RoMaDS - Events

Click here for a list of our past events and here for a presentation of the Rome Centre on Mathematics for Modelling and Data ScienceS.

If you want to receive updates on RoMaDS activities, write an email to salvi(at) to be added to our mailing list.


Upcoming events

17.05.2023 - Seminar: Daniele Calandriello (Google Deep Mind, Paris), Efficient exploration in stochastic environments
Aula 2001.

Machine learning has seen an explosive growth recently, driven mostly by breakthroughs in classification and generative models. However ML applications in decision making settings are much more limited, where data collection is much higher and ML models must be sufficiently robust and accurate to deal with unforeseen consequences and avoid worst case scenarios. In this talk we will introduce some classical results for online decision making in stochastic linear spaces, with applications to active learning, bandit/bayesian optimization and deep learning. Starting from a rigorous analysis of the noise propagation we can formulate provably robust (i.e. no-regret) algorithms, and then create variants that can scale to modern ML data regimes without sacrificing safety. And if time suffice, we will highlight how these approaches inspired a new wave of exploration techniques to enable reinforcement learning agents to solve extremely long horizon tasks.

24.05.2023 - Seminar: Rongfeng Sun (NUS, Singapore), A new correlation inequality for Ising models with external fields
Aula 2001, 14h00. Link to Teams

We study ferromagnetic Ising models on finite graphs with an inhomogeneous external field. We show that the influence of boundary conditions on any given spin is maximised when the external field is identically 0. One corollary is that spin-spin correlation is maximised when the external field vanishes. In particular, the random field Ising model on Z^d, d ≥ 3, exhibits exponential decay of correlations in the entire high temperature regime of the pure Ising model. Another corollary is that the pure Ising model on Z^d, d ≥ 3, satisfies the conjectured strong spatial mixing property in the entire high temperature regime. Based on joint work with Jian Ding and Jian Song.

13.03-09.06.2023 - Course: Luciano Gualà (Università Tor Vergata), Advanced Topics on Algorithms
Mondays 16h00-18h00 (aula 3 PP2)
Wednesdays 16h00-18h00 (aula T7, Sogene).
See here all the details of the course.