks in Mathematics, London, World Scientific, 2023.
Book
link
[2] F. Flamini, A. Verra ``Matrici e vettori. Corso di base di Geometria e Algebra Lineare."; Carocci Editore, Collana: LE SCIENZE, (2008) pp. 380. Pagina Web della casa Editrice e del Testo
[1]
G.
Bini, F. Flamini, "Finite Commutative Rings and Their Applications", THE
SPRINGER INTERNATIONAL SERIES IN ENGENEERING AND COMPUTER SCIENCE,vol. 680, Boston, Kluwer Academic Publishers, 2002.
(Originally in "The Kluwer international series in engeneering
and computer science" Kluwer Ac. Pub. merged with Springer Verlag).
Springer
link
[4] M.L. Fania, F. Flamini, "Ulrich
bundles on some threefold scrolls over IF_e", Arxiv 2303.00676 [math.AG] 1 March 2023, pp.
1--27. pdf
[3] C. Ciliberto, F. Flamini
and A. L. Knutsen, "Elliptic curves, ACM bundles and Ulrich bundles on
prime Fano threefolds", Arxiv
2206.09986 [math.AG] 20 June 2022, pp. 1--27. pdf
[2] C. Ciliberto, F. Flamini and
A. L. Knutsen, "Urlich bundles on Del Pezzo threefolds", Arxiv 2205.13193 [math.AG] 16 June 2022, pp.
1--22. pdf
[1] A. Calabri, C. Ciliberto, F. Flamini and R. Miranda, "On
degenerations of surfaces", Arxiv 0310009
[math.AG] 9 Mag 2008, pp. 1--85. pdf